
[Faculty of Science
Information and Computing Sciences]

Fusion in Accelerate

Ivo Gabe de Wolff
Includes material from Accelerate source code and slides of Gabriele Keller

June 22, 2021

[Faculty of Science
Information and Computing Sciences]

2

1. Accelerate

[Faculty of Science
Information and Computing Sciences]

3

Accelerate §1

dotp : : Acc (V e c t o r Float)
−> Acc (V e c t o r Float)
−> Acc (S c a l a r Float)

dotp xs ys = f o l d (+) 0 (zipWith (∗) xs ys)

[Faculty of Science
Information and Computing Sciences]

4

Outline §1

I Introduction to Accelerate

I How fusion currently works

I Current research: extend fusion & in-place updates

[Faculty of Science
Information and Computing Sciences]

5

Arrays §1

I Array programming

I Acc: array computation

I Multi-dimensional

I Shapes: Z or sh :. Int

I type Scalar a = Array Z a

I type Vector a = Array (Z :. Int) a

I type Matrix a = Array (Z :. Int :. Int) a

[Faculty of Science
Information and Computing Sciences]

6

Combinators §1

Language only includes parallelizable constructs.

I Map

I Folds and scans

I Permute (scatter, random writes)

I Backpermute (gather, random reads)

I Stencil (map with neighbourhood)

And control flow to compose those parallel operations:
conditionals, loops, let-bindings, tuples.

[Faculty of Science
Information and Computing Sciences]

7

Domain specific language §1

I Combinators imply the parallel structure.

I No need for (fragile) analyses to recover parallel structure.

[Faculty of Science
Information and Computing Sciences]

8

Embedded DSL §1

I Haskell gives polymorphism and support for higher order
functions.

I In our internal AST, programs are monomorphic and first
order.

�
Analyses are simpler in this monomorphic combinator-based
language.

[Faculty of Science
Information and Computing Sciences]

9

Map §1

map : : (Shape sh , E l t a , E l t b)
=> (Exp a −> Exp b)
−> Acc (Array sh a)
−> Acc (Array sh b)

plusOne = map (+1)

I Each thread calculates one element of the array

[Faculty of Science
Information and Computing Sciences]

10

Backpermute §1

backpermute : : (Shape sh , Shape sh ' , E l t a)
=> Exp sh '
−> (Exp sh ' −> Exp sh)
−> Acc (Array sh a)
−> Acc (Array sh ' a)

reverse xs = backpermute (shape xs)
(\ (I 1 i) −> I 1 (s i z e xs − 1 − i)) x s

I Random reads

[Faculty of Science
Information and Computing Sciences]

11

Transform §1

t r a n s f o r m : : (Shape sh , Shape sh '
, E l t a , E l t b)

=> Exp sh '
−> (Exp sh ' −> Exp sh)
−> (Exp a −> Exp b)
−> Acc (Array sh a)
−> Acc (Array sh ' b)

f o o = reverse . p lusOne

I Composition of backpermute and map.

I Not exposed to the user.

I Result of fusion.

[Faculty of Science
Information and Computing Sciences]

12

Generate §1

g e n e r a t e : : (Shape sh , E l t a)
=> Exp sh
−> (Exp sh −> Exp a)
−> Acc (Array sh a)

g e n e r a t e (c o n s t a n t (I 1 1 0 0))
(\ (I 1 i) −> i ∗ 2)

−− [0 , 2 , 4 , . . .]

I Each thread computes the value of one index.

I Could be used to implement map, backpermute and
transform,

I but then we would lose some structure.

[Faculty of Science
Information and Computing Sciences]

13

Folds §1

f o l d : : (Shape sh , E l t a)
=> (Exp a −> Exp a −> Exp a)
−> Exp a
−> Acc (Array (sh : . Int) a)
−> Acc (Array sh a)

I Associative operator to enable parallel reduction.

I Other variants: fold without initial value, segmented folds,
scans.

[Faculty of Science
Information and Computing Sciences]

14

More combinators §1

I Permute: random writes

I Conditional

I While

I Zip, unzip

I Pairs

I Slice, replicate

I Stencil

[Faculty of Science
Information and Computing Sciences]

15

AST §1

I Generalized algebraic datatypes (GADT).

I Typed environment and result.

I Pattern functor: type argument acc for recursive positions.

data PreOpenAcc acc aenv a where
Avar : : ArrayVar aenv (Array sh e)

−> PreOpenAcc acc aenv (Array sh e)
Map : : TupleType e '

−> Fun aenv (e −> e ')
−> acc aenv (Array sh e)
−> PreOpenAcc acc aenv (Array sh e ')

. . .
newtype OpenAcc aenv t =

OpenAcc (PreOpenAcc OpenAcc aenv t)

[Faculty of Science
Information and Computing Sciences]

16

Current pipeline §1

I Sharing recovery

I Simplify tuples

I Fusion

I Code generation with LLVM

[Faculty of Science
Information and Computing Sciences]

17

Runtime compiler §1

I Accelerate operates at Haskell runtime

I We compile and run the program at Haskell runtime

I Allows meta programming

I Compilation at Haskell compile time is possible with
Template Haskell

[Faculty of Science
Information and Computing Sciences]

18

Sharing recovery §1

I The combinators construct an AST representing the
computation

I Some nodes may be used multiple times in the tree

I Make this explicit by adding let bindings

l e t
xs = g e n e r a t e . .

i n
T2 xs (f o l d (+) 0 xs)

[Faculty of Science
Information and Computing Sciences]

19

2. Fusion in the current pipeline

[Faculty of Science
Information and Computing Sciences]

20

Fusion §2

I Programming model advocates splitting the program into
many kernels.

I A naive implementation would result in the creation of
many intermediate arrays.

I Fusion: combine multiple kernels into one.

I Mandelbrot had a speed up of 1000%, typically 50%.

Minimize:

I Number of kernels

I Number of (intermediate) arrays

I Number of memory operations

[Faculty of Science
Information and Computing Sciences]

21

Example §2

y = map f $ map g x

I Why create the intermediate array for the result of the
right map?

I Fusion will prevent the creation of that array.

I Result: y = map (f . g) x

[Faculty of Science
Information and Computing Sciences]

22

Example §2

dotp xs ys = f o l d (+) 0 (zipWith (∗) xs ys)

I Why create the intermediate array for the result of
zipWith?

I Fusion will prevent the creation of that array.

I We cannot represent the result in the same AST data type.

[Faculty of Science
Information and Computing Sciences]

23

Elementwise and collective operations §2

I Elementwise: Each element of the result depends on at
most one element of input array (e.g, map, backpermute,
generate).

I Collective: Each element of result depends on multiple
elements of input array (e.g., folds, scans, stencil
operations).

I Fusion treats them separately:
I Elementwise/Elementwise fused via program

transformation.
I Elementwise/Collective during code generation.

[Faculty of Science
Information and Computing Sciences]

24

[Faculty of Science
Information and Computing Sciences]

25

[Faculty of Science
Information and Computing Sciences]

26

[Faculty of Science
Information and Computing Sciences]

27

Elementwise operations as functions §2

I Represent elementwise operations as a function from index
to value.

I In the dot product example:
\ ix −> (xs ! ix) ∗ (ys ! ix).

I We also need an expression of the size (shape) of the array.

I We use this for elementwise/collective fusion.

I However, after elementwise/elementwise fusion we still
want to know which elementwise operation we have.

[Faculty of Science
Information and Computing Sciences]

28

Cunctation §2

We convert an array computation into a cunctation, which is
either:

Done : Terms which we cannot fuse.

Yield : An expression of its size and a function from index to
value. Similar to generate.

Step : An array variable, an index transform and a value
transform. Similar to transform.

�
Step < Yield < Done

[Faculty of Science
Information and Computing Sciences]

29

Cunctation of map §2

I Map of a Step becomes a Step

I Map of a Yield becomes a Yield

I Map of a Done: manifest the argument array, then return a
Step

[Faculty of Science
Information and Computing Sciences]

30

Elementwise/Elementwise fusion §2

I Convert cunctations back to elementwise operations.

I Yield becomes a generate.
I Step becomes:

I a backpermute if the value transform was an identity
function.

I a map if the index transform was an identity function (and
the size is preserved).

I a transform otherwise.

�
A map may allow more other optimisations than a
transform, like in-place updates.

[Faculty of Science
Information and Computing Sciences]

31

Pattern functors §2

AST is defined as a pattern functor, closed by OpenAcc:

newtype OpenAcc aenv t =
OpenAcc (PreOpenAcc OpenAcc aenv t)

Use a different data type to close it:

data DelayedOpenAcc aenv a where
M a n i f e s t : : PreOpenAcc DelayedOpenAcc aenv a

−> DelayedOpenAcc aenv a
Delayed : : ArrayR (Array sh e)

−> Exp aenv sh
−> Fun aenv (sh −> e)
−> Fun aenv (Int −> e)
−> DelayedOpenAcc aenv (Array sh e)

[Faculty of Science
Information and Computing Sciences]

32

Pattern functors §2

I Allows to store information anywhere in the tree.

I Type and effects: you could store variables of the proof
tree this way.

I Sharing recovery does that in multiple steps:
UnscopedAcc, ScopedAcc, before going to the resulting
Acc.

I Disadvantage: We could store a Delayed at locations
where we really expect a manifest array.

[Faculty of Science
Information and Computing Sciences]

33

Code generation §2

I Delayed terms stay present in the AST until code
generation.

I Embed the code of elementwise function into the code of
the collective operation.

I Example of dot product: instead of performing indexing in
the code of the fold, add code of
\ ix −> (xs ! ix) ∗ (ys ! ix).

[Faculty of Science
Information and Computing Sciences]

34

After the break §2

What is the best way to compile this to imperative code?

as = map f 1 x
bs = map f 2 x

c s = map (\ y −> bs ! ! y) as
ds = map (\ y −> as ! ! y) bs

Note that (!!) is indexing in arrays, so constant time.

[Faculty of Science
Information and Computing Sciences]

35

3. Current research

[Faculty of Science
Information and Computing Sciences]

36

Current research §3

I Horizontal and diagonal fusion like (map f xs, map g xs).

I Collective/Collective fusion

I In-place updates in more cases

This results in many options how a program can be
transformed. Greedy approach doesn’t work anymore.

[Faculty of Science
Information and Computing Sciences]

37

An example §3

as = map f 1 xs
bs = map f 2 xs

c s = map (\ y −> bs ! ! y) as
ds = map (\ y −> as ! ! y) bs

Fusion becomes a clustering problem. Options include:

I {as, bs}, {cs, ds} (horizontal fusion)

I {as}, {bs, ds}, {cs} (diagonal fusion)

I {bs}, {as, cs}, {ds} (diagonal fusion)

[Faculty of Science
Information and Computing Sciences]

38

Horizontal fusion §3

{as, bs}, {cs, ds}

as , bs , cs , ds = new a r r a y s ;
p a r a l l e l f o r i i n 0 . . n
{ x = xs [i] ; as [i] = f 1 (x) ; bs [i] = f 2 (x) ; }

p a r a l l e l f o r i i n 0 . . n
{ c s [i] = bs [as [i]] ; ds [i] = as [bs [i]] ; }

[Faculty of Science
Information and Computing Sciences]

39

Diagonal fusion §3

{as}, {bs, ds}, {cs}

as , bs , cs , ds = new a r r a y s ;
p a r a l l e l f o r i i n 0 . . n
{ as [i] = f 1 (xs [i]) ; }

p a r a l l e l f o r i i n 0 . . n
{ b = f 2 (xs [i] ; bs [i] = b ; ds [i] = as [b] ; }

p a r a l l e l f o r i i n 0 . . n
{ c s [i] = bs [as [i]] ; }

[Faculty of Science
Information and Computing Sciences]

40

In-place updates §3

I Reuse an input array instead of allocating a new array.

I The input should be a unique reference.

I A map can reuse the input array if it has the same element
type (or more general, the same element size).

I A permute in general has to copy the defaults array. If we
can perform in-place updates, we don’t need to copy that.

I For permute, in-place updates can result in a lower time
complexity.

[Faculty of Science
Information and Computing Sciences]

41

Uniqueness? §3

We can safely perform in-place updates on unique references.

I Uniqueness: there is only one reference to a variable.

I Temporal uniqueness: there is only one reference to a
variable at the time we perform the in-place update.

Thus, we can perform in-place updates if we can reorder the
program such that other uses of the array happen earlier.

[Faculty of Science
Information and Computing Sciences]

42

In-place updates in the example §3

as = map f 1 xs
bs = map f 2 xs

c s = map (\ y −> bs ! ! y) as
ds = map (\ y −> as ! ! y) bs

The map of c may perform an in-place update on a if the map
of d is executed earlier.

[Faculty of Science
Information and Computing Sciences]

43

Diagonal fusion §3

{as}, {bs, ds}, {cs}

as , bs , cs , ds = new a r r a y s ;
p a r a l l e l f o r i i n 0 . . n
{ as [i] = f 1 (xs [i]) ; }

p a r a l l e l f o r i i n 0 . . n
{ b = f 2 (xs [i] ; bs [i] = b ; ds [i] = as [b] ; }

p a r a l l e l f o r i i n 0 . . n
{ c s [i] = bs [as [i]] ; }

[Faculty of Science
Information and Computing Sciences]

44

Diagonal fusion, with in-place updates §3

{as}, {bs, ds}, {cs}

as , bs , ds = new a r r a y s ;
p a r a l l e l f o r i i n 0 . . n
{ as [i] = f 1 (xs [i]) ; }

p a r a l l e l f o r i i n 0 . . n
{ b = f 2 (xs [i] ; bs [i] = b ; ds [i] = as [b] ; }

c s = as ;
p a r a l l e l f o r i i n 0 . . n
{ c s [i] = bs [as [i]] ; }

[Faculty of Science
Information and Computing Sciences]

45

What is the best option? §3

I First option: 2 loops, 4 arrays

I Second option: 3 loops, 3 arrays

I And 9 other options, of which 3 are maximal

[Faculty of Science
Information and Computing Sciences]

46

Interaction with in-place updates §3

I The best option for fusion prevents in-place updates

I The best option for in-place updates prevents fusion

I Can we decide on them in one analysis?

[Faculty of Science
Information and Computing Sciences]

47

Analysis §3

I Fusion becomes a clustering problem

I Modelled as an ILP (Integer Linear Program, not
instruction level parallellism!)

I Extend the ILP with in-place updates

[Faculty of Science
Information and Computing Sciences]

48

Objective function §3

Minimize:

I Number of kernels

I Number of (intermediate) arrays

I Number of memory operations

[Faculty of Science
Information and Computing Sciences]

49

Decision variables §3

I For each combinator, at which point in time it should be
executed

I For an input of map or permute, whether we perform
in-place updates

[Faculty of Science
Information and Computing Sciences]

50

Constraints §3

I Fusion: enforce dependencies in order

I In-place: if we perform in-place updates, ensure that other
uses of the array happen earlier

[Faculty of Science
Information and Computing Sciences]

51

Implementation work §3

I After solving the ILP, we must transform the program
accordingly

I Add synchronisation points to ensure temporal uniqueness

I Task parallelism: execute multiple kernels at the same time

I Typed environment makes large program transformations
difficult

[Faculty of Science
Information and Computing Sciences]

52

Other goals of the new pipeline §3

I Lower runtime overhead

I More backend specific optimisations

[Faculty of Science
Information and Computing Sciences]

53

Let bindings §3

I Array computations can be bound to variables.

I Fusing those may duplicate work.

I Currently: only fuse those if the variable is used once.

I Desired: fuse those in many cases, as the cost of memory
is usually higher than the computational cost.

[Faculty of Science
Information and Computing Sciences]

54

Conclusion §3

I Program analyses are easier on the DSL

I Some analyses are not needed at all: the combinators
imply the parallel structure

I Being an EDSL we also need to perform other analysis
than a classic compiler (sharing recovery)

I Many ways to transform a program with fusion and
in-place updates

I Use an ILP to make the decision

	Accelerate
	Fusion in the current pipeline
	Current research

