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UU AG System User Manual

Getting Started

Installing the UUAG system

The easy way: cabal install uuagc

Otherwise:

• Have a recent GHC compiler on your system

• Download the UULIB Haskell package

– From the download page
– From Hackage

• Unzip and use Cabal to compile and install the UULIB package:

> cd <uulib source directory>
> ghc --make Setup.hs -o setup -package Cabal
> ./setup configure
> ./setup build
> ./setup install

• Download a source distribution of the UUAG system:

– From the download page
– From Hackage

• Unzip and use Cabal to compile and install the UUAG package:

> cd <uuagc source directory>
> ghc --make Setup.hs -o setup -package Cabal
> ./setup configure
> ./setup build
> ./setup install

Running the UUAG system

We assume that UUAG compiler is installed on your system. If you run the compiler without arguments it will show
you a short help message, and a list of options.

> uuagc
Usage info:

uuagc options file ...

List of options:
-m generate default module header

--module[=name] generate module header, specify module name
-d --data generate data type definitions
...

In this user manual all the compiler switches and language features are introduced and explained with examples.

It must be noted that there are two different syntaxes that can be used: the "old" AG syntax and the Haskell like
syntax. The latter is preferred for clarity and hence used in this manual. However, in the current version of the
compiler the old syntax is default, so to compile the examples the -H (or --haskellsyntax) option must be used to
explicitly enable the Haskell like syntax.
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Example 1: Calculate the sum of a tree of integers

Her is a complete UUAG program. It defines binary trees of integers, and how to compute their sum. It also defines
a test tree containing some test data, and computes their sum.

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

attr Tree
syn sum :: Int

sem Tree
| Node lhs.sum = @left.sum + @right.sum
| Tip lhs.sum = @value

{
main :: IO ()
main = print (show test)

testTree :: Tree
testTree = Node (Tip 1) (Node (Tip 2) (Tip 3))

test :: Int
test = sem_Tree testTree
}
-- output of the program will be "6"

The program consists of some UUAG declarations, introduced by the keywords data, attr, and sem. It also contains
a plain Haskell part, which is enclosed in braces. All text in braces is not touched by the preprocessor and passed
unchanged to the Haskell compiler.

With the data declaration we define the syntax of our datatype. A data declaration is quite similar to a Haskall
data declaration, but:

• each field has a name
• all alternatives are preceded with a "|" (even the first one)

With an attr declaration we specify attributes, that is the values we want to calculate in our tree walk. We can
specify top-down, threaded, and bottom-up attributes, with the constructs inh, chn and syn constructs respectively.
Currently only a bottom-up attribute is specified.

With a sem declaration we specify the semantics. For each constructor we have an assignment that states how the
sum for the left hand side (lhs) can be calculated from the fields and/or the attributes of the right hand side. A
field can be referred to by an @ and the field name (as in @value ), an attribute by selecting from a field with a
"dot" notation (as in @left.sum ). These items can be combined by any Haskell expression (in this case just a + ).

In the Haskell part we define an example tree structure by using the type Tree and the constructors Node and Tip
introduced by the data declaration.

A function sem_Tree is generated by the preprocessor. It can be used to determine the semantics of our example
structure.

The program can be preprocessed, compiled an run by:

uuagc -dcfH Example1.ag
ghc Example1.hs
./Example1
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Example 2: Multiple attributes, and wrappers

The second example program defines four attributes (the sum and maximum of a tree, its front, and a copy of it)
and as a test selects one of them to print (the front).

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

attr Tree
syn sum :: Int
syn max :: Int
syn front :: {[Int]}
syn copy :: Tree

sem Tree
| Tip lhs.max = @value

lhs.sum = @value
| Node lhs.sum = @left.sum + @right.sum

.max = @left.max `max` @right.max

sem Tree
| Node lhs.front = @left.front ++ @right.front

lhs.copy = Node @left.copy @right.copy
| Tip lhs.front = [ @value ]

lhs.copy = Tip @value

{
main :: IO ()
main = print (show result)

testTree :: Tree
testTree = Node (Tip 1) (Node (Tip 2) (Tip 3))

test :: T_Tree
test = sem_Tree testTree

result :: [Int]
result = front_Syn_Tree (wrap_Tree test Inh_Tree)
}
-- output of the program will be "[1,2,3]"

In the attr declaration, we define four bottom-up, or "synthesized" attributes. As of yet, we still don’t have
top-down, or "inherited" attributes. Types of attributes can be any Haskell type, including the ones generated when
preprocessing this this file, but if they are not a simple name they must be escaped by curly braces.

In sem declarations we define the values for all four attributes for both constructors. For each constructor we can
give multiple assignments at once, but we can also distribute assignments in separate sem declarations. Constructors
and their assignments may appear in any order. If, for a particular constructor, we have multiple assignments
sharing the same target field, we may omit the field name (as is done with .max in the Node semantics).

In the Haskell part, because we declared four synthesized attributes, calling sem_Tree now returns a quadruple.
The order of the elements of this quadruple is unspecified. To be able to use it in signatures, the type of the full
quadruple is available as T_Tree (as an effect of the -s option).

As we are interested in a particular element of the quadruple, we run the preprocessor with -w option. This will
generate a function wrap_Tree, which takes:
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• the semantics of the tree (which is the quadruple of unknown order)
• an additional argument for initializing inherited attributes (currently just the constant Inh_Tree)

and returns

• the four synthesized attributes again, but now as a value of datatype with named fields

From the result of wrap_Tree, we can select the desired attribute by name.

Because we need type signatures and wrapper functions to be generated in this example, we add options -s and -w
to the original ones (-d for generating datatypes, -c and -f for generating the "catamorphism" function and the
individual semantic functions, and -H for Haskell like syntax). So the program can be preprocessed, compiled an run
by:

uuagc -dcfswH Example2.ag
ghc Example2.hs
./Example2

Example 3: Inherited attributes

The third example program defines an attribute that will be a transformed version of the tree. It has the same
shape as the original tree, but different values: all values are replaced by a single constant. Again, it is tested on an
example tree, in which all values are replaced by 37.

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

deriving Tree : Show

attr Tree
inh replacement :: Int
syn transformed :: Tree

sem Tree
| Node lhs.transformed = Node @left.transformed @right.transformed

left.replacement = @lhs.replacement
right.replacement = @lhs.replacement

| Tip lhs.transformed = Tip @lhs.replacement

{
main :: IO ()
main = print (show result)

testTree :: Tree
testTree = Node (Tip 1) (Node (Tip 2) (Tip 3))

test :: T_Tree
test = sem_Tree testTree

result :: Tree
result = transformed_Syn_Tree (wrap_Tree test Inh_Tree{replacement_Inh_Tree=37} )
}
-- output of the program will be "Node (Tip 37) (Node (Tip 37) (Tip 37))"

As we will use the Haskell show function on the Tree datatype in the main program, we need to have Haskell
deriving Show for the Tree datatype. In the preprocessor language, this is requested in a separate deriving
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declaration.

In an attr declaration, we declare a synthesized attribute transformed, that will be a transformed version of the
tree. It has the same shape as the original tree, but different values: all values are replaced by a single constant.
The value to use as a replacement is information that flows top-down through the tree. For this, we declare an
inherited attribute replacement.

In the sem declaration, the definition of synthesized attribute transformed is like the copy attribute from Example2,
except that at a Tip, instead of @value, the replacement value is inserted.

For the inherited attribute replacement, the role of the two sides of the assignments are reversed: we may now use
the value of @lhs.replacement at the right side of the equation, but we must define the values for the left and
right children.

The inherited attribute needs to be initialized at the top of the tree. This is done in the Haskell part as the second
argument to wrap_Tree. That argument is a datastructure with named fields for all inherited attributes. The
notation with the braces in the definition of result is the (not so well-known) Haskell notation for initializing such
datastructure values.

Example 4: Multiple datatypes, the self pseudotype, auto-generated rules

This example is a re-work of Example 3, where the value "37" is fixed internally during the tree walk, rather than
passing it when calling the tree walk.

For this, we need a non-recursive wrapper-type Root around the recursive type Tree.

data Root
| Root tree :: Tree

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

deriving Root Tree : Show

attr Root Tree
syn transformed :: self

attr Tree
inh replacement :: Int

sem Tree
| Tip lhs.transformed = Tip @lhs.replacement

sem Root
| Root tree.replacement = 37

{
main :: IO ()
main = print (show result)

testTree :: Tree
testTree = Node (Tip 1) (Node (Tip 2) (Tip 3))

testRoot :: Root
testRoot = Root testTree

test :: T_Root
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test = sem_Root testRoot

result :: Root
result = transformed_Syn_Root (wrap_Root test Inh_Root)
}
-- output of the program will be "Root (Node (Tip 37) (Node (Tip 37) (Tip 37)))"

We can declare attributes for multiple datatypes in a single attr declaration. Here we do so for the synthesized
attribute transformed. For this particular attribute there would be a problem, because a transformed Root has type
Root, and a transformed Tree has type Tree. But we can summarize that by using the pseudotype self, and still
declare the attribute transformed in a single declaration.

The inherited attribute replacement is only needed in the Tree datatype, so it is declared in a separate attr
declaration.

An additional effect of using the pseudotype self is that semantic rules are defined implicitly, that as a default
generate a copy of the datastructure. So we don’t have to specify explicitly that a transformed Node consists of the
Node constructor applied to the transformed versions of its children, and that a transformed Root is Root re-applied
to the transformed version of its content tree.

The only semantic rule we do need to write, is where we disagree with the default behaviour: at a Tip, we don’t
want a copy, but insert the replacement value.

The non-recursive wrapper type Root is a good place to initialize inherited attributes. So in another sem declaration
the value of replacement is set to be 37. The Haskell part is thus freed of the responsibility to initialize the inherited
attribute: the non-recursive wrapper type Root not even has one. So the call to start the tree walk is as simple as in
Example 2.

Another rule sem that you might expect is:

sem Tree
| Node left.replacement = @lhs.replacement

right.replacement = @lhs.replacement

This is not needed though, because rules that copy inherited attributes unchanged to the children are inserted
automatically when nothing other is specified. This defaulting mechanism is known as (one of the forms of) the
copy rule.

Example 5: Two-pass traversals

This example is another variation on Example 4, where again we generate a tree of the same shape as the original
one, with values replaced by a constant. The constant however is not taken to be 37, but the sum of all values in the
original tree.

Appearantly, this would require a two-pass traversal of the tree: one pass that determines the sum, and another one
to construct the copy-with-replaced-values. But the program does not really look very different than Example 4:

data Root
| Root tree :: Tree

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

set Every = Root Tree

deriving Every : Show

attr Every
syn transformed :: self
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attr Tree
inh replacement :: Int
syn sum :: Int

sem Tree
| Tip lhs.transformed = Tip @lhs.replacement

lhs.sum = @value
| Node lhs.sum = @left.sum + @right.sum

sem Root
| Root tree.replacement = @tree.sum

{
main :: IO ()
main = print (show result)

testRoot :: Root
testRoot = Root (Node (Tip 1) (Node (Tip 2) (Tip 3)))

test :: T_Root
test = sem_Root testRoot

result :: Root
result = transformed_Syn_Root (wrap_Root test Inh_Root)
}
-- output of the program will be "Node (Tip 6) (Node (Tip 6) (Tip 6))"

As an added convenience, we introduce the set declaration in this example. A set declaration is a way to abbreviate
sets of datatypes. The name can be used instead of an explicit enumeration of the set in other (deriving, attr and
sem) declarations.

In the attr declarations, we re-introduce synthesized attribute sum here for datatype Tree (see Example1). Notice
that Tree has two synthesized attributes:

• sum: Int (which is obviously declared)
• transformed: Tree (because Tree is part of the Every set, and self is instantiated to Tree)

In the sem declaration for Root in Example4 we initialized the replacement value with 37. But nothing prevents us
from letting the replacement value depend on other synthesized attributes, such as sum.

In effect, we now have defined a two-pass tree traversal. In the first pass, the sum of all values is calculated. In the
second pass, the transformed tree is build, using the sum as the replacement value. combined, we have synthesized a
tree of the same shape as the original, where every value is replaced by the sum of all values. The nice thing is that
you need hardly be aware that this is actually a two-pass traversal. You can freely use synthesized attributes to
define inherited attributes, that may in turn be needed to define other synthesized attributes. Your only concern
should only be that the dependency is not circular, but whether one, two, or six passes are necessary is automatically
determined.

Building AG files with Cabal

The UUAG system consists of the preprocessor uuagc and a Cabal plugin uuagc-cabal. The UUAG preprocessor
takes several UUAG files (.ag) and produces a Haskell file (.hs). Instead of invoking the preprocessor manually as we
described above, we can also let Cabal take care of that through the Cabal plugin. Take the following steps.

In the Setup.hs, add an import declaration for the cabal plugin and use the special user-hook:

import Distribution.Simple (defaultMainWithHooks)
import Distribution.Simple.UUAGC (uuagcLibUserHook)
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import UU.UUAGC (uuagc)

main = defaultMainWithHooks (uuagcLibUserHook uuagc)

Furthermore, add in the same directory a file called uuagc_options, which must specify for each AG file, with what
features the corresponding Haskell file is to be build:

file : "src/MyModule.ag"
options : data, catas, semfuns, signatures, pretty, rename, module "MyModule", wrappers

Cabal then keeps track of dependencies between files, and ensures that files are rebuild after changes.

Language Constructs

This section gives an overview of the UUAG language. The following sections show the syntax of each construct by
example. A complete reference in EBNF of the UUAG language can be found in the appendix.

data declaration

A data declares a nonterminal, and a number of productions for a nonterminal. Each production is labelled with a
constructor name. Constructors must be unique within a nonterminal, but (unlike in Haskell) the same constructor
name is allowed in other nonterminals. Giving multiple data declarations for the same nonterminal is allowed,
provided that the constructor names in the declarations do not clash. The fields of each production all have a name
and a type. The type can be a nonterminal or a Haskell type. All fields of the same constructor must have different
names.

Valid data declarations:

data Tree | Bin left :: Tree right :: Tree
| Leaf value :: Int

data Decl | Fun name :: String args :: {[String]} body :: Expr

Several abbreviations exist for data declarations. Fields with the same type can be declared by listing their names
separated by commas. Also the field name can be left out, in which case the name is defaulted to the type name
with the first letter converted to lowercase. It is only allowed to leave out the field name if the type is an uppercase
type identifier. You also need to make sure that the default name does not clash with the name of another field.
The following example show correct abbreviations:

data Tree | Bin left,right :: Tree -- two fields with the same type
| Leaf Int -- field name implicitly is 'int'

The following data declaration is wrong:

data Tree | Bin Tree Tree -- two nameless fields have the same type, so would have the same name
| Leaf {(Int,Int)} -- type of nameless field is not a simple name, so no name can be deduced for it

Polymorphic abstract syntax is allowed by adding type variables to data declarations. The variables are required
to be lower-case identifiers. The type variables are only usable somewhere inside a Haskell type (hence the curly
braces). Use parentheses around nonterminals to be able to pass a list of Haskell types to the nonterminal. The
following example shows a binary tree storing values of type a or b depending on the depth of the leaf:

data Eq {a}, Show {b} => Tree a b
| Bin left,right :: (Tree {b} {a})
| Leaf value :: {a}

If a nonterminal is defined using several data declarations, the list of type variables is the concatenation of the type
variables of the individual declarations in the order of appearance.

These data declarations define the structure of the Abstract Syntax Tree. An AST can be constructed for
a nonterminal D (data type) using alternatives C (constructor) in Haskell by applying some arguments to the
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constructor D_C, returning a value of type D when all arguments are applied. Alternatively, a deforested AST (the
denotation of the AST) can be constructed by using the functions sem_D_C instead of the constructor D_C, returning
a value of type T_D when all arguments are applied.

attr declaration

An attr declaration declares attributes for one or more nonterminals. Each attribute is inherited, chained, or
synthesized and has a name and a type. A chained attribute is just an abbreviation for an attribute that is both
inherited and synthesized. The names of all inherited attributes declared by attr statements must be different. The
same holds for synthesized attributes.

Valid attr declarations are:

attr Tree
inh depth :: Int
chn minimum :: Int
syn out :: {[Bool]}

attr Tree
inh count :: Int
syn count :: Int

attr Decl inh environment :: {[(String,Type)]}
attr Decl syn code :: Instructions

In attribute declarations the abbreviations for fields in a data declaration are not allowed, so all attributes must
have an explicit name and they can not be grouped.

A use clause can be added to the declaration of a synthesized or chained attribute, to trigger a special kind of copy
rule. The first expression must be an operator, and the second expression is a default value for the attribute. For
example:

data Tree
| Bin left,right :: Tree
| Leaf value :: Int

attr Tree
syn value use {+} {0} :: Int -- compute sum of values

An attribute can be declared to be of type self. The type self is a placeholder for the type of the nonterminal for
which the attribute is declared. For example:

attr Tree Expr
syn copy :: self

The attr statement above declares an attribute copy of type Tree for nonterminal Tree, and an attribute copy of
type Expr for nonterminal Expr. Declaring a synthesized attribute of type self triggers a special copy-rule, that
constructs a copy of the tree.

To refer to type variables of polymorphic nonterminals in the types of attributes, use the name of the type variable
prefixed with an *@*. Type variables only need to be prefixed when they occur in the type of an attribute. The
type of the attribute has to be a Haskell type (in curly braces). For example, to declare a synthesized attribute that
is a list of all the values in the tree:

data Tree a | Bin left,right :: (Tree {a})
| Leaf value :: {a}

attr Tree
syn elements :: {[@a]}

Attribute declarations can also be given in data or sem statements after the name of the nonterminal. For example:

data Tree | Bin left,right :: Tree
| Leaf Int

attr Tree
syn min :: Int
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can be combined into:

data Tree syn min :: Int
| Bin left,right :: Tree
| Leaf Int

sem

In a sem construct one can specify semantic rules for attributes. For each production the synthesized attributes
associated with its corresponding nonterminal and the inherited attributes of its children must be defined. If there is
a rule for a certain attribute is missing, the system tries to derive a so called copy-rule.

Semantic rules are organised per production. Semantic rules for the same production can be spread over multiple
sem statements. This has the same meaning as they were defined in a single sem statement.

A fieldref is lhs or loc or a field name. To refer to a synthesized attribute of the nonterminal associated with
a production the special fieldref lhs is used together with the name of the attribute. To refer to an inherited
attribute of a child of a production the field name of the child is used together with the attribute’s name. The
special fieldref loc is used to define a variable that is local to the production. It is in the scope of all semantic rules
for the production.

The expressions in semantic rules are code blocks, i.e. Haskell expressions enclosed by { and }. They may contains
references to values of attributes and fields. These references are all prefixed with an @ symbol to distinguish them
from Haskell identifiers. To refer to the value of a field one uses the name of the field. References to attributes are
similar to the ones on the left-hand side of a semantic rule such as field.attr. The difference is that they now
refer to the synthesized attributes of the children and the inherited attributes of the nonterminal associated with the
production. Local variables can be referenced using their name, optionally prefixed with the special loc field.

Valid definitions:

attr Tree
inh gmin :: Int
syn min :: Int
syn result :: Tree

sem Tree
| Bin left.gmin = { @lhs.gmin }

-- "left.gmin" refers to the inherited attribute "gmin"
-- of the child "left"

| Bin right.gmin = { @lhs.gmin }
-- "@lhs.gmin" refers to the inherited attribute "gmin"
-- of nonterminal "Tree"

| Bin loc.min = { min @left.min @right.min }
-- "min" is a new local variable of the constructor "Bin"

sem Tree
| Bin lhs.result = { Bin @left.result @right.result }

-- "@left.result" refers to the synthesized attribute "result"
-- of child "left"

| Bin lhs.min = { @min }
-- "@min" refers to the local variable "min"

| Leaf lhs.result = { Leaf @lhs.gmin }
-- "@lhs.gmin" refers to the inherited attribute "gmin"
-- of nonterminal "Tree"

| Leaf lhs.min = { @int }
-- "@int" refers to the value of field "int" of "Leaf"

For the sem construct there exist a number of abbreviations. As for data statements one can write attribute
declarations after the name of the nonterminal. Furthermore semantic rules for the same production can be grouped,
mentioning the name of the production only once. For example:
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sem Tree
| Bin left.gmin = { @lhs.gmin }

right.gmin = { @lhs.gmin }
loc.min = { min @left.min @right.min }

In a similar way semantic rules for the same fieldref can be grouped. For example:

sem Tree
| Bin lhs.result = { Bin @left.result @right.result }

.min = { @min }

When the same semantic rule is defined for two productions of the same nonterminal they can be combined by
writing the names of both productions in front of the rule. For example:

sem Tree
| Node1 lhs.value = { @left.value + @right.value }
| Node2 lhs.value = { @left.value + @right.value }

can be abbreviated as follows:

sem Tree
| Node1 Node2 lhs.value = { @left.value + @right.value }

Finally the curly braces around expressions may be left out. The layout of the code is then used to determine the
end of the expression as follows. The column of the first non-whitespace symbol after the ‘=’ symbol is the reference
column. All subsequent lines that are indented the same or further to the right are considered to be part of the
expression. The expression ends when a line is indented less than the reference column. An advantage of using
layout is that problems with unbalanced braces are avoided.

When using polymorphic abstract syntax, the type variables often need to be constrained by the Ord class in order
to put values of this type in sets or maps. Add context using:

data Tree a
sem Ord {a}, Show {a} => Tree

It is also possible to add such a context at data or attr declarations.

A rule introduced by a sem introduces dependencies between attributes. It is sometimes desirable to add additional
dependencies between attributes. For example, when using the -O option to derive a static multi-visit rule ordering,
scheduling of attributes is done greedily, with as much attributes per visit as possible. By adding additional
dependencies, we end up with smaller visits.

To add an additional dependency that fld1.at1 is evaluated strictly before fld2.at2, write:

sem D
| C fld1.at1 < fld2.at2

You may use local attributes as well.

There are two meta-fields called first__ and last__. When using @first__.x, the first field of the alternative is
substituted that has a synthesized attribute x. Similarly, with @last__.x the last field with a synthesized attribute
x is selected. At the moment, these meta-fields can only be used in right-hand sides.

There is special notation for higher-order attributes (also called nonterminal attributes). A higher-order attribute is
a local attribute that acts as if it is an additional child of the production. It has either type D or type T_D (where D
is some AST declared by a data declaration). For example:

data D | C Int
data R | R
sem R

| R inst.x :: D
inst.x = C 3
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Now, it is as if x is a child of R, although the value is defined by a rule instead of obtained from the constructor.
The type signature is obligatory. You can also use the "deforested" types (T_D), and build the deforested tree
yourself (using e.g. sem_C). Please note that nonterminal-names should not start with a "T_".

You need to supply inherited attributes of D and can use synthesized attributes of D:

attr D
inh p :: Int
syn q :: Int

sem R
| R x.p = 3

loc.z = @x.q + 1

Like normal children, higher-order attributes participate with copy rules. Higher-order attributes are considered as
children after the normal children of a constructor, in the order of lexical appearance.

If a higher-order attribute shadows an existing child, its definition is actually a function from the semantics of the
original child to the new semantics:

data D1 | C1 k :: D1
data D2 | C2

sem D1 | C1 inst.k :: D2
inst.k = \semD1 -> sem_D2_C2 ...

Sometimes it is needed to specify type signatures for local attributes:

sem D
| C loc.x :: {type}

type

The type construct is convenient notation for defining list based types. Apart from a convenient notation the type
construct has effect on the code generated. Instead of generating data constructors Cons and Nil Haskell’s list
constructors : and [] are used.

Examples of type constructs:

type IntList = [ Int ]
type Trees = [ Tree ]

The following other type synonyms are supported:

type MbInt = maybe Int
type EIntBool = either Int Bool
type Trip = (Int, Bool, Char)
type M1 = map {String} D -- curly braces required (key must be a haskell type)
type M2 = intmap D

Nonterminals are also allowed as argument:

type MbExpr = maybe Expr
attr MbExpr Expr

syn tp :: Type

sem MbExpr
| Just lhs.tp = @just.tp
| Nothing lhs.tp = undefined

• A list has productions: Cons with field hd and field tl, Nil without any fields.
• A maybe has productions: Just with field just, Nothing without any fields.
• An either has productions: Left with field left, Right with field right.
• A map has productions: Entry with field key, val, and tl, Nil without any fields.
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• A tuple has productions: Tuple with fields x1, x2, etc..

include

Other UUAG files can be included using the following construct:

include "filename.ag"

The filename must appear in double quotes. The suffix of the file .ag or .lag) should not be omitted. The file
should contain valid UUAG declarations. These statements are inlined in the place of the include directive.

Code Block

A code block is a piece of Haskell code enclosed by curly braces. There exist three kinds of code blocks: top-level,
type, and expression code blocks. A top-level code block contains Haskell declarations, such as import declarations,
and function and type definitions. A name can be writen before a top-level code block. The code blocks are sorted
by their names, and appended to the code generated by the UUAG system. A special name imports is used to
mark code blocks containing import declarations. These are copied to the start of the generated code, as Haskell
only allows import declarations at the beginning of a file.

An example of two code blocks, an import declaration and a function definition:

imports
{
import List
}

quicksort
{
-- simple implementation of quicksort:
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = let (l,r) = partition (<=x) xs

in qsort l ++ [x] ++ qsort r
}

A type code block contains a Haskell type and may be used as type in data, type, and attr declarations. Examples:

data Module
| Module name :: {Maybe String} body :: Declarations

type Points = [ {(Int,Int)} ]

attr Expr
inh env :: {[(String,Int)]}

Finally expression code blocks contain a Haskell expression and occur as the right-hand side of attribute definitions
in sem statements. Apart from normal Haskell code they may contain references to attributes. These references are
prefixed with an @ symbol, to distinguish them from ordinary Haskell identifiers. Examples:

sem Tree syn min :: {Int}
| Node lhs.min = { min @left.min @right.min } -- an expression code block

The contents of a block is the plain text between an open and a close brace. The text in a code block is not
interpreted by the UUAG system. Curly braces occurring inside the Haskell code must be balanced. This includes
curly braces in comments, and in string and character literals.

An example of a code block containing a nested pair of braces:
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{
f a b c = let { d = b*b - 4*a*c

; result1 = (-b + sqrt d) / 2*a
; result2 = (-b - sqrt d) / 2*a
; result | d > 0 = [result1, result2]

| d == 0 = [result1]
| d < 0 = []

}
in result

}

All curly braces Haskell constructs, such as do and let are normally matched. However, curly braces in string, or
character literals may cause problems. The balancing rule forbids code blocks such as:

{
openbrace = "{"
}

This problem can be fixed by inserting a matching brace in comments. In the following code the curly braces are
balanced:

{
openbrace = "{"
-- }, just to balance braces
}

Comments

One-line comments start with two dashes (--) and end at the end of the line. Multi-line comments start with {-
and end with -}. As in Haskell comments can be nested.

{-
Definition of a datatype for binary trees
-}
data Tree

| Leaf val :: Int
| Node left :: Tree right :: Tree -- a node has two subtrees

Names

Names start with a letter followed by a (possibly empty) sequence of letters, digits, underscores and prime signs. A
name for a nonterminal or constructor must start with an upper-case letter. A name of a field or attribute must
start with a lower-case letter. The following words are reserved and cannot be used as names: data, ext, attr, sem,
type, use, loc, lhs, and include.

Valid names:

-- nonterminals or constructors:
Node
Expression
Tree_Node
-- field names or attributes:
left
long_name
field2
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Multi-productions

Sometimes you want to have multiple productions for an AST node. This situation arises when an AST node
represents some form of choice, typically for some form of proof search. For example for the implementation of type
systems with type rules that are not syntax-directed, or interpreters of an operational semantics with evaluation
rules that are not syntax-directed. Alternatively, this may also arise when the grammar is ambiguous and the AG
evaluation should disambiguate. Here, we show how this can be done with AGs.

The above situation is the case for the following proposition language. We first explain this language, then look at
multiple evaluation-productions for the Or node. The abstract syntax is:

data Prop
| Con bool :: Bool -- constants |True| and |False|
| Emb fun :: {Env -> Prop} -- embed Haskell function
| Let nm :: String -- binding a (non-recursive)

expr :: Prop -- name to a prop
body :: Prop

| And left :: Prop -- the logical and of two props
right :: Prop

| Or left :: Prop -- the logical or of two props
right :: Prop

type Env = map String Bool

An Emb node is semantically equal to fun applied to the environment (introduced later). Its actual purpose is that
the technique presented here also works for higher-order children, as we see later. For now, it is a fancy way to
define the dereference of a value in the environment. For example, via the smart-constructor var:

var :: String -> Prop
var nm = Prop_Emb (Prop_Con . findWithDefault (error "not found") nm)

Given an initial environment [("f", False), ("t", True)], the following is an example proposition equal to False:

tree = Prop_Or (Prop_And big $ var "f") (var "f")
big = Prop_And (var "t") big

In this example big is an infinite proposition. Its value does not affect the outcome, because of the Prop_And with
var "f".

Consider a syntax-directed set of evaluation rules for Prop written as an AG. For that, we add an inherited attribute
env (the environment) and a synthesized attribute outcome (denotes the boolean value of the proposition).

attr Prop
inh env :: Env
syn outcome :: Bool

sem Prop
| Con lhs.outcome = @bool
| Emb inst.k :: Prop

inst.k = @fun @lhs.env
| Let body.env = insert @nm @expr.outcome @lhs.env
| And lhs.outcome = @left.outcome && @right.outcome
| Or lhs.outcome = @left.outcome || @right.outcome

For an Emb prop, the outcome is determined by the computed prop k. For a Let prop, we insert in the environment
of the body, the outcome of the expr bound to nm. Copy rules take care of the rest.

When we run the above program on the tree, it does not produce a value. The problem is causes by both the
"&&"-operator and the "||"-operator. They do not distribute the evaluation over their operands well. They are strict
in the first argument, therefore the left-operand is explored first. We would like a more balanced evaluation.

Take a closer look at the productions for And and Or: these can actually be split in four conditional productions:
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sem Prop
| And1 lhs.outcome = False (if @left.outcome=False or @right.outcome=False)
| And2 lhs.outcome = True (otherwise)
| Or1 lhs.outcome = @left.outcome (if @right.outcome=False)
| Or2 lhs.outcome = @right.outcome (if @left.outcome=False)

If we could write our AG this way, a clever AG evaluator could use some backtracking-technique combined with an
attempt to reduce the AST nodes that received the least amount of evaluation so far. However, this may not always
be a good strategy. For example, when both @left.outcome and @right.outcome are False, the choice between
Or1 and Or2 is ambiguous, and we may prefer one over the other. Also, in some cases we may want to be biassed in
a particular subtree, potentially based results computed at runtime. Hence: we would like to define this strategy
ourselves, at runtime.

Since the problem for the And props is similar to that of the Or props, we forget about the former and consider only
the latter. We do not really want to express multiple productions for an AST node, because (as mentioned above)
the AG evaluator should not magically make the choice for us. However, we can encode the multiple productions as
a single production where a choice is made between children via a function best:

sem Prop
| Or merge left right as result :: Prop = best

Read merge as ‘choose’ here: best indicates which of the two children left and right is chosen (explained later).
The chosen child is provided as a child named result (hence, of type Prop, which has to be explicitly written).
Note that as a consequence, no rule may refer to the the synthesized attributes of left and right, and neither
define the inherited attributes of result.

The function best gets the synthesized results of left and right as parameter, and must provide the synthesized
results for result. The type of best is thus T_Prop -> T_Prop -> T_Prop. Since Prop has only once synthesized
attribute outcome of type Bool, best is actually a function of type Bool -> Bool -> Bool. For example, when
best = const, it always chooses the left child. For our example, as initial attempt, we define best as follows:

best left_outcome right_outcome
| not right_outcome = left_outcome
| not left_outcome = right_outcome

However: we now actually made the problem worse! We now effectively evaluate both children always. We can do
slightly better with the following definition as second attempt:

best left_outcome right_outcome
| left_outcome = left_outcome
| right_outcome = right_outcome
| otherwise = False -- may also take left_outcome/right_outcome

Actually, we are now back at the beginning: to make a choice, we inspect the outcome of the left-child, thus the
evaluation is still left-biased.

The problem is that the best as defined above makes a choice based on the final results of the computation, which is
too late. What we really would like to do is to let every child return some form of progress report that gives insight
in the amount of effort evaluation took so far, and base our choice on that. We can achieve this in a various ways.
For instance, via a combination of lazy evaluation with an additional attribute. However, we do not discuss the
entire design space here. Instead we present immediately our solution, which provides a breadth-first evaluation
with online results. To enable this behavior, provide an additional flag --breadthfirst to uuagc, and import the
Haskell module import Control.Monad.Stepwise.AG (package stepwise on Hackage).

The ‘progress report’ for a child is a stream of EvalInfo (user-defined) entries, that ends with special entry containing
the values of its synthesized attributes. For our example, we just want some estimation of the amount of work that
is done for a child, so each progress-entry is just a value that denotes a bit of work:

data EvalInfo = Work

These entries need to be generated somewhere, and we act on them in the best function.
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To start with the latter: the signature of best changes to: Comp EvalInfo I_T_Prop -> Comp EvalInfo I_T_Prop
-> Comp EvalInfo I_T_Prop. It takes a computation Comp for each child, and must return a computation for the
choice between these types. The type Comp is provided by the imported module, as well as the function oneStep:

oneStep :: Comp EvalInfo t -> Outcome EvalInfo t

data Outcome i t
= Step i (Comp i t)
| Done (Syn t)

It evaluates the computation until it either emits a progress report (returned via outcome Step, including the
residual computation), or the computation is finished and returns the synthesized attributes of the child (denoted as
Syn t, i.e. the type Bool).

In best, we distribute work over the two children equally. We emit a Work-report if both children did a bit of work,
and lazily choose between the residual computations. Otherwise, if one of the children finishes, we commit ourselves
to one of them:

best l_comp r_comp = best' (oneStep l_comp) (oneStep r_comp)
where best' (Step Work l_next) (Step Work r_next) -- both do a step

= Step Work (best l_next r_next)
best' (Done True) _ = l_comp -- one of them fails or succeeds
best' _ (Done True) = r_comp
best' (Done False) _ = r_comp
best' _ (Done False) = l_comp

If you (lazily) want the synthesized results of a child, apply the function lazyEval :: Comp EvalInfo t -> Syn
t to its computation. This is not the same as running oneStep until it emits a Fin, because the latter uses a strict
evaluation scheme.

Finally, how to emit these Work steps. We can use the merge syntax introduced above. Suppose that we consider
reaching an Or node to be abit of evaluation, we could emit a Work report before doing the comparisons:

sem Prop
| Or merge left right as result :: Prop = \l r -> info Work (best l r)

The function info :: EvalInfo -> Comp EvalInfo t -> Comp EvalInfo t is provided by the imported module
and emits the Work progress report before the progress reports resulting from best l r.

What if we also want to emit some progress for e.g. the constant leafs, where there is no merge to piggy-back on?
Then we simply introduce one:

sem Prop
| Con merge dummy :: Dummy = info Work $ final ()

dummy.handle < lhs.outcome

data Dummy | Dummy
attr Dummy syn handle :: ()

merge takes a list of children as inputs, which may be empty. We must still provide a computation for Dummy, which
we can do using the function final, which wraps values for synthesized attributes into a trivial computation. Finally,
we need to take care that the outcome of the dummy-child is actually needed at some point, otherwise the progress
report is never emited, which is the purpose of the ’fake dependency’ handle-before-outcome.

The mechanism of injecting progress reports is flexible, because we can precisely pinpoint when to inject these
reports. There are some improvements possible here though.

With the code structered in this way, we effectively compute the value of a proposition in a breadth-first way. The
example presented here shows an example with inherited and synthesized attributes, a higher-order child (Emb),
an inherited attr for a child that depends on the syn attr of another child (Let). In fact, all features required
by our greatest user, the compiler UHC, are supported. The administration needed to represent the breadth-first
computation takes additional memory and cpu time. Early benchmarks against the UHC compiler seem to suggest
that the overhead is negglible when the mechanism is not used.
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The implementation in UUAG has some practical limitations. Some of them can be eliminated through additional
effort. The limitations are:

• Works in combination with many of the commonly-used commandline options, but likely breaks with some
rarily used options.

• In case of a multi-visit AG, the choice is made for the first visit. Only those attributes are available.
• The type of the result child of a merge must equal the type of the input children.
• There can only be one type of progress report, hardcoded to be EvalInfo. It must be in scope of the generated

Haskell module.
• The AG must be ordered (pass the -O flag).

Auto-generated rules

When a definition for an attribute is missing, the UUAG can often derive a rule for it. These automatic rules, also
known as copy rules, are based on name equality of attributes. They save a lot of otherwise trivial typing, thus
making your programs easier to read by just leaving the essential parts in the code. If in the list of rules for a
constructor a rule for an attribute attr1 is missing then UUAG system tries to derive a rule for this attribute. This
is done by looking for an attribute attr2 with the same name as attr1 in the sets of synthesized attributes of the
children of the constructor and in the set of inherited attributes of the nonterminal it belongs to. If such an attribute
attr2 is found then the value of attr1 is set to the value of attr2. This section first shows two examples and then
defines a generalisation that captures both(and others). There are also two special copy rules, the use, and self
rules, which are explained at the end of this section.

The copy rule

Very often one needs to pass a value from a node to all its children. Consider for example the following code, in
which a inherited attribute gmin is declared.

data Tree | Bin left,right :: Tree
| Leaf val :: Int

attr Tree
inh gmin :: Int

In this example rules for the syntesized attribute gmin of children of the constructor Bin are missing. This is
however no problem. The nonterminal Tree has an inherited attribute with the same name and the UUAG system
automatically inserts the following rules:

sem Tree
| Bin left.gmin = @lhs.gmin

right.gmin = @lhs.gmin

This kind of copy-rule is very convenient for copying an inherited attribute to all nodes in a top-down fashion.

Another kind of copy-rule is a co-called chain-rule. For a chain rule an attribute that is both inherited as well as
synthesized is chained from left to right through all children of a constructor. Consider for example the following
code that numbers all leaves in a Tree from left to right.

attr Tree
chn label :: Int

sem Tree
| Leaf lhs.label = @lhs.label+1

Because the attribute label is declared inherited as well as synthesized the UUAG system derives the following rules
for the constructor Bin:

sem Tree
| Bin left.label = @lhs.label
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right.label = @left.label
lhs.label = @right.label

Generalised copy rule

The UUAG system implements a more general copy rule of which the examples above are instances. If a rule is
missing for an inherited attribute n of a child c, the UUAG system searches for an attribute with the same name(n).
The UUAG system searches for a suitable candidate in the following lists:

1. local attributes
2. synthesized attributes of children on the left of c
3. inherited attributes
4. fields

The search takes place in the order defined above, and the first occurrence of n is copied. Thus local attributes have
preference over others. When there are multiple occurrences of n in the list of synthesized attributes of the children
the rightmost is taken.

When a rule for a synthesized attribute is missing the search for a candidate with the same name takes place in a
similar fashion. In the second step all children are searched, again taking the rightmost candidate if more than one
is found.

use rules

A use rule can be derived for a synthesized attribute whose declaration includes a use clause. A use clause consists
of two expressions; the first is an operator, and the second is a default value. Suppose s is a synthesized attribute
of n, that is declared with a use clause. If for a constructor c of n a definition of s is missing, a rule is derived as
follows. Collect all synthesized attributes of constructor c ’s children with the same name as s. If this collection is
empty the default value declared in the use clause is taken. If this collection contains only a single attribute, then
the value of this attribute is copied. Otherwise the values of the attributes are combined using the operator and the
result is used to define s.

For example:

data Tree
| Bin left,right :: Tree
| Single val :: Int
| Empty

attr Tree
syn sum use {+} {0} :: Int

sem Tree
| Single lhs.sum = @val

The UUAG system derives the following rules:

sem Tree
| Bin lhs.sum = @left.sum + @right
| Empty lhs.sum = 0

self rules

The type self in an attribute declaration is equivalent to the type of the nonterminal to which the attribute belongs.
A synthesized self attribute can for example be used if one wants a local copy of a tree, or wants to transform it.
The self attribute then holds the transformed version of the tree. A self attribute usually holds a copy of the
tree, except for a few places where a transformation is done. The semantic rules required for constructing a copy of
a tree call for each production the corresponding constructor function on the copies of the children. The UUAG
system implements a special copy rule to avoid writing these trivial rules. For each production of a nonterminal
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with a synthesized self attribute n, the UUAG system generates a local attribute containing the application of
the corresponding constructor to the self attributes of the children with the same name as n. The value of the
synthesized attribute is set to this local attribute.

For example for:

data Tree
| Bin left,right :: Tree
| Leaf val :: Int

attr Tree
syn copy :: self

the following semantic rules are generated:

sem Tree
| Bin loc.copy = Bin @left.copy @right.copy

lhs.copy = @copy
| Leaf loc.copy = Leaf @val

lhs.copy = @copy

The default definitions for the local and sythesized self attributes can be overriden by the programmer.

The following program is a complete attribute grammer for the Repmin problem using as many copy rules as possible.
For constructing the transformed a self attribute result is used. Note that only for the production Leaf an explicit
definition of this attribute is given. The definition for Bin is provided by an automatic rule.

data Tree
| Bin left,right :: Tree
| Leaf val :: Int

data Root
| Root Tree

attr Tree
inh gmin :: Int
syn lmin use {`min`} {0} :: Int

attr Root Tree
syn result :: self

sem Tree
| Leaf lhs.lmin = @val

.result = Leaf @lhs.gmin
sem Root

| Root tree.gmin = @tree.lmin

Unique numbering

We have special syntax for obtaining unique "numbers" (doesn’t have to be a number strictly speaking, as long as it
has an identity) at various places at the abstract syntax tree. The following miniature tutorial explains how to use
this special syntax.

Prerequisite: a threaded counter:

attr Tree
chn counter :: Int

Can be of any type that you want, with any name that you want, and you can pass it through the tree in whatever
way you want, except that it MUST be a CHAINED attribute at those nonterminals whose constructors use the
special syntax below.
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Usage: using special type signatures:

sem Tree
| Node

loc.num1 :: uniqueref counter
loc.num2 :: uniqueref counter

Now you have two local attributes that will have a unique number (in the identity-space of counter, and with the
same type as counter). So, you can then just use the local attributes:

sem Tree
| Node

loc.ids = [ @loc.num1, @loc.num2 ]

Is this all? No, there is yet one prerequisite. You must define a function nextUnique, which gets a value with the
same type as the counter, and returns a tuple containing the next counter and one unique number. For example, for
Int:

nextUnique :: Int -> (Int, Int)
nextUnique u = (u+1, u)

This function must be in scope of the semantic functions. The type does not have to be Int, it can be something
more complicated. The name of this function can be changed using the --uniquedispenser=funname commandline
option.

Rules for defining these local numbers are automatically generated. For the above example, a sequence of nextUnique
calls will be generated to obtain the unique numbers for a node in the abstract syntax three, starting with
@lhs.counter, and subsequently the result of the previous call. After obtaining the numbers, the counter is passed
to the first child which has the counter atttribute, or @lhs.counter otherwise.

Appending to a synthesized attribute

Consider the following problem. Suppose that we want to count the number of internal nodes in a tree with nodes of
different order:

data Tree
| Node0
| Node1 sub1 : Tree
| Node2 sub1, sub2 : Tree
| Node3 sub1, sub2, sub3 : Tree

With a use-rule with + and 0, we automatically get the aggregation of the subtrees and leafs:

attr Tree
syn count use {+} {0} :: Int

All we still have to do is add one to this count attribute for each internal node. We would like to express this with a
single rule, but this is unfortunately not possible:

sem Tree | Node1 Node2 Node3
lhs.count = 1 + ???

At the place of the ??? we would like to have the value that the use-rule would produce for lhs.count. We cannot fill
in ??? manually because it is different for Node1, Node2, and Node3.

Our solution is the possibility to transform the value for a synthesized attribute:

sem Tree | Node1 Node2 Node3
+count = (+1)

In this example, the automatically computed value for count is transformed by (+1).

In general, consider a synthesized attribute x of type T and a rule for it:
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attr ... syn x :: T
sem ... | ... lhs.x = expr

Suppose that we want to transform this value before it is passed on the the LHS, but do not want to change the
existing rule. We disallow to refer to lhs.x from other rules, but provide the possibility to transform this value:

sem ... | ...
+x = f

Expression f has type T -> T. It may refer to other attributes.

As result, we actually produce the rule:

sem ... | ... lhs.x = f expr

If there is more than a single +x, with functions f1...fn respectively, we apply these functions after each other in
some arbitrary order.

Override semantics of children with around

To override or change the semantics of a child, you can use an around-rule:

sem MyData
| Constr

around child = \semOfChild -> modifiedSemOfChild

For example, you can add additional constructors on top of a child:

data MyData
| Con body :: MyData
| Filter body :: MyData

sem MyData
| Con around body = \b -> sem_MyData_Filter b
| Filter ...

We can see these extra constructors as filter nodes. With such filtern nodes, you have a relatively easy mechanism to
conditionally override several inherited and synthesized attributes of a child, while still having access to the values
computed by the original rules (which may be copy rules).

The right hand side of an around rule may contain attributes. When cycle checking is enabled, such an attribute
may not depend on a synthesized attribute of the child on the left hand side of the rule.

Using old syntax

An AG-file consists of AG-parts and Haskell-parts. While for purposes besides programming, like inclusion in papers
or teaching, the Haskell-mode syntax is desired, the old syntax might be used to to stress that the UUAG system is
a preprocessor for Haskell. For example, keywords are in capitals, and there are many notational conveniences which
work when defining many attributes and have large AG-files.

The following example is written in this syntax:

DATA D
| C x : Int

ATTR D [ a : Bool b : Int | | c : String ]

SEM D
| C lhs.c = show @lhs.a ++ show (@lhs.b + @x)
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All AG-keywords are in upper case. To declare inherited and synthesized attributes, you need to use the special
[ ... | ... | ... ] notation. The [ ... | ... | ... ] construct is a three-place delimiter for top-down
(inherited), threaded, and bottom-up (synthesized) attributes, respectively. Furthermore, attributes are seperated by
spaces instead of comma’s, and the type signatures requires single colons instead of a double colons.

Using the Kennedy-Warren ordering algorithm

With the --kennedywarren flag the UUAG compiler will generate more efficient code for Ordered Attribute
Grammars. At compile time the dependencies are used to construct an evaluation algorithm with multiple visit
sequences. In applications where efficiency is an issue it is recommended to turn this flag on. However, not all other
options are compatible with this flag.

Pragmas

There are several pragmas that influence the code generation process. You can specify a pragma at block-level using
the keyword pragma followed by the name of the pragma in lowercase. Pragmas in a source file overrule commandline
options.

optimize

pragma optimize

Generates more efficient Haskell code (multi-pass) for Ordered Attribute Grammars. A dependency analysis is
performed to determine this order. For this to work, you need to:

• Ensure that the dependency analysis is able to determine an order. This means that the AG must be cycle
free. The analysis is safe but incomplete, so some more may be needed, such as adding manual dependencies
to get rid of induced cycles.

• Add type signatures for local attributes that are needed in more than one pass.
• The analysis assumes that each AG rule is strict in its attributes. Therefore, ensure that the additional

greedyness does not affect the outcome of the program.

bangpats

pragma bangpats

Uses the GHC bang pattern extension to force evaluation of attributes. This increases the eagerness of the AG code.

sepsemmods

Generates a separate Haskell module for each semantic function. Example:

module {MyAG}
{} -- exports for the main Haskell module, keep empty for none
{
import qualified Data.Set as Set
} -- imports to be included in all modules for semantic functions for this AG

-- causes a module MyAG.hs to be generated
-- and causes a module MyAG_common.hs to be generated
pragma sepsemmods

data D1 | C1 -- causes a module MyAG_D1 to be generated
data D2 | C2 -- causes a module MyAG_D2 to be generated
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sem D1 | C1 ...
sem D2 | C2 ...

{
-- code to be included in MyAG_common.hs
}

imports
{
-- import code to be included in MyAG_common.hs
}

attach D2
{
-- code to be included in MyAG_D2.hs
}

imports attach D1
{
-- import code to be included in MyAG_D1.hs
}

The generated Haskell code for an AG can be big. This pragma causes the code to be partitioned in smaller modules,
which are easier to digest by GHC (especially when compiling with -O2). Additionally, the modules of unchanged
semantic functions will not be compiled again, saving compilation times.

This pragma cannot always be used. To prevent cyclic modules, some wrapper code is not accessible from semantic
functions. Code generated for higher-order functions may not compile in combination with this feature. Also, type
signatures for semantic functions need to be generated to resolve type class defaulting problems, where one particular
modules expects an Int where some other module expects and Integer.

genlinepragmas

pragma genlinepragmas

Generate GHC LINE pragmas. GHC errors will then be given in terms of the locations in the AG source code,
instead of the Haskell source code.

gencostcentres

pragma gencostcentres

Adds cost centers to each AG rule. This gives preciser profiling information.

gentraces

pragma gentraces

Adds trace expressions to the right hand sides of all rules. This gives information about the execution of the AG,
although it may be hard to interpret due to lazy evaluation. The results are easier to interpet in combination with
the optimize pragma.

newtypes

pragma newtypes

Generates newtype= data types instead of type synonyms for the types of semantic functions (like T_Nonterminal).
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strictdata

pragma strictdata

When generating data types, declares all fields to be strict.

strictwrap

pragma strictwrap

Generate wrappers that force evaluation of the parameters passed as inherited attributes, and of the synthesized
attributes before returning them as a tuple.

datarecords

Generates record data types instead of conventional data types. To enable, specify the commandline option:
--datarecords, or use pragma datarecords in the source code. This feature is implied when the commandline
option -a is used.

The fields are named x_N_C, where x is the name of the child/symbol, N the name of the nonterminal, and C the
name of the constructor.

optpragmas

To put Haskell pragmas above the module header, a Haskell code block can be labelled as optpragmas as follows:

optpragmas
{
-- This goes verbatim above the module header
{-# LANGUAGE ScopedTypeVariables #-}
}

Generated code

Module header

There are two ways in which a module header can be specified.

The first option is to use the module syntax in the source file as follows:

module {ModuleName}
{
-- exported functions for this Haskell module, keep empty for all
}
{
-- imports for this module
}

This generates a Haskell module header with the name, exports and imports in the right place.

The other possibility is to provide the option -m or --module=[name] to the UUAG compiler. If a name is provided
to the --module flag then this name is used as module name, otherwise the module name will be the filename
without the suffix .ag or .lag.
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Data types

When the flag --data or -d is passed to the UUAG compiler, then a data type definition is generated for each
nonterminal introduced in a data declaration and a type synonym is generated for each nonterminal introduced
in a type declaration. The UUAG system allows different nonterminals to have constuctors with the same names.
For Haskell data types this is not allowed. To prevent clashes between constuctors of different data types the flag
--rename or -r can be specified. All constructors will then be prefixed with their corresponding nonterminal(and
an underscore).

For example for this fragment of UUAG code:

data Expr
| Var name :: String
| Apply fun :: Expr arg :: Expr
| Tuple elems :: Exprs
| ...

type Exprs = [Expr]

data Type
| Var name :: String
| Apply fun :: Type arg :: Type
| ...

the following Haskell code is generated when the flags --data and --rename are switched on:

data Expr
= Expr_Var String
| Expr_Apply Expr Expr
| ...

type Exprs = [Expr]

data Type
= Type_Var String
| Type_Apply Type Type
| ...

If the --rename flag is not provided it is the responsibility of the programmer to make sure that are constructors
are uniquely named.

Semantic functions

The semantic domain of a nonterminal is a mapping from its inherited to its synthesized attributes. When the flag
--semfuns or -f is switched on, the UUAG compiler generates for each nonterminal a type synonym representing
its semantic domain, and for each constructor a semantic function. A semantic function takes the semantics of its
children as arguments and returns the semantics of the corresponding nonterminal. A semantic function is named
as follows: prefix_nonterminal_constructor. The default prefix is sem, another prefix can be supplied with the
--prefix==name flag.

Consider the following code fragment:

data Tree
| Bin left,right :: Tree
| Leaf val :: Int

attr Tree
inh lmin :: Int
inh gmin :: Int
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syn lmin :: Int
syn result :: Tree

sem Tree
| Bin lhs.result = Bin @left.result @right.result
| Leaf lhs.lmin = min @lhs.lmin @val

lhs.result = Leaf @lhs.gmin

The semantic domain of the nonterminal Tree is defined as follows:

type T_Tree = Int -> Int -> (Int,Tree)

The inherited attributes are arguments and the synthesized attributes are packed together in a tuple as result. The
UUAG system lexicographically sorts the attributes, hence the first Int stands for the inherited attribute gmin,
and the second for the inherited attribute lmin. If the flag --newtypes is switched on, a newtype declaration is
generated for the semantic domain instead of a type synonym.

The types of the generated semantic functions for the constructors Bin, and the Leaf are the following:

sem_Tree_Bin :: T_Tree -> T_Tree -> T_Tree
sem_Tree_Leaf :: Int -> T_Tree

Note that the semantics of a child that has a Haskell type is simply the value of that child. When the flag
--signatures or -s is switched on then the type signatures of the semantic functions are actually emmited in the
generated code.

Catamorphisms

When the flag --catas or -c is supplied, the the UUAG compiler generates catamorphisms for every nonterminal.
A catamorphism is a function that takes a (syntax) tree as argument and computes the semantics of that tree. The
catamorphism for a nonterminal nt is named sem_nt . As for semantic functions the prefix is sem by default, and can
be changed with the --prefix==name flag. For example the type of the catamorphism for the nonterminal Tree is:

sem_Tree :: Tree -> T_Tree

When the flag --signatures or -s is switched on then the type signatures of the catamorphisms are actually
emmited in the generated code.

Wrappers

The result of a semantic function or a catamorphism is a function from inherited to synthesized attributes. To be
able to use such a result, a programmer needs to know the order of all the attributes. Wrapper functions for the
semantic domains can be generated to provide access to the attributes by their names. When the flag --wrappers
or -w is switched on the following is generated for each semantic domain:

• a record type with named fields for the inherited attributes
• a record type with named fields for the synthesized attributes
• a wrapper function that transforms a semantic domain in a function from a record of inherited attributes to a

record of synthesized attributes

The two record types for a nonterminal nt are called nt_Inh and nt_Syn, for the inherited and synthesized attributes,
respectively. The labels of the records are the names of the attributes suffixed with the name of the record type.
The generated wrapper function is named wrap_nt.

For the nonterminal Tree in the example above the following record types are generated:

data Tree_Inh = Tree_Inh{ lmin_Tree_Inh :: Int
, gmin_Tree_Inh :: Int
}

data Tree_Syn = Tree_Syn{ lmin_Tree_Syn :: Int
, result_Tree_Syn :: Tree
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}

The generated wrapper function has the following type:

wrap_Tree :: T_Tree -> Tree_Inh -> Tree_Syn

Using the generated wrapper code the function repmin can be defined as follows:

repmin :: Tree -> Tree
repmin tree = let synthesized = wrap_Tree (sem_Tree tree) inherited

inherited =
Tree_Inh
{ lmin_Tree_Inh = infty
, gmin_Tree_Inh = lmin_Tree_Syn synthesized
}

infty = 1000
in result_Tree_Syn synthesized

Clean language backend

The UUAG compiler can also generate Clean code. For example, the first example can be written as follows:

module {Example1}
{}
{
from StdClass import class + (..)
from StdInt import instance + Int
import StdMisc
}

data Tree
| Node left :: Tree

right :: Tree
| Tip value :: Int

attr Tree
syn sum :: Int

sem Tree
| Node lhs.sum = @left.sum + @right.sum
| Tip lhs.sum = @value

{
Start = test

testTree :: Tree
testTree = Node (Tip 1) (Node (Tip 2) (Tip 3))

test :: Int
test = sum_Syn_Tree (wrap_Tree (sem_Tree testTree) Inh_Tree)
}

When compiled with uuagc --kennedywarren --cleanlang -dcfswmH this results in a Clean program printing 6.

More examples

Falco Peijnenburg maintains a github repo with some examples also using cabal.
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Compiler flags

short option long option description
-m --module[=name] generate module header, specify module name
-d --data generate data type definition

--datarecords generate record data types
--strictdata generate strict data fields (when data is generated)
--strictwrap generate strict wrap fields for WRAPPER generated data

-c --catas generate catamorphisms
-f --semfuns generate semantic functions
-s --signatures generate signatures for semantic functions

--newtypes use newtypes instead of type synonyms
-p --pretty generate pretty printed list of attributes
-w --wrappers generate wappers for semantic domains
-r --rename rename data constructors

--modcopy use modified copy rule
--nest use nested tuples
--syntaxmacro experimental: generate syntax macro code (using knit catas)

-o file --output=file specify output file
-v --verbose verbose error message format
-h --help get (this) usage information
-a --all do everything (-dcfsprm)
-P search path --=search path specify seach path

--prefix=prefix set prefix for semantic functions, default is sem_
--self generate self attribute
--cycle check for cyclic definitions
--version get version information

-O --optimize optimize generated code (--visit --case)
--visit try generating visit functions
--seq force evaluation using function seq (visit functions only)
--unbox use unboxed tuples
--bangpats use bang patterns (visit functions only)
--case Use nested cases instead of let (visit functions only)
--strictcase Force evaluation of the scrutinee of cases (in generated code, visit functions only)
--strictercase Force evaluation of all variables bound by a case statement (in generated code)
--strictsem Force evaluation of sem-function arguments (in generated code)
--localcps Apply a local CPS transformation (in generated code, visit functions only)
--splitsems Split semantic functions into smaller pieces
--Werrors Turn warnings into fatal errors
--Wignore Ignore warnings
--Wmax=<max errs reported> Sets the maximum number of errors that are reported
--dumpgrammar Dump internal grammar representation (in generated code)
--dumpcgrammar Dump internal cgrammar representation (in generated code)
--gentraces Generate trace expressions (in generated code)
--genusetraces Generate trace expressions at attribute use sites (in generated code)
--gencostcentres Generate cost centre pragmas (in generated code)
--genlinepragmas Generate GHC LINE pragmas (in generated code)
--sepsemmods Generate separate modules for semantic functions (in generated code)

-M --genfiledeps Generate a list of dependencies on the input AG files
--genvisage Generate output for the AG visualizer Visage
--aspectag Generate AspectAG file
--nogroup=attributes specify the attributes that won’t be grouped in AspectAG
--extends=module specify a module to be extended
--genattrlist Generate a list of all explicitly defined attributes (outside irrefutable patterns)
--forceirrefutable[=file] Force a set of explicitly defined attributes to be irrefutable, specify file containing the attribute set
--uniquedispenser=name The Haskell function to call in the generated code
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--lckeywords Use lowercase keywords (sem, attr) instead of the uppercase ones (SEM, ATTR)
--doublecolons Use double colons for type signatures instead of single colons

-H --haskellsyntax Use Haskell like syntax (equivalent to --lckeywords and --doublecolons --genlinepragmas)
--reference Use reference attributes
--monadic Experimental: generate monadic code
--ocaml Generate Ocaml code
--cleanlang Generate Clean code
--breadthfirst Experimental: generate breadth-first code
--breadthfirst-strict Experimental: outermost breadth-first evaluator is strict instead of lazy
--visitcode Experimental: generate visitors code
--kennedywarren Use Kennedy-Warren’s algorithm for ordering
--statistics=FILE to append to Append statistics to FILE
--checkParseRhs Parse RHS of rules with Haskell parser
--checkParseTys Parse types of attrs with Haskell parser
--checkParseBlocks Parse blocks with Haskell parser
--checkParseHaskell Parse Haskell code (recognizer)
--nocatas=list of nonterms Nonterminals not to generate catas for
--nooptimize Disable optimizations
--parallel Generate a parallel evaluator (if possible)
--monadicwrapper Generate monadic wrappers
--helpinlining Generate inline directives for GHC
--dummytokenvisit Add an additional dummy parameter to visit functions
--tupleasdummytoken Use conventional tuples as dummy parameter instead of a RealWorld state token
--stateasdummytoken Use RealWorld state token as dummy parameter instead of conventional tuples (default)
--strictdummytoken Strictify the dummy token that makes states and rules functions
--noperruletypesigs Do not generate type sigs for attrs passed to rules
--noperstatetypesigs Do not generate type sigs for attrs saved in node states
--noeagerblackholing Do not automatically add the eager blackholing feature for parallel programs
--noperrulecostcentres Do not generate cost centres for rules
--nopervisitcostcentres Do not generate cost centres for visits
--noinlinepragmas Definitely not generate inline directives
--aggressiveinlinepragmas Generate more aggressive inline directives
--latehigherorderbinding Generate an attribute and wrapper for late binding of higher-order attributes

:::
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