
Principled Approaches to
Constant-Time Cryptography

Marco Vassena
m.vassena@uu.nl

Cryptography

Digital Currency E-VotingHealthcare

Cryptography is a fundamental mechanism to secure systems:

Internet Browsers Cloud ServersSmart cards

Cryptographic code runs everywhere, on all sorts of devices:

Cryptographic mechanisms are hard to get right!

Crypto primitives and protocols
must be theoretically secure

Crypto code must not
have bugs!

Crypto code must
not leak secrets!

Design-level
Security

Functional Correctness
& Efficiency

Implementation-level
Security

Cryptographic mechanisms are hard to get right!

This Lecture

Design-level
Security

Functional Correctness
& Efficiency

Implementation-level
Security

Crypto primitives and protocols
must be theoretically secure

Crypto code must not
have bugs!

Crypto code must
not leak secrets!

The need for Implementation Security

That implementation is vulnerable to
side-channels attacks

AES cipher is computationally secure
against brute-force attacks

The code of OpenSSL version 0.9.7a implements
 AES cipher correctly

Abstract mathematical
functions

Input-output behavior of the code
corresponds to AES cipher

Attacker can observe more
than input-output behavior!

 On average, 1018 years
for a 128-bit key

 Attacker can reconstruct the secret key in one minute!

Intuition for Side-Channel Attacks

Cannot open the safe without
knowing the combination

Rotating the dial reveals which numbers
are part of the combination

Side Channels in Computer Systems

Physical

Power
Consumption

Electromagnetic
Radiation

Digital

Timing Cache Memory

Need physical access
to device

Can be observed remotely!

Focus today!

Fast memory shared between different processes

Memory

Cache Memory

A

B

Cache

0

N-1

Cache hit: fast access!

Cache miss:
slow access!

A

0

N-1

N-1

0

Number of cache lines

A[0] not in cache!

The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N):
 A[i] = 0

Cache
0

N-1

Memory

A

Fill in the cache with
attacker’s data

Cache Side-Channel Attacks

The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N):
 A[i] = 0

...

...

B[key]

Cache
0

N-1

Memory

A

B
key

key

Cache Side-Channel Attacks

Cache miss!

The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N):
 A[i] = 0

...

...

B[key]

Cache
0

N-1

Memory

A

B
key

key

Evict attacker’s data
from the cache

Cache Side-Channel Attacks

Cache Side-Channel Attacks
The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N):
 A[i] = 0

...

...

B[key]

for i ∈ [0 .. N):
 t = time()
 x = A[i]
 t’ = time()
 plot(i, t’ - t)

Cache
0

N-1

Memory

A

B

key

Recover key from
memory-access time

for i ∈ [0 .. N):
 t = time()
 x = A[i]
 t’ = time()
 plot(i, t’ - t) Cache

0

N-1

Memory

A

B

keyΔt

0

...

Cache Hit

N-1key

for i ∈ [0 .. N):
 t = time()
 x = A[i]
 t’ = time()
 plot(i, t’ - t) Cache

0

N-1

Memory

A

B

keyΔt

0 key

...

N-1

for i ∈ [0 .. N):
 t = time()
 x = A[i]
 t’ = time()
 plot(i, t’ - t) Cache

0

N-1

Memory

A

B

keyΔt

0 N-1key

...

Cache Miss

key

...

Peak in plot reveals
the value of key

compare(guess, secret, size) {
 for(i = 0; i < size; i++)
 if guess[i] != secret[i]
 return false;
 return true;

}

The execution time of a computation leaks secret information:

Timing Side-Channel Attacks

Execution time correlates with
number of iterations & comparisonBrute-force attack

O(2size) =

Observe only input-
output behavior

E.g., in user
login prompt

compare(guess, secret, size) {
 for(i = 0; i < size; i++)
 if guess[i] != secret[i]
 return false;
 return true;

}

Measure the execution time with known secret and guess

guess secret

“1000”
“0000” C

I + C
“1200”
“1230”

2I + C
3I + C

“1234”

“1234”
“1234”
“1234”

T0 =
T1 =
T2 =
T3 =

Execution time is proportional to
number of guessed characters

With enough measurements, the attacker can determine parameters I and C

Now we can extract unknown secrets from timing alone:

N =
- C

I

Measured execution time for guess

The first N characters of guess and
secret are the same!

= N * I + CExecution time

Number of iterations & guessed characters

For an arbitrary guess and secret,
compute the number of guessed character as:

Timing attack

O(size) =

To avoid timing channels, control-flow should not depend on secrets!

ct_compare(guess, secret, size) {
 result = false;
 for(i = 0; i < size; i++)
 result = result || (guess[i] != secret[i])
 return result;

}

guess secret

“1234”
“1000”
“0000”

“1200”
“1234”
“1234”

“1230” “1234”

T = 4I + C
T = 4I + C
T = 4I + C
T = 4I + C

Execution time is now
independent from secret

Always executes size iterations!

Constant-Time Discipline
To avoid side-channels, write code following the constant-time discipline

3) Variable-time operations

2) Control-flow instructions

1) Memory accesses

Constant-time code has no secret-dependent

No leaks via timing

No leaks via the cache

E.g., Floating point operations,
division & modulus

Current approaches to CT

Manual Auditing Testing

Costly in time & expertise

Manual Auditing Testing

Costly in time & expertise Wall-clock CT ≠ CT code

These approaches are inadequate:

Lucky 13 Attack (2013)

Timing Vulnerability (2017)
Patch Patch

CVE

Vulnerabilities in TLS 1.0

Timing Vulnerability (2004)

Have we patched
all of them?

Program Analysis to Rescue
Detect code that violates the constant-time discipline automatically

Code is not constant-
time and may leak

Code is constant-time 
& does not leak

Static analysis via
a type system

• SoK: Computer-Aided Cryptography, Barbosa et al., IEEE Symposium on Security and
Privacy, 2021 (esp. Section IV).

• Crypto implementations are vulnerable to side-channel attacks:
• Remote timing attacks are practical, Brumley & Boneh, USENIX Security, 2003.
• Cache-timing attacks on AES, Daniel J. Bernstein, 2005.

• Recent surveys on cache- and timing-side channel attacks
• A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in

Cryptography, Lou et al., ACM Computing Surveys, 2022.
• Winter is here! A decade of cache-based side-channel attacks, detection &

mitigation for RSA, Mushtaq et al., Information Systems 2020.
• A Survey of Microarchitectural Timing Attacks and Countermeasures on

Contemporary Hardware, Ge et al., Journal of Cryptographic Engineering, 2018.
• System-level Non-interference for Constant-time Cryptography, Barthe et al., SIGSAC

Conference on Computer and Communications Security, 2014.
• Secure Compilation of Side-Channel Countermeasures: The Case of Cryptographic

“Constant-Time”, Barthe et al., IEEE Computer Security Foundations Symposium 2018.

Bibliography

https://eprint.iacr.org/2019/1393.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://arxiv.org/pdf/2103.14244.pdf
https://arxiv.org/pdf/2103.14244.pdf
https://hal.archives-ouvertes.fr/hal-02537540/document
https://hal.archives-ouvertes.fr/hal-02537540/document
https://eprint.iacr.org/2016/613.pdf
https://eprint.iacr.org/2016/613.pdf
https://hal.inria.fr/hal-01101950/document
https://hal.archives-ouvertes.fr/hal-01959560/document
https://hal.archives-ouvertes.fr/hal-01959560/document

