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Cryptography

Digital Currency E-VotingHealthcare

Cryptography is a fundamental mechanism to secure systems:

Internet Browsers Cloud ServersSmart cards

Cryptographic code runs everywhere, on all sorts of devices:



Cryptographic mechanisms are hard to get right!

Crypto primitives and protocols 
must be theoretically secure

Crypto code must not 
have bugs!

Crypto code must 
not leak secrets!

Design-level 
Security

Functional Correctness  
& Efficiency 

Implementation-level 
Security



Cryptographic mechanisms are hard to get right!

This Lecture

Design-level 
Security

Functional Correctness  
& Efficiency 

Implementation-level 
Security

Crypto primitives and protocols 
must be theoretically secure

Crypto code must not 
have bugs!

Crypto code must 
not leak secrets!



The need for Implementation Security

That implementation is vulnerable to 
side-channels attacks

AES cipher is computationally secure 
against brute-force attacks

The code of OpenSSL version 0.9.7a implements 
 AES cipher correctly

Abstract mathematical 
functions

Input-output behavior of the code 
corresponds to AES cipher

Attacker can observe more 
than input-output behavior!

 On average, 1018 years 
for a 128-bit key

 Attacker can reconstruct the secret key in one minute!



Intuition for Side-Channel Attacks

Cannot open the safe without 
knowing the combination

Rotating the dial reveals which numbers 
are part of the combination 



Side Channels in Computer Systems 

Physical 

Power 
Consumption 

Electromagnetic 
Radiation

Digital 

Timing  Cache Memory

Need physical access 
to device

Can be observed remotely!

Focus today!



Fast memory shared between different processes 
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Cache Memory
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The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N): 
  A[i] = 0

Cache
0

N-1

Memory

A

Fill in the cache with 
attacker’s data

Cache Side-Channel Attacks



The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N): 
  A[i] = 0

...

...

B[key]
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key

Cache Side-Channel Attacks

Cache miss!



The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N): 
  A[i] = 0

...

...

B[key]

Cache
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Memory
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key

key

Evict attacker’s data 
from the cache

Cache Side-Channel Attacks



Cache Side-Channel Attacks
The memory-access pattern leaks secret information:

Process & Code

for i ∈ [0 .. N): 
  A[i] = 0

...

...

B[key]

for i ∈ [0 .. N): 
  t  = time() 
  x  = A[i] 
  t’ = time() 
  plot(i, t’ - t)
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Recover key from 
memory-access time



for i ∈ [0 .. N): 
  t  = time() 
  x  = A[i] 
  t’ = time() 
  plot(i, t’ - t) Cache
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for i ∈ [0 .. N): 
  t  = time() 
  x  = A[i] 
  t’ = time() 
  plot(i, t’ - t) Cache
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for i ∈ [0 .. N): 
  t  = time() 
  x  = A[i] 
  t’ = time() 
  plot(i, t’ - t) Cache
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...

Cache Miss

key

...

Peak in plot reveals 
the value of key



compare(guess, secret, size) {  
  for(i = 0; i < size; i++) 
    if guess[i] != secret[i] 
      return false; 
 return true; 

}

The execution time of a computation leaks secret information:

Timing Side-Channel Attacks

Execution time correlates with 
number of iterations & comparisonBrute-force attack

O(2size) =

Observe only input-
output behavior

E.g., in user 
login prompt



compare(guess, secret, size) {  
  for(i = 0; i < size; i++) 
    if guess[i] != secret[i] 
      return false; 
 return true; 

}

Measure the execution time with known secret and guess

guess secret

“1000”
“0000” C

I + C
“1200”
“1230”

2I + C
3I + C

“1234”

“1234”
“1234”
“1234”

T0 =
T1 =
T2 =
T3 =

Execution time is proportional to 
number of guessed characters

With enough measurements, the attacker can determine parameters I and C 



Now we can extract unknown secrets from timing alone:

N =
- C

I

Measured execution time for guess 

The first N characters of guess and 
secret are the same!

= N * I + CExecution time

Number of iterations & guessed characters

For an arbitrary guess and secret,  
compute the number of guessed character as:

Timing attack

O(size) =



To avoid timing channels, control-flow should not depend on secrets!

ct_compare(guess, secret, size) { 
  result = false;  
  for(i = 0; i < size; i++) 
    result = result || (guess[i] != secret[i]) 
 return result; 

}

guess secret

“1234”
“1000”
“0000”

“1200”
“1234”
“1234”

“1230” “1234”

T = 4I + C
T = 4I + C
T = 4I + C
T = 4I + C

Execution time is now 
independent from secret

Always executes size iterations!



Constant-Time Discipline
To avoid side-channels, write code following the constant-time discipline

3) Variable-time operations 

2) Control-flow instructions

1) Memory accesses

Constant-time code has no secret-dependent

No leaks via timing

No leaks via the cache

E.g., Floating point operations, 
division & modulus



Current approaches to CT

Manual Auditing Testing

Costly in time & expertise



Manual Auditing Testing

Costly in time & expertise Wall-clock CT ≠ CT code

These approaches are inadequate:

Lucky 13 Attack (2013)

Timing Vulnerability (2017)
Patch Patch 

CVE 

Vulnerabilities in TLS 1.0 

Timing Vulnerability  (2004)

Have we patched 
all of them? 



Program Analysis to Rescue
Detect code that violates the constant-time discipline automatically 

Code is not constant-
time and may leak

Code is constant-time 
& does not leak

Static analysis via 
a type system



• SoK: Computer-Aided Cryptography, Barbosa et al., IEEE Symposium on Security and 
Privacy, 2021 (esp. Section IV). 

• Crypto implementations are vulnerable to side-channel attacks: 
• Remote timing attacks are practical, Brumley & Boneh, USENIX Security, 2003. 
• Cache-timing attacks on AES, Daniel J. Bernstein, 2005. 

• Recent surveys on cache- and timing-side channel attacks 
• A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in 

Cryptography, Lou et al., ACM Computing Surveys, 2022. 
• Winter is here! A decade of cache-based side-channel attacks, detection & 

mitigation for RSA, Mushtaq et al., Information Systems 2020. 
• A Survey of Microarchitectural Timing Attacks and Countermeasures on 

Contemporary Hardware, Ge et al., Journal of Cryptographic Engineering, 2018. 
•  System-level Non-interference for Constant-time Cryptography, Barthe et al., SIGSAC 

Conference on Computer and Communications Security, 2014. 
• Secure Compilation of Side-Channel Countermeasures: The Case of Cryptographic 

“Constant-Time”, Barthe et al., IEEE Computer Security Foundations Symposium 2018.
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