Principled Approaches to
Constant-Time Cryptography

Marco Vassena

m.vassena@uu.nl

§¥% Utrecht

N University

Cryptography

Cryptography is a fundamental mechanism to secure systems:

Digital Currency Healthcare E-Voting

Cryptographic code runs everywhere, on all sorts of devices:

Smart cards Internet Browsers Cloud Servers

Cryptographic mechanisms are hard to get right!

@L

Design-level

Functional Correctness

_ Security y S & Efficiency y
, A . A 1
Crypto primitives and protocols Crypto code must not
must be theoretically secure have bugs!

Implementation-level

Security

_

J

A\

Crypto code must
not leak secrets!

This Lecture

Cryptographic mechanisms are hard to get right!

-

@L

Design-level Functional Correctness Implementation-level
Securit & Efficiency Security
N\ AN W
, A . A A ‘
Crypto primitives and protocols Crypto code must not Crypto code must

must be theoretically secure have bugs! not leak secrets!

The need for Implementation Security

Abstract mathematical

f@_

-

functions
Vv

~

AES cipher is computationally secure
against brute-force attacks

AN

r Input-output behavior of the code |

On average, 108 years

for a 128-bit key

=

O

corresponds to AES cipher S
V
The code of OpenSSL version 0.9.7a implements
AES cipher correctly
: J
Attacker can observe more
than input-output behavior!)

\Y4

That implementation is vulnerable to
side-channels attacks

/\

[Attacker can reconstruct the secret key in one minute!] _J

Intuition for Side-Channel Attacks

are part of the combination

iRofaﬁng the dial reveals which numbers

i Cannot open the safe without

knowing the combination

Side Channels in Computer Systems

/ \ [Focus today!
)

_J

-
Physical
® W
Power Electromagnetic
9 Consumption Radiation
r A 1
Need physical access

to device

Digital

O

Timing Cache Memory

A
[Can be observed remotely!]

Cache Memory

Fast memory shared between different processes

Memory
Cache miss: - |0
slow access! @
A

[A[O] not in cache!]

[Number of cache lines]

[Cache hit: fast access!]

Cache Side-Channel Attacks

The memory-access pattern leaks secret information:

Memory

Process & Code Cache .

: A 1 N-1
Fill in the cache with
attacker’s data

Cache Side-Channel Attacks

The memory-access pattern leaks secret information:

Process & Code

Memory
for i € [0 .. N): t

Ali] = 0
5

A

ache miss!]

Cache

0

A

r.-----

N-1

>~

Cache Side-Channel Attacks

The memory-access pattern leaks secret information:

Process & Code

Memory

for 1 € [0 .. N):
ALL] = ¢ &

Cache

A

Evict attacker’s data N-1
from the cache

r.-----

=~
<

Cache Side-Channel Attacks

The memory-access pattern leaks secret information:

Process & Code

Memory
for 1 € [0 .. N):
&8 - &
A
Cache
0
- B[key!]
key
for 1 € [0 .. N): N-1

t time()
X Ali]

t’ = time() Recover key from
plot(i, t’ - t)

memory-access time

Memory

Cache Hit

4—-\;_

Memory

, . Memory
for 1 € [0 .. N): Cache Miss

= time()

= A[i]
t’ = time()
plot(i, t' - t)

Peak in plot reveals
the value of key

e

Timing Side-Channel Attacks

The execution time of a computation leaks secret information:

E.g., in user
login prompt

compare(guess, secret, size) {
for(i = 0; i < size; 1i++)
if guess[i] != secret[i]
return false;
return true;

Observe only input-

-

output behavior
—
Brute-force attack

Execution time correlates with
number of iterations & comparison

O(zsize) — @

_ _J

\

t Measure the execution time with known secret and guess

return true;

compare(guess, secret, size) A
for(i = 0; i < size; i++)

if guess[i] != secret[i]
Q return false;

guess secret

Execution time is proportional to
number of guessed characters

v

“0000” | “1234”
“1000” | “1234”
“1200” | “1234”
“1230” | “1234”

C

I+C
21 + C
31 + C

With enough measurements, the attacker can determine parameters I and C

& Now we can extract unknown secrets from timing alone: &

[Number of iterations & guessed characters]

[Execution time }> @ N x I + C

For an arbitrary guess and secret,
compute the number of guessed character as:

[Measured execution time for guess]

4)
Timing attack
> ,o
T O(size) =
— A :
The first N characters of quess and _

secret are the same!

To avoid timing channels, control-flow should not depend on secrets!

ct_compare(guess, secret, size) {
result = false;
for(i = 0; i < size; 1i++)
result = result || (gquess[i] !'= secret[i])
return result;

JAlways executes size iterations!

guess secret

o “000” | “1234" | T=4I+C
Execution time is now
independent from secret “1000" “1234" T=4I +C

\% “1200" “1234”" | T=4I+C
t “1230" 41234" | T=4I +C

Constant-Time Discipline

To avoid side-channels, write code following the constant-time discipline

4)

Constant-time code has no secret-dependent

[No leaks via the cache]
v

n 1) Memory accesses

2) Control-flow instructions

3) Variable-time operations

A T E.g., Floating point operations,
\ ‘ No leaks via timing } division & modulus

\

Current approaches to CT

/N

4 Manual Auditing

_

Testing

~

Costly in time & expertise

_

4 Manual Auditing O 4 Testing O

A\

Costly in time & expertise Wall-clock CT # CT code

These approaches are inadequate:

Vulnerabilities in TLS 1.0

Have we patched
all of them?

Timing Vulnerability (2004)
Lucky 13 Attack (2013)
Timing Vulnerability (2017)

Program Analysis to Rescue

Detect code that violates the constant-time discipline automatically

Static analysis via
a type system

v

ZOR

-~

_

v

Code is constant-time

& does not leak y

-

=

Code is not constant-

~

= J

O

time and may leak y

Bibliography

SoK: Computer-Aided Cryptography, Barbosa et al., I[EEE Symposium on Security and
Privacy, 2021 (esp. Section V),

Crypto implementations are vulnerable to side-channel attacks:

e Remote timing attacks are practical, Brumley & Boneh, USENIX Security, 2003.
e (ache-timing attacks on AES, Daniel J. Bemstein, 2005.

Recent surveys on cache- and timing-side channel attacks

o A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in
Cryptography, Lou et al., ACM Computing Surveys, 2022,

e \Winter is herel A decade of cache-based side-channel attacks, detection &
mitigation for RSA, Mushtag et al., Information Systems 2020.

e A Survey of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware, Ge et al., Journal of Cryptographic Engineering, 2018.

System-level Non-interference for Constant-time Cryptography, Barthe et al., SIGSAC
Conference on Computer and Communications Security, 2014,

Secure Compllation of Side-Channel Countermeasures: The Case of Cryptographic
‘Constant-Time’, Barthe et al., [IEEE Computer Security Foundations Symposium 20718.

https://eprint.iacr.org/2019/1393.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://arxiv.org/pdf/2103.14244.pdf
https://arxiv.org/pdf/2103.14244.pdf
https://hal.archives-ouvertes.fr/hal-02537540/document
https://hal.archives-ouvertes.fr/hal-02537540/document
https://eprint.iacr.org/2016/613.pdf
https://eprint.iacr.org/2016/613.pdf
https://hal.inria.fr/hal-01101950/document
https://hal.archives-ouvertes.fr/hal-01959560/document
https://hal.archives-ouvertes.fr/hal-01959560/document

