
[Faculty of Science
Information and Computing Sciences]

Automatic Program Analysis
WWW: http://www.cs.uu.nl/docs/vakken/mapa/

E-mail: i.g.dewolff@uu.nl

Edition 2021/2022

http://www.cs.uu.nl/docs/vakken/mapa/


[Faculty of Science
Information and Computing Sciences]

2

Course overview



[Faculty of Science
Information and Computing Sciences]

3

What is automatic program analysis about?

I A semantics-based, static approach to the analysis of
program artefacts (ie. the source code)

I Generally, it can be much broader than that:
I dynamic analysis
I hybrid analysis
I software comprehension



[Faculty of Science
Information and Computing Sciences]

4

Why do people study static analysis?

Static analysis is a crucial tool in

I program optimization
I Which statements will never be executed?

I program validation
I Is this program type correct?

I program understanding (comprehension)
I What is the architecture of a 5 mln. Cobol system?

I Not the focus of this course. Maybe a lecture at the end.

Basic ingredients also useful in other settings.



[Faculty of Science
Information and Computing Sciences]

5

Themes

I Syntax-driven/tree-oriented programming (attribute
grammars).

I Principles of programming languages

I Formal semantics

I Type systems

I Lattice theory, fixpoint iteration and monotone functions

I Theory into practice: everything implemented.



[Faculty of Science
Information and Computing Sciences]

6

What you can expect to get out of this course

I Syntax-driven/tree-oriented programming (attribute
grammars)

I A technical look at typical programming-language
constructs.

I Static analysis as an approximation of the meaning of a
program

I The analysis of first-order and higher-order languages

I The mathematics in order to understand the technicalities

I Implementation of program analysis and transformation

I Some more advanced topics (tbd).



[Faculty of Science
Information and Computing Sciences]

7

Course organisation



[Faculty of Science
Information and Computing Sciences]

8

Course form

I Lectures: (about) 2 × 2 hours per week.
I First: focus on lab exercises
I Later: capita selecta

I And: after each lecture
I Lab exercises operationalize the theory
I Organisation: pairs for labs

I Early on in the course more lecture, less lab.
I Assignments:

I Lab: Static analysis of first-order languages (30%)
I Lab: Static analysis of higher-order languages (30%)

I Exam: all material of the course (40%)



[Faculty of Science
Information and Computing Sciences]

9

Prerequisites

I Participants are assumed to be familiar with the basic
concepts of imperative and functional programming.

I Advanced functional programming is not a prerequisite.
I During the course, we will implement everything in Haskell.

I Deviation is allowed in special circumstances

I Experience with combinator-based parsing is assumed, but
not always necessary.



[Faculty of Science
Information and Computing Sciences]

10

Course material

I Slides/handouts, assignments: made available on the
course website

I Software: stack, starting templates will install all
dependencies via stack

I Reading material: a book, some papers

I Exercises: in the book and old exams



[Faculty of Science
Information and Computing Sciences]

11

Further reading: TAPL

Benjamin C. Pierce. Types and
Programming Languages. The MIT
Press, Cambridge, Massachusetts, 2002.

Benjamin C. Pierce, editor. Advanced
Topics in Types and Programming
Languages. The MIT Press, Cambridge,
Massachusetts, 2005.



[Faculty of Science
Information and Computing Sciences]

12

Further reading: Dragon book

Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman.
Compilers. Principles, Techniques, &
Tools. Pearson Education, Boston,
Massachusetts, 2nd edition, 2007.



[Faculty of Science
Information and Computing Sciences]

13

Further reading: Tiger books

Andrew W. Appel. Modern Compiler
Implementation in C. Cambridge
University Press, Cambridge, 1998.

Andrew W. Appel. Modern Compiler
Implementation in Java. Cambridge
University Press, Cambridge, 1998.

Andrew W. Appel. Modern Compiler
Implementation in ML. Cambridge
University Press, Cambridge, 1998.



[Faculty of Science
Information and Computing Sciences]

14

Further reading: Grune et al.

Dick Grune, Henri E. Bal, Ceriel J. H.
Jacobs, and Koen G. Langedoen.
Modern Compiler Design. John Wiley &
Sons, Chichester, 2000.



[Faculty of Science
Information and Computing Sciences]

15

Further reading: Mitchell

John C. Mitchell. Foundations for
Programming Languages. The MIT
Press, Cambridge, Massachusetts, 1996.

John C. Mitchell. Concepts in
Programming Languages. Cambridge
University Press, Cambridge, 2003.


	Course overview
	Course organisation

