
Automatic Program Analysis

Mini Project

April 20, 2022

Submit all code, examples and documentation (see website for how). Do this
assignment in pairs.

Static Analysis with Embellished Monotone Frameworks

The aim of this mini project is to implement Embellished Monotone Frameworks
as explained in Chapter 2 of Nielson, Nielson and Hankin (NNH) and in the
slides. On top of this, you should create two analyses instances of the framework,
and create example programs to convince yourself and the reviewers that your
implementation is correct. Your code should be easy to understand, and where
necessary include code comments.

The basis of the language to analyze is the While language with procedures.

Hint: in our experience students realize too late that this assignment is harder
than it may seem, and that it helps to join to practice sessions to ask questions.

What to Do

Before you proceed, read the material from NNH.

1. Get the template from the website. It already parses (an extended variant
of) the While language and builds a labelled AST (do not change the
labelling, to make it easier to compare your output). The project can
be compiled and executed with stack run -- name, where name is the
name of an example file. The template already provides two example files,
cp1 and fib.

2. Note that the (Alex/Happy) parser supports much more than you need to
at first. Just implement the rules for the constructs that you know from
the book, at first. At a later stage you can add support for some of the
other constructs in the language. The generated parser and lexer should
suffice, but you can change the language if you have to.

3. You should only change the files in src and examples. The only exception
is adding a dependency. Please do this in the usual way and make sure
that stack build is still working.

4. The starting template already converts a Program to a labelled Program’.
Inspect this to familiarize yourself with the attribute grammar system.

5. Implement functionality inspired by the definitions in NNH to compute ad-
ministrative information from the AST like the init, the finals, the flow etc.
Do this using attribute grammars on the labelled data types (Program’,
Proc’, Stat’).

1



6. Implement Monotone Frameworks (for intraprocedural analysis) using the
Maximal Fixed Point algorithm from the book. Convince yourself with
example instances for the following two analyses that it works:

• Constant Propagation

• Strongly Live Variable Analysis: consider the following program:
x := 1;x := x− 1;x := 2;

A Live Variables analysis will consider x to be live between the first
and second assignment, implying that the first assignment is not dead
code. But the first assignment is useless since we compute the value
of a variable that is only used for computing the value of a dead
variable.

This motivates the notion of a faint variable: a variable is a faint
variable if it is dead or if it is only used to calculate new values for
faint variables; otherwise it is strongly live. In the above program,
x is always faint (and hence not Strongly Live). The purpose of the
Strongly Live Variable Analysis is to compute in each program point
the set of strongly live variables.

Note: instances are usually best created with attribute grammars, but
the Maximal Fixed Point algorithm is typically not implemented with
attribute grammars.

7. Add interprocedural flow and binary transfer functions.

8. Extend your implementation to Embellished Monotone Frameworks, mak-
ing sure to decouple context from transfer functions. You need only im-
plement bounded call strings but the value of k should be a parameter.
With k = 0 it should give the same result as the non-embellished version.

For Constant Propagation implement the embellished montone framework
instance, correctly handling scoping issues that may arise. It is essential
that the embellished instance reuse the non-embellished one, as explained
in the slides.

9. Create example programs, at least 5 for every analysis, ranging from sim-
ple ones without procedures to complicated ones with procedures to show
that your implementation is correct.

Make sure your implementation displays the results of the analysis in an
easy to read fashion. This may range from generating graphical cfg’s
with the code and results in them, to listing analysis results for each label
(the pretty printer provided already displays your program with the labels
attached; do not change the pretty printer for existing cases).

10. Write documentation in which, for each implemented analysis, you walk
through an example and explain why what your analysis computes is cor-
rect. One of these should have procedures and explain how the context
depth influences the outcome. Choose a suitable example.

In the documentation you should also explain how to compile your source
code, what the purpose of each module is, how to run the analyses, and
what, in mathematical notation, the transfer functions are that you have

2



implemented for each analysis (similar to the slides and book). Finally,
you should list explicitly any extensions you have implemented on top of
the minimal requirements.

11. Doing the above reasonably well and you are on your way to a grade
between 7 and 8. To improve your grade:

• Also create embellished instances for the other analysis.

• Implement program transformations which optimize the program based
on the results from the analyses. For instance, replace variables by
constant values using constant propagation or remove unused assign-
ments.

• Add Shape Analysis as discussed in NNH.

• Add one more analysis of your own design (also put the transfer
functions in your documentation and add five example programs per
analysis).

• Add new language constructs such as break, continue, simultaneous
assignments, a case/switch-statement, return and/or a print/echo-
statement. (You should then also add them to your example pro-
grams, and explain the transfer functions for these statements in your
documentation). Note that some constructs are easier to handle than
others.

3


