
[Faculty of Science
Information and Computing Sciences]

Monotone Frameworks
Sections 2.1-2.4 of NNH

Ivo Gabe de Wolff
Most slides by Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht

May 11, 2022



[Faculty of Science
Information and Computing Sciences]

2

Introduction and Motivation



[Faculty of Science
Information and Computing Sciences]

3

What is program analysis?

Program analysis
=

deriving information about the behaviour of computer programs.



[Faculty of Science
Information and Computing Sciences]

4

Why do program analysis?

I optimization
I dead code removal, strict evaluation, avoiding run-time

type checks

I validation
I type checking, security analysis, soft typing

I comprehension
I maintainability monitoring, reverse engineering, architecture

reconstruction



[Faculty of Science
Information and Computing Sciences]

5

Static or dynamic

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis of the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

5

Static or dynamic

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis of the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

5

Static or dynamic

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis of the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

6

Optimization

I Optimizations are silenty applied by a compiler,

I based on information discovered during program analysis.

I Optimizing analysis should never lead to failure to compile.

I Information should be valid for all executions.

I We must be able to trust the results of analysis.

I Program analysis must be sound (safe) with respect to the
language semantics.
I The analyzer may only err on the safe side

I So prove it.
I Case study: uniqueness typing.

I Something marked as unique, but used twice, may have
been GC’ed away.



[Faculty of Science
Information and Computing Sciences]

6

Optimization

I Optimizations are silenty applied by a compiler,

I based on information discovered during program analysis.

I Optimizing analysis should never lead to failure to compile.

I Information should be valid for all executions.

I We must be able to trust the results of analysis.
I Program analysis must be sound (safe) with respect to the

language semantics.
I The analyzer may only err on the safe side

I So prove it.
I Case study: uniqueness typing.

I Something marked as unique, but used twice, may have
been GC’ed away.



[Faculty of Science
Information and Computing Sciences]

7

Validation

I Verify that a program is type correct

I Verify that a highly secure value does not end up in a lowly
secure variable

I Some programs will fail to compile

I This raises the issue of feedback

I Case study: type inferencing/checking, pattern match
analysis, security analysis



[Faculty of Science
Information and Computing Sciences]

8

Comprehension

I Software analysis is often coined as the term here.

I Analysis need not be sound, need not be complete.

I Validation not by proof, but empirical validation.
I Metrics are a typical example:

I McCabe’s Cyclomatic Complexity.
I The higher the value, the more complex the code
I Above 50 implies unmaintainable.

I Typically, you can always find examples where metrics do
not predict well, but they work very well in practice.

I Cheap to compute.



[Faculty of Science
Information and Computing Sciences]

9

The setting

Typically,

I a compiler validates a program and generates code.

I For any program, it has to do this in finite time.

I Running the program for all possible inputs is out of the
question.

I Halting Problem is undecidable.
I Decide for any given program and given input whether the

program will terminate for that input.

I Every behavioural property of programs is undecidable.
I Rice’s Theorem

I What can we do?



[Faculty of Science
Information and Computing Sciences]

10

Possible solutions

Verify properties by

I Program verification: verify properties by using
(interactive) proof tools.

I Model checking: exhaustively test the property for all
reachable states.

I Program analysis: allow (safe) approximate answers, but
keep it automatic and efficient.

I We consider the latter possibility and hope our solutions
are not too approximate to be of use.

These three areas do overlap in many ways.



[Faculty of Science
Information and Computing Sciences]

11

Two dimensions of complexity

I Properties of the language:
I parametric polymorphism
I higher-order, higher-ranked, polymorphic recursion
I subtyping
I by-value (strict) or by-need (lazy) evaluation
I strictness and other annotations,

I More complex implies more flexibility for programmer.
I Properties of the analysis:

I subtyping, subeffecting, or poisoning
I monovariant, polyvariant, higher-ranked
I flow-sensitive versus flow-insensitive
I minimal or most general (Holdermans and Hage)
I whole program or modular

I More complex implies more precision and more expensive.



[Faculty of Science
Information and Computing Sciences]

12

Make note

I Program analysis is not always restricted to programming
languages.

I Can be applied in other places as well:
I FIRST and FOLLOW for parsing LL(k) languages.

I Admittedly, general recursion/while loops provide most of
the essential complications

I Still, even SQL can profit from optimizations.



[Faculty of Science
Information and Computing Sciences]

13

Program properties

I In dependently typed programming and contract checking,
static properties are encoded in the language itself.
I Programmer-driven static analysis

I In static analysis we tend to not leave this to the
programmer.

I The truth is probably somewhere in the middle.

I Contracts and dependently typed programming establish
only properties of values, not of the computations.

I Static analysis often addresses issues relating to how
something is computed.



[Faculty of Science
Information and Computing Sciences]

14

Safe and sound

I Strong typing (Haskell, Java,...)
I Programs are guaranteed not to go wrong.
I Intended optimization: avoiding run-time checks and

validation
I Conservative: sometimes disallows programs that would go

right.

I Soft typing (on languages like Scheme, Perl, Ruby, PHP,
Python and Javascript)
I Allow all programs that might go right.
I Intended optimization: avoiding run-time checks, some

validation
I Liberal: some programs may go wrong.
I Add run-time checks/generate warnings

I It all depends on how you will use the analysis results.



[Faculty of Science
Information and Computing Sciences]

15

Some example analyses

I Dead-code elimination
I Strictness analysis in lazy functional languages

I Which arguments to a function will always be evaluated at
some point?

I Liveness of variables
I which variables may still be used?

I Available expressions
I eliminating double computations

I Dynamic dispatch problem
I dead code with functions being first class citizens



[Faculty of Science
Information and Computing Sciences]

16

More examples

I Shape analysis
I for avoiding garbage collection

I Uncaught exceptions in Java

I Weak circularity test in attribute grammars
I Escape analysis

I What does not escape may be allocated on the stack
instead of the heap.

I Binding-time analysis
I What can be partially evaluated at compile-time.

I And many, many more...



[Faculty of Science
Information and Computing Sciences]

17

In the context of this course

I Dataflow analysis of While language

I Monotone frameworks

I Literature: Chapter 2 of Nielson, Nielson and Hankin

I Project: analyzing the While language with monotone
frameworks

I Analysis of higher-order languages later in the course



[Faculty of Science
Information and Computing Sciences]

18

More detailed roadmap

I First-order, imperative language

I First without, later with procedures

I In both cases, control-flow is fixed.
I Monotone frameworks

I Conceptual and implementational framework for building
dataflow analyses

I Illustrated by Available Expression Analysis, Live Variable
Analysis, and Constant Propagation.

I Distributivity



[Faculty of Science
Information and Computing Sciences]

19

Intraprocedural Analysis



[Faculty of Science
Information and Computing Sciences]

20

The While-language

I Simple and imperative, no procedures (yet)

I Variables: x, y, . . ., integers only

I Statements: assignments, if, while, skip and ;

I Boolean expressions: constants true, false, boolean
operators and, or, not, and relational operators <,=, . . .

I Integer expressions: 0,−1, 1,−2, 2, . . . and various
operators +,−, . . .

I Labels for identification: [skip]2, [(x <= 2)]3,
[x := x + 1]31



[Faculty of Science
Information and Computing Sciences]

21

Exercise

Available expressions For each program point, which
(non-trivial) expressions must already have been
computed, and not later modified, on all paths to
the program point.

Live variables For each program point, values of which variables
may later be needed in the execution of the
program.



[Faculty of Science
Information and Computing Sciences]

22

Example program with its flow graph

[v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5;
[u := v]6;
[v := u + t]7);

no
[skip]4

yes

[v := 1]3

[n <= 2]1

[u := 1]2

[n > 2]8

[t := u]5

[u := v]6

[v := u + t]7

no

yes



[Faculty of Science
Information and Computing Sciences]

23

Information from programs

I [v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5; [u := v]6; [v := u + t]7);

I labels(S) = {1, . . . , 8}, init(S) = 3 and
final(S) = {8, 4}

I [v := 1]3, [skip]4, . . . ∈ blocks(S)

I flow(S) =
{(3, 2), (2, 1), (1, 4), (1, 8), (8, 5), (5, 6), (6, 7), (7, 8)} vs.
flowR(S) =
{(2, 3), (1, 2), (4, 1), (8, 1), (5, 8), (6, 5), (7, 6), (8, 7)}



[Faculty of Science
Information and Computing Sciences]

23

Information from programs

I [v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5; [u := v]6; [v := u + t]7);

I AExp(u+ v ∗ 10) = {v ∗ 10, u+ v ∗ 10} and
AExp(S) = {u+ t}.

I AExp(e) does not include single variables and constants

I Program under analysis is usually denoted S∗.

I We write AExp∗ instead of AExp(S∗) and so on.



[Faculty of Science
Information and Computing Sciences]

24

Available Expression Analysis



[Faculty of Science
Information and Computing Sciences]

25

Available Expression Analysis

For each program point, which (non-trivial) expressions
must already have been computed, and not later mod-
ified, on all paths to the program point.

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I a + b is always available at 3, but a * b is not.

I Each a subset of AExp∗ = {a+ b, (a+ b) ∗ x, a ∗ b, a+ 1}
I Associated optimization: values of available expression may

be cached for use at [B]`.

I To exploit this, all paths to [B]` must make it available



[Faculty of Science
Information and Computing Sciences]

26

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEN(1) =

∅
I nothing available at start of program

I AEX(2) = AEN(2) ∪ {a ∗ b}
I only the non-trivial expressions

I AEN(3) = AEX(2) ∩AEX(5)
I only if both paths make it available



[Faculty of Science
Information and Computing Sciences]

26

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEN(1) = ∅
I nothing available at start of program

I AEX(2) =

AEN(2) ∪ {a ∗ b}
I only the non-trivial expressions

I AEN(3) = AEX(2) ∩AEX(5)
I only if both paths make it available



[Faculty of Science
Information and Computing Sciences]

26

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEN(1) = ∅
I nothing available at start of program

I AEX(2) = AEN(2) ∪ {a ∗ b}
I only the non-trivial expressions

I AEN(3) =

AEX(2) ∩AEX(5)
I only if both paths make it available



[Faculty of Science
Information and Computing Sciences]

26

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEN(1) = ∅
I nothing available at start of program

I AEX(2) = AEN(2) ∪ {a ∗ b}
I only the non-trivial expressions

I AEN(3) = AEX(2) ∩AEX(5)
I only if both paths make it available



[Faculty of Science
Information and Computing Sciences]

27

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEX(3) =

AEN(3) ∪ {a+ b, a ∗ b}
I condition also has effect

I AEX(4) = AEN(4)− {a+ b, (a+ b) ∗ x, a+ 1, a ∗ b}
I remove all arithmetic expressions which contain a



[Faculty of Science
Information and Computing Sciences]

27

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEX(3) = AEN(3) ∪ {a+ b, a ∗ b}
I condition also has effect

I AEX(4) =

AEN(4)− {a+ b, (a+ b) ∗ x, a+ 1, a ∗ b}
I remove all arithmetic expressions which contain a



[Faculty of Science
Information and Computing Sciences]

27

Some equations for Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEX(3) = AEN(3) ∪ {a+ b, a ∗ b}
I condition also has effect

I AEX(4) = AEN(4)− {a+ b, (a+ b) ∗ x, a+ 1, a ∗ b}
I remove all arithmetic expressions which contain a



[Faculty of Science
Information and Computing Sciences]

28

Auxiliary functions for Available Expressions

I We construct the analysis by specifying for each block:
I which expressions become available: genAE(B`)
I which expressions become unavailable: killAE(B`)

I These we then plug into a generic transfer function, that
computes the effect of executing the block on the analysis
result.

I Together with “flow” functions that push analysis results
through the flow graph, we have a complete analysis.



[Faculty of Science
Information and Computing Sciences]

29

For assignments

I Remove any expression that contains the assigned variable:
killAE([x := a]`) = {a′ ∈ AExp∗ | x ∈ FV (a′)}

I Add some or all subexpressions of the assigned expression:
genAE([x := a]`) = {a′ ∈ AExp(a) | x /∈ FV (a′)}

I Why x /∈ FV (a′)?

I (a + b) * x, computed in 1, is not available before 2:
[x := (a + b) * x]1;
if [(a + b) * x > a + b + 14)]2 then

...

I It helps to have side-effect free expressions.



[Faculty of Science
Information and Computing Sciences]

29

For assignments

I Remove any expression that contains the assigned variable:
killAE([x := a]`) = {a′ ∈ AExp∗ | x ∈ FV (a′)}

I Add some or all subexpressions of the assigned expression:
genAE([x := a]`) = {a′ ∈ AExp(a) | x /∈ FV (a′)}

I Why x /∈ FV (a′)?

I (a + b) * x, computed in 1, is not available before 2:
[x := (a + b) * x]1;
if [(a + b) * x > a + b + 14)]2 then

...

I It helps to have side-effect free expressions.



[Faculty of Science
Information and Computing Sciences]

29

For assignments

I Remove any expression that contains the assigned variable:
killAE([x := a]`) = {a′ ∈ AExp∗ | x ∈ FV (a′)}

I Add some or all subexpressions of the assigned expression:
genAE([x := a]`) = {a′ ∈ AExp(a) | x /∈ FV (a′)}

I Why x /∈ FV (a′)?

I (a + b) * x, computed in 1, is not available before 2:
[x := (a + b) * x]1;
if [(a + b) * x > a + b + 14)]2 then

...

I It helps to have side-effect free expressions.



[Faculty of Science
Information and Computing Sciences]

30

For skip and conditions

I For the remaining blocks, we do the same.
I For skip:

I killAE([skip]`) = ∅
I genAE([skip]`) = ∅

I For conditions:
I killAE([b]`) = ∅
I genAE([b]`) = AExp(b)

I We only save arithmetic expressions, not complete boolean
ones.
I Higher precision leads to higher costs.



[Faculty of Science
Information and Computing Sciences]

31

Analysis functions for Available Expressions

Flow functions:

AEN(`) =

{
∅ if ` = init(S∗)⋂
{AEX(`′) | (`′, `) ∈ flow(S∗)} otherwise

Transfer functions:

AEX(`) = (AEN(`)− killAE(B`)) ∪ genAE(B`)

I Equations or assignments?



[Faculty of Science
Information and Computing Sciences]

32

Example continued

[x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4; [x := a + b]5)

` killAE(`) genAE(`)
1 {(a+ b) ∗ x} {a+ b}
2 ∅ {a ∗ b}
3 ∅ {a ∗ b, a+ b}
4 {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1} ∅
5 {(a+ b) ∗ x} {a+ b}



[Faculty of Science
Information and Computing Sciences]

32

Example continued

[x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4; [x := a + b]5)

` AEN(`) AEX(`)
1 ∅ (AEN(1)− {(a+ b) ∗ x}) ∪ {a+ b}
2 AEX(1) AEN(2) ∪ {a ∗ b}
3 AEX(2) ∩AEX(5) AEN(3) ∪ {a ∗ b, a+ b}
4 AEX(3) AEN(4)− {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1}
5 AEX(4) (AEN(5)− {(a+ b) ∗ x}) ∪ {a+ b}



[Faculty of Science
Information and Computing Sciences]

33

Performing Chaotic Iteration

` AEN(`) AEX(`)
1 ∅ (AEN(1)− {(a+ b) ∗ x}) ∪ {a+ b}
2 AEX(1) AEN(2) ∪ {a ∗ b}
3 AEX(2) ∩AEX(5) AEN(3) ∪ {a ∗ b, a+ b}
4 AEX(3) AEN(4)− {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1}
5 AEX(4) (AEN(5)− {(a+ b) ∗ x}) ∪ {a+ b}

AEN(1) AExp∗ ∅ ∅ ∅
AEX(1) AExp∗ {a+ b} {a+ b} {a+ b}
AEN(2) AExp∗ {a+ b} {a+ b} {a+ b}
AEX(2) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEN(3) AExp∗ {a+ b, a ∗ b} {a+ b} {a+ b}
AEX(3) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEN(4) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEX(4) AExp∗ ∅ ∅ ∅
AEN(5) AExp∗ ∅ ∅ ∅
AEX(5) AExp∗ {a+ b} {a+ b} {a+ b}



[Faculty of Science
Information and Computing Sciences]

34

A more mathematical formulation

I For every program point `, we have a finite set AEN(`)
and AEX(`).

I Total analysis information for the program is a tuple
containing all these sets:

−→
AE= (AEN(1), AEX(1), . . . , AEN(5), AEX(5))

I Initialization:

−→
AE= (AExp∗,AExp∗, . . . ,AExp∗,AExp∗)

I Why not at
−→
AE= (∅, . . . , ∅)?



[Faculty of Science
Information and Computing Sciences]

35

A single “parallel” transfer function

I Equations implicitly define separate transformations on
−→
AE:

Fentry(3)(. . . , AEX(2), . . . , AEX(5)) = AEX(2)∩AEX(5)

Fexit(3)(. . . , AEN(3), . . .) = AEN(3) ∪ {a ∗ b, a+ b}

I Together give a transformation function F , applying the
separate transformations elementwise.

I F maps column to column in every single iteration.
I Not as greedy as Chaotic Iteration



[Faculty of Science
Information and Computing Sciences]

36

Iterating

I We iterate F , by computing

initialize(AE);

while (AE != F(AE)) do

AE = F(AE);

output solution AE;

I A fixpoint (or fixed point) of F is an X so that F (X) = X.

I The fixpoint
−→
AE satisfies the equations: F (

−→
AE) =

−→
AE.

I Moreover, going on does not help: F (F (
−→
AE)) =

−→
AE.



[Faculty of Science
Information and Computing Sciences]

37

Intuitive reading

I We start from our most favourite, most informative answer.

I Iterating makes the values less informative, but also more
consistent with the equations.

I We repeat until it is consistent.



[Faculty of Science
Information and Computing Sciences]

38

Termination

I Does the iteration ever end?

I No cyclic behaviour: sets in
−→
AE can only shrink.

I Solutions can not shrink indefinitely:
I bounded by ∅ from below, and
I AExp∗ is finite to begin with.

I The transfer functions themselves terminate

I Together: computation of a fixed point terminates.



[Faculty of Science
Information and Computing Sciences]

39

Best possible solution

I The solution is a least fixed point: no avoidable
information is included.

I That is, no avoidable information according to the
equations.
I Imprecision comes from imprecision in the equations, not

their solution.

I Although F changes all sets in parallel, the separate sets
may also be transformed non-deterministically in any order.

I The latter is in fact done when using Chaotic Iteration.



[Faculty of Science
Information and Computing Sciences]

40

Avoid cyclic behaviour: monotonocity

I Iterating makes the solution less useful.
I X v Y means that X is at least as useful as Y

I With AE, {a+ b, a ∗ b} v {a+ b} (Note: v = ⊇)

I Being less useful should not be an asset: transfer functions
must be monotone

I F is monotone if
−→
AE v

−→
AE’ implies F (

−→
AE) v F (

−→
AE’)

I For AE, F ({a+ b}) v F ({a+ b, a ∗ b}) would imply
non-monotonic behaviour.
I It paid off for {a+ b} to be less useful than {a+ b, a ∗ b}.

I Monotonocity does not mean that
−→
AE v F (

−→
AE).



[Faculty of Science
Information and Computing Sciences]

41

Verify that analysis functions are monotone!

I Usually done by verifying that the separate
transformations, like Fentry(3), are monotone.

I Recall: x v y implies f(x) v f(y) and v = ⊇
I For Fentry(3) = AEX(2) ∩AEX(5):

AEX(2) ⊇ AE′X(2) and AEX(5) ⊇ AE′X(5)

implies

AEX(2) ∩AEX(5) ⊇ AE′X(2) ∩AE′X(5) .

I If separate transformations are monotone, then so is F .



[Faculty of Science
Information and Computing Sciences]

42

AE is a forward analysis

AEN(`) =

{
∅ if ` = init(S∗)⋂
{AEX(`′) | (`′, `) ∈ flow(S∗)} otherwise

I Analysis information flows in the direction of program
execution.

I Starting from the beginning of the program.

I In the formulas: we use flow rather than flowR.



[Faculty of Science
Information and Computing Sciences]

43

AE is a must analysis

[z := x + y]1;
while [true]2 do

[skip]3

I Writing down the equations, and substituting, you get

AEN(2) = {x+ y} ∩AEN(2)

I Fixpoints not unique: ∅ and {x+ y} are both okay.

I Most informative solution is {x+ y}, so we choose that
one.

I Must analysis: use ∩ not ∪ in the flow equations.
I All execution paths must make the expressions available.



[Faculty of Science
Information and Computing Sciences]

44

Live Variables Analysis



[Faculty of Science
Information and Computing Sciences]

45

Live Variables Analysis by example

I [x := 2]1; [y := 4]2; [x := 1]3;
(if [B]4 then [z := y]5

else [z := x*x]6);
[x := z]7;

I Variable x is not live at the exit of 1
I It is live at the exit of 3,

I unless we know that [B]4 is never false, and B does not
mention x.

I Assignments to dead variables is dead code and might be
removed

I In contrast with AE, LV is a backward may analysis



[Faculty of Science
Information and Computing Sciences]

46

Dealing with assignments

I As usual, assignments are the tricky case

I Consider
[z := x - z]2

[x := z + a]3

and assume we are interested in the values of {x, z} at
program end.

I Reasoning backward:
I x is defined by 3, so the x live after 3 is not “the same” as

before 3, so we kill x. To compute x (that is live after 3) we
need a and z, they become live (but only a is newly live)

I So between 2 and 3, {a,z} are live
I Before 2, {a,x,z} are live: z is defined, so killed, but the

value of z that lives before 2 is used in the definition of z.



[Faculty of Science
Information and Computing Sciences]

47

Transfer functions for Live Variables Analysis

LVX(`) =

{
V if ` ∈ final(S∗)⋃
{LVN(`′) | (`′, `) ∈ flowR(S∗)} otherwise

LVN(`) = (LVX(`)− killLV (B`)) ∪ genLV (B`)

Note: V denotes the variables of interest (at program end).

killLV ([x := a]`) = {x}
killLV ([skip]`) = ∅
killLV ([b]`) = ∅

genLV ([x := a]`) = FV (a)
genLV ([skip]`) = ∅
genLV ([b]`) = FV (b)



[Faculty of Science
Information and Computing Sciences]

48

An example

[y := x]1;
[z := 1]2;
while [x>1]3 do

([z := z * x]4;
[x := x - 1]5);

[x := 0]6

` killLV (`) genLV (`)

1 {y} {x}
2 {z} ∅
3 ∅ {x}
4 {z} {z, x}
5 {x} {x}
6 {x} ∅

` LVX(`) LVN(`)

1 LVN(2) (LVX(1)− {y}) ∪ {x}
2 LVN(3) LVX(2)− {z}
3 LVN(4) ∪ LVN(6) LVX(3) ∪ {x}
4 LVN(5) (LVX(4)− {z}) ∪ {z, x}
5 LVN(3) (LVX(5)− {x}) ∪ {x}
6 {z} LVX(6)− {x}



[Faculty of Science
Information and Computing Sciences]

49

A few computations for Live Variables

[y := x]1;
[z := 1]2;
while [x>1]3 do

([z := z * x]4;
[x := x - 1]5);

[x := 0]6

I Variable of interest: z

I Conclusion: y is not
live anywhere so
assignment 1 is dead
code.

LVX(6) ∅ {z} {z}
LVN(6) ∅ {z} {z}
LVX(5) ∅ ∅ {x, z}
LVN(5) ∅ {x} {x, z}
LVX(4) ∅ {x} {x, z}
LVN(4) ∅ {x, z} {x, z}
LVX(3) ∅ {x, z} {x, z}
LVN(3) ∅ {x, z} {x, z}
LVX(2) ∅ {x, z} {x, z}
LVN(2) ∅ {x} {x}
LVX(1) ∅ {x} {x}
LVN(1) ∅ {x} {x}



[Faculty of Science
Information and Computing Sciences]

50

Live Variables Analysis is a backward analysis

I Backward analysis:
I Variables used in an assignment are live before the

assignment.
I Variables assigned to are not live before the assignment

(except when also used)

I Analysis information moves contrary to execution direction.

I Speed up iteration by starting at program’s end.

I If we are not interested in any variable at the end, which
variables are then live?



[Faculty of Science
Information and Computing Sciences]

51

The smaller the better

I Consider
while [x>1]1 do

[skip]2;
[y := x + 1]3

I Substition gives LVX(1) = LVX(1) ∪ {x}.
I Two safe solutions are {x, y} and {x}.
I The more variables dead (not live), the more we can

optimize: we choose {x}.
I Hence, we start small and grow our sets, by using ∪ (may).



[Faculty of Science
Information and Computing Sciences]

52

Monotone Frameworks



[Faculty of Science
Information and Computing Sciences]

53

Monotone Frameworks

I A framework that generalizes the example analyses
I Making them instances

I Identify the commonalities, parameterize by the differences
I Advantages:

I generic algorithms,
I generic proof methods for soundness, and
I less ad-hoc tends to provide better understanding.

I Disadvantage:
I mathematically more challenging
I algorithms cannot take advantage of special properties of

any specific analysis.



[Faculty of Science
Information and Computing Sciences]

54

Steps to take

Generalize over

I direction (capture backward and forward analyses)

I datatype (the payload of the analysis)

I modality (capture may and must)



[Faculty of Science
Information and Computing Sciences]

55

From entry and exit to context and effect

I Thus far, we had an entry and exit set for each
label/program point.

I Now, for each label ` we shall have
I Analysis◦(`) or the context value: values come from the

context of [B]`

I Analysis•(`) or effect value: it shows the effect of [B]` on
Analysis◦(`)

I Analysis•(`) is defined in terms of Analysis◦(`), and

I Analysis◦(`) is defined in terms of the Analysis• values of
other blocks.

I For LV, the context values are the exit sets (backward).

I For AE, the context values are the entry sets (forward).



[Faculty of Science
Information and Computing Sciences]

56

The formula for Analysis•(`)

I Recall: these describe the effect of the blocks.

I The generic transfer functions:

Analysis•(`) = f`(Analysis◦(`))

I f` is the transfer function for [B]`.

I Note: transfer functions can be given per block.

I Thus far, we have specified them uniformly for each
language construct.



[Faculty of Science
Information and Computing Sciences]

57

The formula for Analysis◦(`)

Analysis◦(`) =

{
ι if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F} otherwise

I Combination operator
⊔

is
⋂

(for must) or
⋃

(for may)

I F is either flow(S∗) (forward) or its reverse flowR(S∗)
(backward).

I E is the set of extremal labels, e.g. {init(S∗)} or
final(S∗)

I ι is the extremal value for the extremal labels

I 4 combinations: backward vs. forward and must vs. may.



[Faculty of Science
Information and Computing Sciences]

58

What is wrong with Analysis◦(`)?

I Formula is not correct when ∃(`′, `) ∈ F with ` ∈ E.
I Forward analysis of a program starting with a while loop
I Backward analysis of a program ending in a while loop

I Consider LV analysis for
while [x > 1]1 do

[x := x-1]2

I We want

Analysis◦(1) = Analysis•(2) ∪ V

and not simply
Analysis◦(1) = V .

I Workaround: start program with skip and end it with skip.



[Faculty of Science
Information and Computing Sciences]

59

Fixing the formula for Analysis◦(`)

I Or, the formula for Analysis◦(`) should read

Analysis◦(`) =
⊔
{Analysis•(`

′) | (`′, `) ∈ F} t ι`E

where

ι`E =

{
ι if ` ∈ E
⊥ if ` /∈ E

I Here, ⊥ (pronounced “bottom”) is the zero of t.
I For all a: a t ⊥ = a.



[Faculty of Science
Information and Computing Sciences]

60

Example Available Expressions

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I In this case:
I
⊔

=
⋂

I F = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}
I E = {1}
I ι = ∅
I ⊥ = AExp∗ (because x ∩ AExp∗ = x)

I Transfer functions f` will have to wait a bit.



[Faculty of Science
Information and Computing Sciences]

61

Lattices and the ACC



[Faculty of Science
Information and Computing Sciences]

62

Fixed points

I Declarative, constraint-based specification of static
analysis:
I specifies all admissible/sound solutions.

I Algorithmically: find the best solution in finite time.

I Best solution is a so-called least fixed point of a function
that can be derived from this set of constraints.

I In the interest of definedness and termination, this is a
monotone function computed on a complete lattice that
satisfies the Ascending Chain Condition.

I Come back to read this statement at a later time.



[Faculty of Science
Information and Computing Sciences]

63

Introductory example to lattices

I Take a set of values, say {⊥,−, 0,+,≤ 0,≥ 0,>}.
I These approximate sets of integers by means of signs

I ⊥ (pron. bottom) represents {} (or ∅).

I > (pron. top) represents the set of all integers
I Various relations hold:

I 0 is more precise than ≤ 0, but also more precise than ≥ 0
I ⊥ is more precise than all the others
I ≤ 0 and ≥ 0 are not comparable

I Represent relations visually in Hasse diagram:

− 0 +

≤ 0 ≥ 0

>

⊥



[Faculty of Science
Information and Computing Sciences]

64

Partial orders

I A binary relation v on (L,L) (or L× L) is given.

I For simplicity, instead of (x, y) ∈ v we write x v y.
I The relation v is a partial order if it is

I reflexive: for all x ∈ L, x v x
I transitive: for all x, y, z ∈ L, if x v y and y v z, then

x v z
I anti-symmetric: if x v y and y v x, then x = y.

I Examples:
I ⊆ for subsets of a given set S, and similarly ⊇.
I ≤ and ≥ are partial orders on the natural numbers N, and

so is =.

I Partial order P conventionally drawn as a Hasse diagram:

b

c

d

a



[Faculty of Science
Information and Computing Sciences]

64

Partial orders

I A binary relation v on (L,L) (or L× L) is given.

I For simplicity, instead of (x, y) ∈ v we write x v y.
I The relation v is a partial order if it is

I reflexive: for all x ∈ L, x v x
I transitive: for all x, y, z ∈ L, if x v y and y v z, then

x v z
I anti-symmetric: if x v y and y v x, then x = y.

I Examples:
I ⊆ for subsets of a given set S, and similarly ⊇.
I ≤ and ≥ are partial orders on the natural numbers N, and

so is =.

I Partial order P conventionally drawn as a Hasse diagram:

b

c

d

a



[Faculty of Science
Information and Computing Sciences]

65

Lattices

I Let x, y ∈ L.
I z ∈ L is an upper bound of x and y if x v z and y v z

I And similarly for lower bound

I If the set of upper (lower) bounds of x and y has a least
(greatest) element, then we call it the join (meet) of x and
y, written x t y (x u y).

I z ∈ S is the least (greatest) element of S ⊆ L, if for all
v ∈ S, z v v (v v z)

I A partial order is called a lattice (tralie in Dutch) if for all
x, y ∈ L, x t y and x u y exist.
I If they exist, they are unique

I Reason: we want t and u to be total binary functions, i.e.,
binary operators.



[Faculty of Science
Information and Computing Sciences]

66

Example lattices

I (N,=) is not a lattice: x t y is undefined for all x 6= y.

I (N,≤) and (N,≥) are (dual) lattices.

I The partial order P is not a lattice.

b

c

d

a

I Duality: reversing all edges in the lattice gives another
lattice.



[Faculty of Science
Information and Computing Sciences]

67

Complete lattices

I Consider a subset X = {x1, x2, . . .} of the lattice L.

I Then
⊔
X is well-defined for finite non-empty X:

x1 t (x2 t (. . . xn) . . .)).

I What about the infinite or empty X’s?

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I
⊔
∅ = ⊥ and

⊔
L = >.



[Faculty of Science
Information and Computing Sciences]

68

Complete lattices

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I Is every finite lattice complete?

I One exception: empty set

I Every non-empty finite lattice is complete.

I Is every lattice with top and bottom complete?

I No, there can still be infinite subsets without a lower or
upperbound.



[Faculty of Science
Information and Computing Sciences]

68

Complete lattices

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I Is every finite lattice complete?

I One exception

: empty set

I Every non-empty finite lattice is complete.

I Is every lattice with top and bottom complete?

I No, there can still be infinite subsets without a lower or
upperbound.



[Faculty of Science
Information and Computing Sciences]

68

Complete lattices

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I Is every finite lattice complete?

I One exception: empty set

I Every non-empty finite lattice is complete.

I Is every lattice with top and bottom complete?

I No, there can still be infinite subsets without a lower or
upperbound.



[Faculty of Science
Information and Computing Sciences]

68

Complete lattices

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I Is every finite lattice complete?

I One exception: empty set

I Every non-empty finite lattice is complete.

I Is every lattice with top and bottom complete?

I No, there can still be infinite subsets without a lower or
upperbound.



[Faculty of Science
Information and Computing Sciences]

68

Complete lattices

I In a complete lattice,
⊔
X and

d
X are defined and

unique for all X ⊆ L.

I Is every finite lattice complete?

I One exception: empty set

I Every non-empty finite lattice is complete.

I Is every lattice with top and bottom complete?

I No, there can still be infinite subsets without a lower or
upperbound.



[Faculty of Science
Information and Computing Sciences]

69

Examples

I Subsets of S = {0, 1, 2} form a complete lattice (v is ⊆).
Then t equals ∪, and ∅ is smallest and S largest element.

I Dually, (S,⊇) is also one: t equals ∩, ⊥ = S, > = ∅.
I (N,≤) is a lattice, but has no >. Here, x t y = max(x, y).
I (P(N),⊆) with ∅ as bottom, N as top. Here t = ∪.

I An infinite complete lattice

I L = {⊥,−, 0,+,≤ 0,≥ 0,>} for sign testing

− 0 +

≤ 0 ≥ 0

>

⊥



[Faculty of Science
Information and Computing Sciences]

70

An aside: computational aspects

I How to define lattices or complete lattices in Haskell?

I Preferably, like Eq and Ord, as a type class.

I Preferably most definitions have a default implementation.

I Enforcing algebraic laws is difficult (within the type
system).

I t and u are associative, commutative binary operators.

I Relation: x v y if and only if x t y = y.

I Defining t in terms of v implies a search of some kind.

I Other way around is direct.

I Provide the lattice with bottom and top element (implicit
or explicit).

I Different lattices can be made on the same underlying set!



[Faculty of Science
Information and Computing Sciences]

71

The ascending chain condition (ACC)

I Necessary to assure needing only a finite number of
iterations during fixed point computation.

I Every chain x0 v x1 v . . . in the lattice stabilizes: there is
an n where xn = xn+1.
I We can only go up a finite number of times

I For finite lattices: ACC trivially satisfied

I ACC holds for (N,≥) (top is 0), but not for (N,≤)

I A lattice with ACC and a bottom element is complete.



[Faculty of Science
Information and Computing Sciences]

72

The descending chain condition (DCC)

I Descending Chain Condition is the dual.

I Ascending vs. Descending Chain Condition: turn the
lattice around.

I (Z,≤) has neither ACC or DCC.



[Faculty of Science
Information and Computing Sciences]

73

Termination of fixpoint algorithm, formally

I X = ⊥;
while (X! = F (X)) do

X = F (X);
where
I X has datatype T ,
I T forms a lattice with bottom element ⊥,
I T has Ascending Chain Condition, and
I F : T → T monotone.

I Thm: least fixed point found in finite time.

I Proof by two inductions.

I Base case: by definition ⊥ = F 0(⊥) v F (⊥),

I Inductive case: by monotonicity
Fn−1(⊥) v Fn(⊥) implies Fn(⊥) v Fn+1(⊥)

I ACC now implies, the chain ⊥ v F (⊥) v F 2(⊥) . . .
stabilizes.



[Faculty of Science
Information and Computing Sciences]

74

Solution is the least fixed point

I X = ⊥;
while (X! = F (X)) do

X = F (X);
where
I X has datatype T ,
I T forms a lattice with bottom element ⊥,
I T has Ascending Chain Condition, and
I F : T → T monotone.

I Let S be another fixed point of F : F (S) = S

I Prove Fn(⊥) v S for all n, by induction.

I Base case: by definition ⊥ = F 0(⊥) v S
I Inductive case: assume Fn(⊥) v S.

Then Fn+1(⊥) = F (Fn(⊥)) v F (S) = S, because F is
monotone.



[Faculty of Science
Information and Computing Sciences]

75

Back to Monotone Frameworks



[Faculty of Science
Information and Computing Sciences]

76

Property spaces: the data type of the analysis

I Values for Analysis◦ and Analysis• taken from the MF’s
property space L.

I Choosing a complete lattice for L provides us with
I a join operator t to combine multiple values into a single

one consistent with both.
I for converging execution paths

I It provides the most precise value with that property.

I ACC ensures termination of fixed point computation
I Least element ⊥ can be used to initialize the computation

I Intuitively, ⊥ represents most informative element of L

I Greatest element > (usually) means no useful or
inconsistent information



[Faculty of Science
Information and Computing Sciences]

77

Examples LV

I Live Variables (for program S∗):
I L = P(Var∗), finite sets of variables,
I for x, y ∈ L: x v y if and only if x ⊆ y,
I t = ∪,
I ⊥ = ∅ and > = Var∗.

I Why not L = P(Var) so that it is the same for all
programs?
I To get a finite lattice and thus automatically ACC.
I ACC is sufficient, but not necessary: only variables in Var∗

will be added.



[Faculty of Science
Information and Computing Sciences]

78

Example AE

I Available Expressions (for program S∗):
I L = P(AExp∗), non-trivial subexpressions of S∗,
I for x, y ∈ L: x v y if and only if x ⊇ y,
I t = ∩,
I ⊥ = AExp∗ and > = ∅.



[Faculty of Science
Information and Computing Sciences]

79

Transfer functions: the dynamics of the analysis

I Start with a collection F of monotone functions on the
property space L:

F ⊆ {f | f : L→ L and f monotone } .

I Recall: a function f is monotone if

x v y implies f(x) v f(y) .

I id ∈ F (for the empty sequence of statements (and skip))

I F closed under function composition ◦ (for the sequencing
of statements)

I For a given program and analysis, we specify for each label
a transfer function f` : L→ L, all from F .



[Faculty of Science
Information and Computing Sciences]

79

Transfer functions: the dynamics of the analysis

I Start with a collection F of monotone functions on the
property space L:

F ⊆ {f | f : L→ L and f monotone } .

I Recall: a function f is monotone if

x v y implies f(x) v f(y) .

I id ∈ F (for the empty sequence of statements (and skip))

I F closed under function composition ◦ (for the sequencing
of statements)

I For a given program and analysis, we specify for each label
a transfer function f` : L→ L, all from F .



[Faculty of Science
Information and Computing Sciences]

80

Finally, monotone frameworks

I A Monotone Framework consists of a property space L and
a set F of monotone functions, as well as
I the flow F of the program
I the extremal labels E
I an extremal value ι ∈ L
I a mapping f. from the labels Lab∗ to functions in F



[Faculty of Science
Information and Computing Sciences]

81

Example Available Expressions continued

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I (L,v) = (P(AExp∗),⊇) as earlier.

I F = flow∗ = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)},
I E = {init(S∗)} = {1}
I ι = ∅
I The function space F could be all functions of the form
{f : L→ L | ∃lk, lg : f(l) = (l − lk) ∪ lg}.
I All functions that first remove and then add

I f`(l) = (l − killAE([B]`)) ∪ genAE([B]`) where
[B]` ∈ blocks(S∗)



[Faculty of Science
Information and Computing Sciences]

82

Available Expressions is a Monotone Framework

I Recall F = {f : L→ L | ∃lk, lg : f(l) = (l − lk) ∪ lg} and
v equals ⊇.

I Identity function exists in F : take lk = lg = ∅.
I F is closed under composition: let
f(`) = (l − lk) ∪ lg, f ′(`) = (l − l′k) ∪ l′g ∈ F .
(f ◦ f ′)(l) = f(f ′(l)) = (((l − l′k) ∪ l′g)− lk) ∪ lg =
(l − (l′k ∪ lk)) ∪ ((l′g − lk) ∪ lg)

I Thus, kill set for f ◦ f ′ is l′k ∪ lk and gen set is (l′g− lk)∪ lg.

I Monotonicity of f ∈ F : let l ⊇ l′. Then l − lk ⊇ l′ − lk
and finally (l − lk) ∪ lg ⊇ (l′ − lk) ∪ lg



[Faculty of Science
Information and Computing Sciences]

83

Reflections on burden of proof

I Proof also works when v=⊆: other three analyses are also
Monotone Frameworks.

I We exploit similarities in the set F of transfer functions.
I All analyses choose their transfer functions from F .
I Easily seen because it is a syntactic property of the

functions.
I One proof works for all.

I Another advantage: each function can be represented by
two sets.

I Starting with F as the set of all monotone functions only
moves the burden, and does not allow reuse.



[Faculty of Science
Information and Computing Sciences]

84

Distributivity vs. Constant Propagation



[Faculty of Science
Information and Computing Sciences]

85

Constant Propagation

I Constant Propagation: Determine at each program point
and for each variable whether the variable always has the
same value there.

I We are not interested to see which variables never change
I Although we shall find that out too

I For every variable we either know
I the single integer value it can have at that point
I a special > value signifying its value is not always the same

at that point



[Faculty of Science
Information and Computing Sciences]

86

Some examples

I [y := 2]2; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);
I Analysis•(3) = [x 7→ >, y 7→ 2, z 7→ 1] and

Analysis◦(4) = [x 7→ >, y 7→ 2, z 7→ >]

I [x := 8]1; [y := 2]2; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);
I Analysis•(3) = [x 7→ 8, y 7→ 2, z 7→ 1] and

Analysis◦(4) = [x 7→ >, y 7→ 2, z 7→ >]

I [x := 8]1; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);
I We cannot know what values y might take so now

Analysis•(3) = [x 7→ 8, y 7→ >, z 7→ 1] and
Analysis◦(4) = λv.>



[Faculty of Science
Information and Computing Sciences]

87

The Constant Propagation lattice

I For values bound to variables we employ the
join-semilattice Z>

0−1. . .−∞

>

21 . . . ∞

I The property space L is the complete lattice of total
functions from Var∗ to Z>.

I Add a special element for the always undefined function ⊥.
I The ordering v is elementwise for all σ̂, σ̂′ ∈ L:

I ⊥ v σ̂, and
I σ̂ v σ̂′ if and only if for all x ∈ Var∗ : σ̂(x) v σ̂′(x)

I FCP contains all monotone functions of the correct type.



[Faculty of Science
Information and Computing Sciences]

87

The Constant Propagation lattice

I For values bound to variables we employ the
join-semilattice Z>

0−1. . .−∞

>

21 . . . ∞
I The property space L is the complete lattice of total

functions from Var∗ to Z>.

I Add a special element for the always undefined function ⊥.
I The ordering v is elementwise for all σ̂, σ̂′ ∈ L:

I ⊥ v σ̂, and
I σ̂ v σ̂′ if and only if for all x ∈ Var∗ : σ̂(x) v σ̂′(x)

I FCP contains all monotone functions of the correct type.



[Faculty of Science
Information and Computing Sciences]

87

The Constant Propagation lattice

I For values bound to variables we employ the
join-semilattice Z>

0−1. . .−∞

>

21 . . . ∞
I The property space L is the complete lattice of total

functions from Var∗ to Z>.

I Add a special element for the always undefined function ⊥.
I The ordering v is elementwise for all σ̂, σ̂′ ∈ L:

I ⊥ v σ̂, and
I σ̂ v σ̂′ if and only if for all x ∈ Var∗ : σ̂(x) v σ̂′(x)

I FCP contains all monotone functions of the correct type.



[Faculty of Science
Information and Computing Sciences]

87

The Constant Propagation lattice

I For values bound to variables we employ the
join-semilattice Z>

0−1. . .−∞

>

21 . . . ∞
I The property space L is the complete lattice of total

functions from Var∗ to Z>.

I Add a special element for the always undefined function ⊥.
I The ordering v is elementwise for all σ̂, σ̂′ ∈ L:

I ⊥ v σ̂, and
I σ̂ v σ̂′ if and only if for all x ∈ Var∗ : σ̂(x) v σ̂′(x)

I FCP contains all monotone functions of the correct type.



[Faculty of Science
Information and Computing Sciences]

88

The transfer functions (different from NNH)

For the three types of statement

[x := a]` : fCP
` (σ̂) =

{
⊥ if σ̂ = ⊥
σ̂[x 7→ ACP JaKσ̂] otherwise

[skip]` : fCP
` (σ̂) = σ̂

[b]` : fCP
` (σ̂) = σ̂

where we use the function ACP : AExp→ (Var∗ → Z>)→ Z>

for evaluation

ACP JnKσ̂ = n
ACP JxKσ̂ = σ̂(x)
ACP Ja1 opa a2Kσ̂ = ACP Ja1Kσ̂ ôpa ACP Ja2Kσ̂

and it is understood that x ôpa y =

{
x opa y if x, y ∈ Z
> otherwise



[Faculty of Science
Information and Computing Sciences]

89

Constant Propagation Analysis example

I [y := 2]2;
[z := 1]3;
while [x>0]4 do

([z := z * y]5;
[x := x - 1]6);

I Initial statement has ι = λv.>: the only safe answer

I The effect fCP
2 (ι) = [y 7→ 2, z 7→ >, x 7→ >]

I fCP
5 ([y 7→ 2, z 7→ 1, x 7→ >]) = [y 7→ 2, z 7→ 2, x 7→ >]

I The join operator t proceeds elementwise:

I At first: Analysis◦(4) = [y 7→ 2, z 7→ 1, x 7→ >]

I Later: Analysis◦(4) = [y 7→ 2, z 7→ >, x 7→ >], because
z 7→ 1 in Analysis•(3) and z 7→ 2 in Analysis•(6).
I Joining two different values for a variable leads to >.



[Faculty of Science
Information and Computing Sciences]

90

Remarks about Constant Propagation

I Forward analysis

I I use less robust, but simpler notation
I Proof of being a monotone framework is an exercise. Prove

that
I the identity function is an element of FCP

I FCP is closed under composition
I all transfer functions we use are in FCP



[Faculty of Science
Information and Computing Sciences]

91

Distributivity

I Consider analysis info x1 and x2 for two executions leading
up to a block

I Two ways to proceed:
I join before transfer: f(x1 t x2)
I join after transfers: f(x1) t f(x2)

I By monotonicity f(x1) t f(x2) v f(x1 t x2)
I So the second possibility is never worse than the first

I If f is distributive then both ways are equivalent:
f(x1 t x2) v f(x1) t f(x2).

I In distributive frameworks doing a join before the transfer
does not lose information

I Verify that AE is distributive: f(x ∩ x′) = f(x) ∩ f(x′)

I Distributivity is good: faster algorithms, higher precision.

I Not all monotone frameworks are distributive.



[Faculty of Science
Information and Computing Sciences]

91

Distributivity

I Consider analysis info x1 and x2 for two executions leading
up to a block

I Two ways to proceed:
I join before transfer: f(x1 t x2)
I join after transfers: f(x1) t f(x2)

I By monotonicity f(x1) t f(x2) v f(x1 t x2)
I So the second possibility is never worse than the first

I If f is distributive then both ways are equivalent:
f(x1 t x2) v f(x1) t f(x2).

I In distributive frameworks doing a join before the transfer
does not lose information

I Verify that AE is distributive: f(x ∩ x′) = f(x) ∩ f(x′)

I Distributivity is good: faster algorithms, higher precision.

I Not all monotone frameworks are distributive.



[Faculty of Science
Information and Computing Sciences]

92

Constant Propagation is not distributive

I Recall distributive: f(`1 t `2) v f(`1) t f(`2).

I Let [y := x * x]`, σ̂1(x) = 1 and σ̂2(x) = −1.

I Joining before transfer:

(σ̂1 t σ̂2)(x) = 1 t −1 = >

I Therefore,
fCP
` (σ̂1 t σ̂2)(y) = > .

I Postponing the join of arguments:

fCP
` (σ̂1)(y) t fCP

` (σ̂2)(y) = 1 t 1 = 1

I Indeed, > 6v 1 so CP is not distributive.



[Faculty of Science
Information and Computing Sciences]

93

Roadmap

I Monotone frameworks have been defined and illustrated.

I But how to compute an analysis result for a monotone
framework?

I Algorithm MFP computes the least fixpoint.

I We want to know how precise the result can be.
I What is the best possible solution we may ever obtain?

I This is the Meet Over all Paths (MOP) solution.

I MFP is a sound approximation of MOP: MOP v MFP.

I For distributive frameworks, however, MOP = MFP.



[Faculty of Science
Information and Computing Sciences]

94

An Algorithm for Monotone Frameworks



[Faculty of Science
Information and Computing Sciences]

95

The Meet/Merge Over all Paths (MOP) solution

I A complete execution is a path through the control-flow
graph F from initial to (some) final label.

I What is an execution?
I A path from the initial label to any label in the program

I Consider for a particular label `:
path◦(`) = {[`1, . . . , `n−1] |

n ≥ 1, ∀i < n : (`i, `i+1) ∈ F, ` = `n, `1 ∈ E}
I The analysis function for one such path, p = [`1, . . . , `m]:

fp = f`m ◦ . . . ◦ f`1 ◦ id
I Applying the function to the extremal value ι gives the

analysis result for p.

I Be consistent with all possible executions leading to `:

MOP◦(`) =
⊔
{fp(ι) | p ∈ path◦(`)}



[Faculty of Science
Information and Computing Sciences]

96

And similarly...

I For paths ending after the transfer function for block `:
path•(`) = {[`1, . . . , `n] | n ≥ 1,

∀i < n : (`i, `i+1) ∈ F, ` = `n, `1 ∈ E}
I The join over these paths is then

MOP•(`) =
⊔
{fp(ι) | p ∈ path•(`)}



[Faculty of Science
Information and Computing Sciences]

97

MOP is undecidable

I Without proof.

I Intuition: joining over an infinite number of execution
paths: when do you stop?

I For some analyses, MOP is decidable.



[Faculty of Science
Information and Computing Sciences]

98

Maximal Fixed Point (MFP) - input/output

I Computes the least fixed point of an instance of a
monotone framework

I Input: the monotone framework (L,F , F, E, ι, λ`.f`).
where
I L the complete lattice
I F the monotone function space containing all the transfer

functions
I F the transitions of the program
I E the extremal labels
I ι the extremal value, and finally
I λ`.f` the mapping from labels ` to transfer functions from
F .

I Output: the values MFP◦(`) and MFP•(`) for all ` ∈ Lab∗



[Faculty of Science
Information and Computing Sciences]

99

General idea of MFP

I Work list algorithm: intermediate worklist W .

I An array A that approximates the solution from below
A[`] v MFP◦(`).

I We initialize A to something great, and repeat until
consistent with the constraints.

I Array A stores increasingly closer approximations of the
answer.
I Only the context values are stored.
I If transfer functions expensive to compute, then

cache/store also the effect values.



[Faculty of Science
Information and Computing Sciences]

100

The code of the algorithm

I Step 1 (initialization):
Set A[`] = ⊥ for ` /∈ E,
set A[`] = ι for ` ∈ E, and set W = F.

I Step 2 (iteration):
while W not empty do

(`, `′) := head(W); -- get next edge

W := tail(W); -- drop it from the list

if f`(A[`]) 6v A[`′] then -- if not consistent

A[`′] := A[`′] t f`(A[`]); -- incorporate it

for all `′′ with (`′, `′′) ∈ F do -- add all

W := (`′, `′′) : W; -- successors to W

I Step 3 (finalization):
Copy A[`] into MFP◦(`) and f`(A[`]) into MFP•(`).



[Faculty of Science
Information and Computing Sciences]

101

How does it work?

[x := a + b]5

[y := a * b]2

[x := (a + b) * x]1

[a * b > a + b]3

no

yes

[a := a + 1]4

I At some point: (`, `′) = (5, 3) is next up,
A[3] = {a+ b, a ∗ b} and A[5] = ∅

I Compute x = f5(A[5]) = (∅ − {(a+ b) ∗ x}) ∪ {a+ b}.
I Do the test: is x a superset of A[3]?

I No, so set A[3] = A[3] t x = A[3] ∩ {a+ b} = {a+ b}.
I Add (3, 4) to W : propagate changes.



[Faculty of Science
Information and Computing Sciences]

101

How does it work?

[x := a + b]5

[y := a * b]2

[x := (a + b) * x]1

[a * b > a + b]3

no

yes

[a := a + 1]4

I At some point: (`, `′) = (5, 3) is next up,
A[3] = {a+ b, a ∗ b} and A[5] = ∅

I Compute x = f5(A[5]) = (∅ − {(a+ b) ∗ x}) ∪ {a+ b}.
I Do the test: is x a superset of A[3]?

I No, so set A[3] = A[3] t x = A[3] ∩ {a+ b} = {a+ b}.
I Add (3, 4) to W : propagate changes.



[Faculty of Science
Information and Computing Sciences]

102

Part 1 of correctness: invariants

I Similar to correctness of fixpoint iteration.

I Let Analysis◦(`) and Analysis•(`) describe the least
solution to the equations.

I To prove: A v Analysis◦ and A v F (A) are invariants of
the while loop.

I The base case: at initialization
I ⊥ v Analysis◦(`), F (⊥) for ` /∈ E, and
I ι v Analysis◦(`), F (ι) for ` ∈ E

I The inductive case: consider the flow edge (`, `′)
I If we do not change A, then nothing is changed except W .
I If we do, then monotonicity saves the day.

I In summary, A stays below (or is on) the least fixpoint.



[Faculty of Science
Information and Computing Sciences]

103

Part 2 of correctness: at termination

I Previous slide implies: we never “pass by” the intended
solution.

I But do we have a solution when the algorithm terminates?
I Two important aspects here:

I We consider every equation at least once.
I Because W is initialized to F

I When a value is updated, we make sure all equations that
may be directly influenced are added to the worklist.

I Together implies that at termination we are in a reductive
point: F (A) v A.
I Negate the if-condition in the algorithm.



[Faculty of Science
Information and Computing Sciences]

104

MFP computes the least fixed point

I Part 1 and 2 together say that A = F (A): it is a fixpoint.

I Since this fixpoint lies below or on the least fixpoint (part
1), it must be that least fixpoint.

I Similar if you consider the effect values.



[Faculty of Science
Information and Computing Sciences]

105

Termination

I Everytime we add an edge to W it is because a value
changed.

I Because of ACC, every A[`] can only change a finite
number of times.

I This gives termination.



[Faculty of Science
Information and Computing Sciences]

106

Complexity of the algorithm

I Let L have finite height h ≥ 1 (length of longest chain).

I Let e be the number of edges in F (e ≥ number of labels).

I Step 2 of the algorithm is in O(e · h)

I Reason: every edge can only lead to a change at most h
times (after a change). In each case, we do/generate a
“constant” amount of work.

I Evaluating f`, t, updating A are considered basic
operations. Running time is measured in terms of how
many of these basic operations have to be done.



[Faculty of Science
Information and Computing Sciences]

107

MFP approximates MOP

I MFP always terminates, MOP is generally undecidable.
I Obviously, MFP is not always MOP, but MOP v MFP.

I MOP can be more precise than what MFP computes.

I We saw this earlier for Constant Propagation: joining
before transfer loses detail.

I This is where MFP loses precision over MOP.

I Can this be reconciled with the fact that MFP computes
the least solution?

I For distributive frameworks: joining before or after makes
no difference.
I Not surprisingly, MFP = MOP



[Faculty of Science
Information and Computing Sciences]

108

Summary so far

I General idea of program analysis

I Three example analyses: AE, LV, CP

I Monotone frameworks

I Algorithms for computing a solution for an instance of a
monotone framework.

I Properties of such a solution



[Faculty of Science
Information and Computing Sciences]

109

5. Interprocedural Analysis



[Faculty of Science
Information and Computing Sciences]

110

Procedural programming §5

I Any sensible programming language supports procedures or
functions in some form.

I The main complications that will arise are:
I How do we propagate analysis information into and out of

procedures?
I A procedure can be jumped to from arbitrarily many

locations.
I Do we join the results over all possible callers?

I How do we “know” where to return?
I What if we blindly propagate a single analysis result to all

return locations?

I We focus on forward analysis.



[Faculty of Science
Information and Computing Sciences]

111

Adding procedures to While §5

I Extend the While-language with procedures

I A program takes the form: begin D∗ S∗ end

I D∗ is a sequence of procedure declarations:
proc p(val x, res y) is`n S end`x

I x and y are formal parameters and local to p

I A procedure call is a statement: [call p(a,z)]`c`r
I a is passed by-value and can be any arithmetic expression

I z is call-by-result: it can only be used to pass the result
back



[Faculty of Science
Information and Computing Sciences]

112

Information about programs §5

I New block types: is, end and call (...)

I Entry and exit labels attached to is and end

I Call and return labels attached to call

I Add new kind of flow:
I (`c; `n) for procedure call/entry
I (`x; `r) for procedure exit/return

I Assume all programs are statically correct:
I only calls to existing procedures,
I all labels and procedure names unique.



[Faculty of Science
Information and Computing Sciences]

113

An example program §5

begin proc fib(val z, u, res v) is1

if [z<3]2 then [v := 1]3

else ([call fib(z-2,0,u)]45;
[call fib(z-1,0,v)]67;
[v := v+u]11)

end8;

[call fib(x,0,y)]910
end

I Syntax more restrictive than examples imply.

I Mimicking local variables: add by-value parameters (like u)

I Variables x and y have global scope

I The scope of u, v, z is limited to the body of fib.



[Faculty of Science
Information and Computing Sciences]

114

The flow graph §5

[call fib(x,0,y)]910

is1

[z<3]2

[v := 1]3

[v := u+v]11

no

yes

end8

[call fib(z-2,0,u)]45

[call fib(z-1,0,v)]67



[Faculty of Science
Information and Computing Sciences]

115

Meet over all valid paths: MVP §5

I Generalize the utopian MOP◦ and MOP• solutions to the
more precise MVP◦ and MVP•.
I Later we consider how to adapt monotone frameworks.

I Paths up to `:
vpath◦(`) =
{[`1, . . . , `n−1] | n ≥ 1, `n = `, [`1, . . . , `n] a valid path}

I MVP◦(`) =
⊔
{f−→

`
(ι) |

−→
` ∈ vpath◦(`)}

I Similarly for the closed case, MVP•(`).

I But what is a valid path?



[Faculty of Science
Information and Computing Sciences]

116

Unbalance and poisoning §5

begin proc neg(val z, res u) is1

[u := -z]2)
end3;

[call neg(-1,p)]56;
[call neg(1,n)]78

end

I Suppose we treat (5; 1) like (5, 1)?

I Suppose we want to track the signs of all variables.

I Poisoning: information about the first call to neg also
flows to the second call. Reasonable?

I path◦ and path• do not always pair call labels correctly
with the label of the return.

I Valid paths, on the other hand, are balanced.

I [5, 1, 2, 3, 8] is not valid, but [5, 1, 2, 3, 6] is.



[Faculty of Science
Information and Computing Sciences]

117

Use valid paths and context instead §5

I Issues when defining valid paths
I Consider only balanced executions.
I During analysis we only consider finite prefixes of these,
I including finite prefixes of infinite ones.

begin proc infinite(val n, res x) is2

[call infinite(0,x)]34;
end5;

[call infinite(0,x)]16
end

I Context can be used to enforce balance:
I it can simulate/abstract behaviour of a call stack.

I The amount of context determines complexity and
precision.



[Faculty of Science
Information and Computing Sciences]

118

Interprocedural flows §5

I The previous slides motivate a need to distinguish
interprocedural and intraprocedural flow.

I For the fibonacci program:
flow(S∗) = {(1, 2), (2, 3), (3, 8), (2, 4), (4; 1), (8; 5), (5, 6),

(6; 1), (8; 7), (7, 11), (11, 8), (9; 1), (8; 10)}
I Interprocedural:

inter-flow(S∗) = {(9,1,8,10), (4,1,8,5), (6,1,8,7)}
4-tuples of call and corresponding return information.

I (9, 1, 8, 5) /∈ inter-flow(S∗)

I init(S∗) = 9 and final(S∗) = {10}
I Backward variants exist: flowR and inter-flowR



[Faculty of Science
Information and Computing Sciences]

119

The flow graph again §5

[call fib(x,0,y)]910

is1

[z<3]2

[v := 1]3

[v := u+v]11

no

yes

end8

[call fib(z-2,0,u)]45

[call fib(z-1,0,v)]67



[Faculty of Science
Information and Computing Sciences]

120

Intermediate summary §5

I Changes to the programming language have now been
made.
I syntax,
I scoping rules,
I MOP is generalized to MVP

I Now come the changes to the monotone framework
I reuse as much as possible of intraprocedural monotone

framework,
I transfer functions for the new statements,
I distinguish between certain execution paths via context.



[Faculty of Science
Information and Computing Sciences]

121

Interprocedural



[Faculty of Science
Information and Computing Sciences]

122

Towards interprocedural analyses

I Introduce interprocedural flow
I Extension to the Framework
I A 4-tuple with labels of caller and callee: (`c, `n, `x, `r)
I Binary transfer functions, taking values of caller and callee.

I Make analysis more precise
I Embellished Monotone Framework
I Context aware: track call stacks
I Lifts a normal instance to an embellished instance
I No changes to framework needed!



[Faculty of Science
Information and Computing Sciences]

123

Interprocedural flow

I Keep track of function calls as flow
(`c, `n, `x, `r) ∈ inter-flow(S∗).
I `c: Entry label of function call in caller
I `n: Entry label of the callee
I `x: Exit label of the callee
I `r: Exit label of function call in caller

I Could be treated as flow (`c; `n) and (`x; `r).

I Two transfer functions: f`c and f2`c,`r .

I Should local variables of the caller be passed to the callee?
I f`c can remove those from the analysis value
I f2`c,`r should add them back



[Faculty of Science
Information and Computing Sciences]

123

Interprocedural flow

I Keep track of function calls as flow
(`c, `n, `x, `r) ∈ inter-flow(S∗).
I `c: Entry label of function call in caller
I `n: Entry label of the callee
I `x: Exit label of the callee
I `r: Exit label of function call in caller

I Could be treated as flow (`c; `n) and (`x; `r).

I Two transfer functions: f`c and f2`c,`r .

I Should local variables of the caller be passed to the callee?

I f`c can remove those from the analysis value
I f2`c,`r should add them back



[Faculty of Science
Information and Computing Sciences]

123

Interprocedural flow

I Keep track of function calls as flow
(`c, `n, `x, `r) ∈ inter-flow(S∗).
I `c: Entry label of function call in caller
I `n: Entry label of the callee
I `x: Exit label of the callee
I `r: Exit label of function call in caller

I Could be treated as flow (`c; `n) and (`x; `r).

I Two transfer functions: f`c and f2`c,`r .

I Should local variables of the caller be passed to the callee?
I f`c can remove those from the analysis value
I f2`c,`r should add them back



[Faculty of Science
Information and Computing Sciences]

124

What happens at procedure return?

I Procedure return encompasses the real difference:

A•(`r) = f2`c,`r(A◦(`c), A◦(`r))

I Transfers information from inside the procedure and from
before the call to just after the call.

I Note: A◦(`r) is (normally) just A•(`x).

I f2`c,`r may ignore one (or both) arguments.

I For a backward analysis, the transfer functions change
arity: the one for call becomes binary, the one for return
becomes unary.



[Faculty of Science
Information and Computing Sciences]

125

What happens at procedure return?

I Information before a call can be passed directly to after the
call.
I Instead of propagating it through the call.

I Worklist: tracks information flow of analysis, not control
flow!
I Don’t forget the edge (`c, `r).



[Faculty of Science
Information and Computing Sciences]

126

Embellished Monotone Frameworks



[Faculty of Science
Information and Computing Sciences]

127

Towards embellished monotone frameworks

I From monotone framework to embellished monotone
framework.

I We proceed by example.
I Define a monotone framework for Detection Of Signs

Analysis.
I Specify the form of transfer functions for calls, entries, exits

and returns.
I Change it to include context so that data flows along

balanced paths,
I by lifting the original transfer functions so that they include

context,
I and making sure that procedure call and return imply a

context change.

I Context can be ”anything”, but we choose contexts that
help us to analyze along valid paths.



[Faculty of Science
Information and Computing Sciences]

128

Detection of Sign Analysis

I Let (L,F , F, E, ι, λ`.f`) be an instance of a monotone
framework for Detection of Sign Analysis (Exercise 2.15)

I Detection of Signs gives for each program point what signs
each variable may have at that program point.

I Beware: my notation differs from that in NNH.



[Faculty of Science
Information and Computing Sciences]

129

Detection of Sign Analysis - the lattice

I The complete lattice L consists of sets of functions

I More precisely: elements of P(Var∗ → S) with
S = {−, 0,+}

I Each function describes a set of executions leading to a
certain program point.

I Example: {g, h} ∈ L with
g(x) = g(y) = +, and h(x) = + and h(y) = −

I In other words, there might be
I executions where x and y are both positive, and
I executions where x is positive and y is negative.



[Faculty of Science
Information and Computing Sciences]

130

Detection of Sign Analysis example

I Assume Var∗ = {x, y},
g(x) = + and g(y) = +, and
h(x) = + and h(y) = −.

I Consider the effect of [x := x+y]` on g:
I the function g′ which maps both x and y to + (so g = g′)

I The effect of [x := x+y]` on h is
I map y to −, but x to −, 0 or +
I the result is described by three functions, h−, h0 and h+,

defined as hi(y) = − and hi(x) = i (for all i).

I The set {g, h} is thus mapped to {g′, h−, h0, h+}.



[Faculty of Science
Information and Computing Sciences]

131

Relational vs. independent

I Recall: the set {g, h} was mapped to {g, h−, h0, h+}.
I g tells us y can be mapped to +, the hi that y maps to −.
I The hi tell us that x can map to any one of the {0,−,+}.

I Analysis is relational: we store combinations of x and y.
I To save on resources, merge the functions to a set of signs

for each variable: x has signs {0,−,+} and y has {+,−}
I Thereby becoming an independent attributes analysis.

I This value also represents the previously known to be
impossible [x 7→ −, y 7→ +] and [x 7→ 0, y 7→ +].

I The independent attribute analysis is really weaker,
I but also less resource consuming.



[Faculty of Science
Information and Computing Sciences]

132

Interpreting expressions

I As : AExp→ (Var∗ → S)→ P(S) gives all possible signs
of an expression, when given a sign for each variable.

I AsJx+yK[x 7→ +, y 7→ +] = {+}
I AsJx+yK[x 7→ +, y 7→ −] = {0,+,−}



[Faculty of Science
Information and Computing Sciences]

133

Transfer functions

I Transfer function for [x := a]` maps sets of functions to
sets of functions:

f`(Y ) =
⋃
{φ`(σ) | σ ∈ Y }

where Y ∈ L and φ`(σ) = {σ[x 7→ s] | s ∈ AsJaK(σ)}
I Functions may “split up”:

φ`([x 7→ +, y 7→ −]) =

{[x 7→ −, y 7→ −], [x 7→ 0, y 7→ −], [x 7→ +, y 7→ −]}

I Finally f`(Y ) collects everything:

{[x 7→ +, y 7→ +], [x 7→ −, y 7→ −],

[x 7→ 0, y 7→ −], [x 7→ +, y 7→ −]}



[Faculty of Science
Information and Computing Sciences]

134

Adding context to the lattice

I Add context to get an embellished monotone framework
(L̂, F̂ , F, E, ι̂, λ`.f̂`)

I The complete lattice L becomes ∆→ L:

P(Var∗ → S) becomes ∆→ P(Var∗ → S)

I “Omit” context by taking ∆ a one element set.
I For each δ ∈ ∆ we may have a different value in L.

I δ serves as an index.

I L̂ is a complete lattice (page 398 of NNH) .

I In the book they use
P(∆× (Var∗ → S)) ∼= ∆→ P(Var∗ → S). We don’t.



[Faculty of Science
Information and Computing Sciences]

135

Lifting the transfer functions

I We have a transfer function f` : L→ L.

I Lift pointwise to f̂` : (∆→ L)→ (∆→ L):

f̂`(l̂) = λδ → f`(l̂(δ)) for l̂ ∈ L̂

I Or simply, f̂`(l̂) = f` ◦ l̂
I In words, apply old transfer function independently, i.e.,

pointwise, for each value in ∆.

I Example:
f̂`([δ1 7→ {g}, δ2 7→ {h, g}]) =
[δ1 7→ f`({g}), δ2 7→ f`({g, h})] =
[δ1 7→ {g}, δ2 7→ {h0, h−, h+, g}].



[Faculty of Science
Information and Computing Sciences]

136

Data flow in the new set-up

I Information flows along dataflow graph edges:

A◦(`) =
⊔
{A•(`′) | (`′, `) ∈ F ∨ (`′; `) ∈ F} t ι̂`E

I So for procedure entry labels, we take the join over all
callers.

I How do we tell different calls apart? By using context.

I Transfer almost as usual:

A•(`) = f̂`(A◦(`))

I Call and return are somewhat different.



[Faculty of Science
Information and Computing Sciences]

137

What happens for a (forward) procedure call?

I Assume a call to procedure p:
(`c, `n, `x, `r) ∈ inter-flow(S∗).

I Two transfer functions: f`c and f`n .
I f`n is the same for every call to p.

I In NNH always identity function.

I f`c can be different for each call to p.
I “Chronologically”:

I transfer value at call A•(`c) = f`c(A◦(`c))
I compute A◦(`n) by joining A• for all calls to p.
I transfer value at entry: A•(`n) = f`n(A◦(`n))

I Often the identity function

I value ready to flow through p.

I f`c is typically a function that knows about context.



[Faculty of Science
Information and Computing Sciences]

138

What happens at procedure return?

I Procedure return encompasses the real difference:

A•(`r) = f̂2`c,`r(A◦(`c), A◦(`r))

I Transfers information from inside the procedure and from
before the call to just after the call.

I Note: A◦(`r) is (normally) just A•(`x).
I Information before a call can be passed directly to after the

call.
I Instead of propagating it through the call.

I f̂2`c,`r may ignore one (or both) arguments.

I For a backward analysis, the transfer functions change
arity: the one for call becomes binary, the one for return
becomes unary.



[Faculty of Science
Information and Computing Sciences]

139

Call strings as context

I Context intends to keep analyses of separate calls separated
I Call string: list of addresses from which a call was made.

I Abstraction of the call stack: ∆ = [Lab∗]

I For fib: Λ, [4], [6], [9], [4, 4], . . . , [9, 9], [4, 4, 4], . . .
I Generate only when needed.

I Call-string abstracts an execution into the labels of calls
seen during execution without seeing the corresponding
return: [1, 6, 5, 8, 3, 2, 1, 4, 2, 1, 9] becomes [6, 9]

I Procedure call labels are added to the front (stack like).



[Faculty of Science
Information and Computing Sciences]

140

The flow graph again

[call fib(x,0,y)]910

is1

[z<3]2

[v := 1]3

[v := u+v]11

no

yes

end8

[call fib(z-2,0,u)]45

[call fib(z-1,0,v)]67



[Faculty of Science
Information and Computing Sciences]

141

Call strings as context

I Call string: list of addresses from which a call was made.

I For (`c, `n, `x, `r) we define

f̂1`c(l̂)(`c :δ) = f1`c(l̂(δ)) and f̂1`c(l̂)(Λ) = ⊥
I f1. computes the effect of a call

I and f̂1. selects where the effect values should go.

I Valid paths simulated by the transferring between
”corresponding” call strings.



[Faculty of Science
Information and Computing Sciences]

142

Call strings as context, return

I Similarly, for procedure return:

f̂2`c,`r(l̂, l̂′)(δ) = f2`c,`r(l̂(δ), l̂′(`c :δ))

I We use two values:
I from before the call, which is under the same context as

the return,
I from inside the procedure, which is under the extended call

string.



[Faculty of Science
Information and Computing Sciences]

143

Detection of Signs: procedure calls

I Assume [call p(a,x)]`c`r and

proc p(val x, res y) is`n S end`x

I A call consists of two assignments x := a and y := ?.
I The context-less transfer function mimicks those.

I For σ = [x 7→ +, z 7→ −] and a = -x we ought to obtain
φ`c(σ) = {[x 7→ −, y 7→ −, z 7→ −],

[x 7→ −, y 7→ 0, z 7→ −],
[x 7→ −, y 7→ +, z 7→ −]}

I Semantics says value of y is undefined (instead of 0).

I New x “shadows” the old.

I In general, unshadow when returning.



[Faculty of Science
Information and Computing Sciences]

144

Detection of Signs: procedure calls

I Assume [call p(a,x)]`c`r and

proc p(val x, res y) is`n S end`x

I For σ = [x 7→ +, z 7→ −] and a = -x we ought to obtain
φ`c(σ) = {[x 7→ −, y 7→ −, z 7→ −],

[x 7→ −, y 7→ 0, z 7→ −],
[x 7→ −, y 7→ +, z 7→ −]}

I f`c(Z) =
⋃
{φ`c(σ) | σ ∈ Z}

I φ`c(σ) =
{σ[x 7→ s][y 7→ s′] | s ∈ AsJ-xK(σ) ∧ s′ ∈ {0,+,−}}



[Faculty of Science
Information and Computing Sciences]

145

Detection of Signs: adding context

I Consider the function Z ∈ L̂ = ∆→ L

Z = [Λ 7→ σ1, δ2 7→ σ2, . . .]

I We want to obtain

[Λ 7→ ⊥, [`c] 7→ f1`c(σ1), (`c :δ2) 7→ f1`c(σ2), . . .]

I So f̂1`c(Z) is such that for all δ ∈ ∆

f̂1`c(Z)(δ′) =

{
⊥ if δ′ = Λ
f1`c(Z(δ)) if δ′ = `c :δ

I Warning: in NNH they give the same general formula, but
the example of Detection of Signs (2.38) uses different
notation.



[Faculty of Science
Information and Computing Sciences]

146

Call strings of bounded size

I L might have ACC, but ∆→ L might not
I Call strings can be arbitrarily long for recursive programs

I Enforce termination by restricting length call strings to ≤ k
I For every different list of call labels, potentially a different

analysis result: quickly exponential.



[Faculty of Science
Information and Computing Sciences]

147

What if we run out of bounds?

I Assume k = 2.

I Consider call from 4 either with context [1, 4], [1, 1] or [1].

I Then in all three cases, the context inside the call will be
[4, 1].

I To stay sound we must join the transferred analysis results.

I Here’s where we gain finiteness at the price of precision.

I In a formula

f̂4`c(Z)([4, 1]) = f4`c(Z([1, 4])) t f4`c(Z([1, 1])) t f4`c(Z([1]))

I We can choose the level of detail (value of k) with a
known price to pay.
I Take k = 0 to omit context: ∆ then equals {Λ}



[Faculty of Science
Information and Computing Sciences]

148

Separate the context from the transfer

I Context is never used to compute the transfer, it only tells
you which part of the value to use (and update).

I For different analyses you can use the same kind of context
and context change

I In an implementation: decouple the context change from
transfer
I The former selects which values influence a given value.
I The latter says how.



[Faculty of Science
Information and Computing Sciences]

149

Flow-sensitive versus flow-insensitive

I Flow-sensitive vs. flow-insensitive: does the result of the
analysis depend on the order of statements? Again a
matter of cost vs. precision.

I To go from flow-insensitive to flow-sensitive: add program
points as a form of context.

I In NNH, flow-sensitivity is hard-coded into the framework.



[Faculty of Science
Information and Computing Sciences]

150

Final remarks about procedures

I Except for binary transfer functions, the technical changes
are slight.

I Conceptually, changes may be bigger.

I For termination, restrict context to finite sets of values.

I Use context to balance cost and precision.
I Simple monotone frameworks can be easily extended to

become embellished.
I A first step in building an analysis.

I Analyzing procedures can be a pain when scoping enters
the picture.

I You can now completely do the first lab assignment


	Introduction and Motivation
	Intraprocedural Analysis
	Available Expression Analysis
	Live Variables Analysis

	Monotone Frameworks
	Lattices and the ACC
	Back to Monotone Frameworks
	Distributivity vs. Constant Propagation

	An Algorithm for Monotone Frameworks
	Interprocedural Analysis
	Interprocedural
	Embellished Monotone Frameworks


