
Types and Semantics

Assignment Type and Effect Systems

June 7, 2022

Our starting point for this assignment is the control-flow analysis that we defined
for a functional language in the lectures. We use a slightly modified syntax (in order
to correspond to the notation of the book of Nielson, Nielson and Hankin).

The (abstract) syntax is given by

e ::= n | b | x | fnπ x => e0 | funπ f x => e0 | e1 e2
| if e0 then e1 else e2 | let x = e1 in e2 | e1 op e2

In this case, fun denotes a recursive function definition, where f is the name used
for the recursive invocation. Contrary to the book chapter we have distinguished
numerical and boolean constants.

For this language, the book and (if you adapt to the different syntax) the slides
provide a definition of a control-flow analysis. We use as our starting point the
system with polymorphism (but without polyvariance) and with the separate subef-
fecting rule that avoids poisoning.

For the following steps you can receive a maximum grade of 8.5. Code readability
is worth 1 point, the other points are as follows:

i. 3.0 pt Implement this analysis in Haskell, following the slides/book as closely
as possible. The trickiest part will probably be how to deal with the non-syntax
directed subeffecting rule.

ii. 1.5 pt Adapt the analysis to deal with pairs and lists (following Nielson, Nielson
and Hankin, mini-project 5.2): redefine e to add

e ::= .. | Pairπ(e1, e2) | pcase e0 of Pair(x1, x2) => e1

Two things you need to take into account: (1) if we store a function in a pair,
retrieve the function from the pair, and apply that function, we want to know

1



where that function could have been defined. And (2), for every pattern match
on a pair, we want to know at which program locations that pair could have
been constructed (so control-flow now includes data-flow).

iii. 2.0 pt To the result of the previous part add syntax for lists:

e ::= .. | Consπ(e1, e2) | Nilπ | lcase e0 of Cons(x1, x2) => e1 or e2

and repeat your treatment.

iv. 1.0 pt This task only needs to be performed in the formal specification, not
in the implementation: Change your type system specification to deal with
general datatypes:

e ::= Cπ(e1, · · · , en) | case e0 of C(x1, · · · , xn) => e1 or x => e2

Here C ∈ Constr denotes an n-ary data constructor (partial application not
allowed!). The rule should generalize the rules you invented for lists and pairs.
NB. the case statement takes care of one constructor at the time, if a given
datatype has more than two constructors then nested cases should be used by
the programmer.

Note that to do the analysis, you also need to extend the type inferencer to deal
with these extensions. We leave it up to you to come up with new types for these
constructs.

You can get bonuspoints for implemementing any of these additions:

i. Implement call tracking analysis: extend control flow analysis to also return
for an expression, the function which might have been applied in the execution
of that expression.

ii. Add polyvariance.

iii. Use subtyping instead of subeffecting. You should provide a set of example
programs which benefit from this. Make sure you handle co- and contravari-
ance properly.

iv. Implement a program transformation. Additional bonuspoints for also imple-
menting the ideas from Trees That Grow.

You can get one point for a good implementation of each. If you have other ideas,
please discuss them with me to see whether that can count as a bonus. Only start
working on bonuses if you have time after finishing the required steps!

Deliverables: (1) an implementation of the analysis for the base language with
support for pairs and lists, (2) a small set of programs that shows that your imple-
mentation behaves as it should (of course, these should include uses of pairs, lists,
all other constructs, including a non-trivial example in which functions are stored
in and extracted from lists), and (3) a pdf that provides and explains the type rules
you used for the parts (ii), (iii) and (iv), possible other changes you made to the

2



other types rules and syntax of types to accommodate your adaptations, and a short
description that explains how to compile and run your program.

A base implementation with a parser for the Fun language can be downloaded
from the website. The implementation was adapted from a submission made by
Pepijn Kokke and Wout Elsinghorst.

Good luck.

3


