
[Faculty of Science
Information and Computing Sciences]

Constraint-based Type Error Diagnosis
(Tutorial)

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

June 23, 2022

[Faculty of Science
Information and Computing Sciences]

2

About me

I Full professor and Head of Department, Heriot-Watt
University, Edinburgh

I Before that, two decades at Utrecht University
I Topics of interest:

I Static analysis of functional languages
I Non-standard/type and effect systems

I Program plagiarism detection, object-sensitive analysis, soft
typing of dynamic languages, and switching classes

I PhD students active in legacy system modernization, and
testing

I Type error diagnosis (for functional languages/EDSLs)
I PhD positions in Edinburgh?

[Faculty of Science
Information and Computing Sciences]

3

Credits

The following people have contributed to this talk:

I Alejandro Serrano Mena, current PhD student

I Bastiaan Heeren, PhD student between 2000-2004

I Patrick Bahr, visiting postdoc in 2014

I Atze Dijkstra, implementor of UHC

I Many master students

I Many people contributed to Helium

[Faculty of Science
Information and Computing Sciences]

4

I. Introduction and Motivation

[Faculty of Science
Information and Computing Sciences]

5

Static type systems §I

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis
I When type checking we typically assume various simple

local properties to have been checked:
I syntactic correctness
I well-scopedness
I definedness of variables

I Which properties it enforces, depends intimately on the
language

I Cf. does every function have the right number of
arguments in C vs. Haskell

[Faculty of Science
Information and Computing Sciences]

6

What is type error diagnosis? §I

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis

[Faculty of Science
Information and Computing Sciences]

7

Languages follow Lehmann’s sixth law §I

I Java has seen the introduction of parametric polymorphism
(and type errors suffered)

I Java has seen the introduction of anonymous functions (I
have not dared look)

I Languages like Scala embrace multiple paradigms

I Odersky’s “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

I In terms of maintainability of (sizable) programs, dynamic
languages do not seem to scale well

I New trends: dynamic languages becoming more static

I Again, the need for diagnosis

[Faculty of Science
Information and Computing Sciences]

8

Some simple Haskell §I

reverse = foldr (flip (:)) []
palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

8

Some simple Haskell §I

reverse = foldr (flip (:)) []
palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix? foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix?

foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix? foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

10

Unresolved top-level overloading §I

xxxx = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

The Hugs message (GHC’s message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : xxxx

*** Outstanding context : (Num [b], Num b)

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

10

Unresolved top-level overloading §I

xxxx = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

The Hugs message (GHC’s message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : xxxx

*** Outstanding context : (Num [b], Num b)

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

11

Very old school parser combinators §I

pExpr = pAndPrioExpr
<|> sem Expr Lam
〈$pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

gives

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

12

Order is arbitrary (in Hugs) §I

yyyy :: (Bool −> a) −> (a, a, a)
yyyy = \ f −> (f True, f False, f [])

What’s wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from (right-to-left) bias

[Faculty of Science
Information and Computing Sciences]

12

Order is arbitrary (in Hugs) §I

yyyy :: (Bool −> a) −> (a, a, a)
yyyy = \ f −> (f True, f False, f [])

What’s wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from (right-to-left) bias

[Faculty of Science
Information and Computing Sciences]

13

Order is arbitrary (in GHC) §I

zzzz = \ f −> (f [], f True, f False)

Ov.hs:8:23:

Couldn’t match expected type ’[t2]’ with actual type ’Bool’

Relevant bindings include

f :: [t2] -> t (bound at Ov.hs:8:9)

zzzz :: ([t2] -> t) -> (t, t, t) (bound at Ov.hs:8:1)

In the first argument of ’f’, namely ’True’

In the expression: f True

I No signature to take into account

I Both f True and f False are found to be in error

I The type inference process suffers from (left-to-right) bias

[Faculty of Science
Information and Computing Sciences]

14

Good Error Reporting Manifesto §I

From Improved Type Error Reporting by Yang, Trinder and
Wells

1. Correct detection and correct reporting

2. Precise: the smallest possible location

3. Succint: maximize useful and minimize non-useful info

4. Does not depend on implementation, i.e., amechanical

5. Source-based: not based on internal syntax

6. Unbiased

7. Comprehensive: enough to reason about the error

[Faculty of Science
Information and Computing Sciences]

15

II. Constraint-based Type Inference

[Faculty of Science
Information and Computing Sciences]

16

Hindley-Milner (intuitive summary) §II

I Consider the expression \ x −> x + 2.
I Hindley-Milner will

I introduce a fresh α for x
I look at the body x + 2: unify the arguments of + with

their formal types (here all Int)
I α becomes Int, and the whole expression has type

Int −> Int

[Faculty of Science
Information and Computing Sciences]

17

Adding let-polymorphism to the mix §II

I Consider

let y = \ z −> z
in \ x −> y x + 2

I For z , α1 is introduced, so that the body of y has type α1

I Since α1 does not show up in any other type (it is free) we
may generalize over α1 so that y :: ∀ β . β −> β

I Visit the body, introducing α for x , and instantiating β in
y to, say, α2 to give α2 −> α2

I Unifying α with α2 will identify the two, (arbitrarily)
leading to x :: α and the instance of y :: α −> α

I Then we perform the unifications of the previous slide

[Faculty of Science
Information and Computing Sciences]

18

The polymorphic lamdba-calculus §II

τ ≺ Γ(x)

Γ H̀M x : τ
[Var]HM

Γ H̀M e1 : τ1 → τ2 Γ H̀M e2 : τ1

Γ H̀M e1 e2 : τ2
[App]HM

Γ\x ∪ {x ::τ1} H̀M e : τ2

Γ H̀M λx → e : (τ1 → τ2)
[Abs]HM

Γ H̀M e1 : τ1 Γ\x ∪ {x :generalize(Γ, τ1)} H̀M e2 : τ2

Γ H̀M let x = e1 in e2 : τ2
[Let]HM

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

19

Characteristics of Algorithm W §II

I Can infer most general types for the let-polymorphic
lambda-calculus

I Can deal with user-provided type information

I For extensions like higher-ranked types, type signatures
must be provided

I Binding group analysis may need to be performed (always
messy)

I Minor disadvantage: let-polymorphism does not integrate
that well with some advanced type system features.

I Major disadvantage: algorithmic bias

[Faculty of Science
Information and Computing Sciences]

20

What bias? §II

I Unifications are performed in a fixed order

I Order may be changed: many alternative implementations
of HM exist

I Order of unification is unimportant for the resulting types,

I but it is important if you blame the first unification that is
inconsistent with the foregoing.

[Faculty of Science
Information and Computing Sciences]

21

How to cope §II

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

I But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they
are solved.

I generate and collect the constraints that describe the
unifications that were to be performed, e.g., α == Int

I choose the order to solve them in some way that may be
determined by the programmer, or by the program

I Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

[Faculty of Science
Information and Computing Sciences]

21

How to cope §II

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

I But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they
are solved.

I generate and collect the constraints that describe the
unifications that were to be performed, e.g., α == Int

I choose the order to solve them in some way that may be
determined by the programmer, or by the program

I Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

[Faculty of Science
Information and Computing Sciences]

22

Constraint-based type inference §II

I Popular approach (see Pottier et al., Wells et al.,
OutsideIn(X), Pavlinovic et al.)

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

22

Constraint-based type inference §II

I Popular approach (see Pottier et al., Wells et al.,
OutsideIn(X), Pavlinovic et al.)

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

23

Bottom-up typing rules §II

{x :β}, ∅ B̀U x : β [Var]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} B̀U e1 e2 : β
[App]BU

A, C B̀U e : τ

A\x , C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} B̀U λx → e : (β → τ)
[Abs]BU

I A judgement (A, C B̀U e : τ) consists of the following.
I A: assumption set (contains assigned types for the free

variables)
I C: constraint set
I e: expression
I τ : asssigned type (variable)

[Faculty of Science
Information and Computing Sciences]

24

Example §II

twice = \ f −> \ x −> f (f x)

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

25

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)
A={f:t1}

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

26

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)

VAR(f)
A={f:t2}

A={f:t1}

t2

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

27

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)

VAR(f) VAR(x)
A={x:t3}A={f:t2}

A={f:t1}

t3t2

t1

ABS(f)

ABS(x)

APP

APP

Constraints

[Faculty of Science
Information and Computing Sciences]

28

Example §II

twice = \ f −> \ x −> f (f x)

APPVAR(f)

VAR(f) VAR(x)

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t4

t3t2

t1

ABS(f)

ABS(x)

APP

Constraints

t2 ≡ t3 -> t4

[Faculty of Science
Information and Computing Sciences]

29

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t5

t4

t3t2

t1

ABS(f)

ABS(x)
Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

30

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

ABS(x)

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t6 -> t5

t5

t4

t3t2

t1

ABS(f)

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

[Faculty of Science
Information and Computing Sciences]

31

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

ABS(x)

ABS(f)

VAR(f)

VAR(f) VAR(x)

A={}

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t7 -> (t6 -> t5)

t6 -> t5

t5

t4

t3t2

t1

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

[Faculty of Science
Information and Computing Sciences]

32

Example §II

twice = \ f −> \ x −> f (f x)

I C =



t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

I S =

{
t1,t2,t7 := t6 -> t6

t3,t4,t5 := t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t7 -> t6 -> t5) = (t6 -> t6) -> t6 -> t6

for twice.

[Faculty of Science
Information and Computing Sciences]

33

Constraints and polymorphism §II

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x , C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

33

Constraints and polymorphism §II

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x , C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

34

Example §II

identity = let i = \ x −> x in i i

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

35

Example §II

identity = let i = \ x −> x in i i

VAR(x)
A={x:t1}

t1

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

36

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x)
A={x:t1}

A={}

t1

t2 -> t1

LET(i)

APP

VAR(i)VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

37

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x) VAR(i)

A={i:t3}

A={x:t1}

A={}

t3

t1

t2 -> t1

LET(i)

APP

VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

38

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x) VAR(i) VAR(i)
A={i:t4}

A={i:t3}

A={x:t1}

A={}

t4

t3

t1

t2 -> t1

LET(i)

APP

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

39

Example §II

identity = let i = \ x −> x in i i

APPABS(x)

VAR(x) VAR(i) VAR(i)

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t4

t3

t1

t2 -> t1

LET(i)

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

40

Example §II

identity = let i = \ x −> x in i i

APP

LET(i)

ABS(x)

VAR(x) VAR(i) VAR(i)

A={}

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t5

t4

t3

t1

t2 -> t1

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

[Faculty of Science
Information and Computing Sciences]

41

Example §II

identity = let i = \ x −> x in i i

I C =


t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

I S =


t1 := t2

t3 := (t6 -> t6) -> t6 -> t6

t4,t5 := t6 -> t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t5) = t6 -> t6

for identity.

[Faculty of Science
Information and Computing Sciences]

42

III. Type Inferencing in Helium

[Faculty of Science
Information and Computing Sciences]

43

The Helium compiler §III

I Constraint based approach to type inferencing

I Implements many heuristics, multiple solvers

I Existing algorithms/implementations can be emulated

I cabal install helium

cabal install lvmrun

I Only: Haskell 98 minus type class and instance definitions
I And bias still exists from early binding groups to later ones

I Others have addressed this issue

I Supports domain specific type error diagnosis

I Details of the type rules: see Bastiaan Heeren’s PhD

[Faculty of Science
Information and Computing Sciences]

43

The Helium compiler §III

I Constraint based approach to type inferencing

I Implements many heuristics, multiple solvers

I Existing algorithms/implementations can be emulated

I cabal install helium

cabal install lvmrun

I Only: Haskell 98 minus type class and instance definitions
I And bias still exists from early binding groups to later ones

I Others have addressed this issue

I Supports domain specific type error diagnosis

I Details of the type rules: see Bastiaan Heeren’s PhD

[Faculty of Science
Information and Computing Sciences]

44

Some important compiler flags §III

I --overloading and --no-overloading

I --enable-logging, --host and --port

I --algorithm-w and --algorithm-m

I --experimental gives many more flags
I --kind-inferencing
I --select-cnr to select a particular constraint for blame
I flags for choosing a particular solver
I many other treewalks for ordering constraints

[Faculty of Science
Information and Computing Sciences]

45

Constraints generated by Helium §III

For the program,

allinc = \ xs −> map (+1) xs

Helium generates (−d option)

v5 := Inst(forall a b. (a -> b) -> [a] -> [b])

v9 := Inst(forall a. Num a => a -> a -> a)

Int == v10 : {literal}

v9 == v8 -> v10 -> v7 : {infix application}

v8 -> v7 == v6 : {left section}

v3 == v11 : {variable}

v5 == v6 -> v11 -> v4 : {application}

v3 -> v4 == v2 : {lambda abstraction}

v2 == v0 : {right-hand side}

v0 == v1 : {right hand side}

s22 := Gen([], v1) : {Generalize allinc}

[Faculty of Science
Information and Computing Sciences]

46

Greedy constraint solver §III

Given a set of type constraints, the greedy constraint solver
returns a substitution that satisfies these constraints, and a list
of constraint that could not be satisfied by the solver. The
latter is used to produce type error messages.

I Advantages:
I Efficient and fast
I Straightforward implementation

I Disadvantage:
I The order of the type constraints strongly influences the

reported error messages. The type inference process is
biased.

[Faculty of Science
Information and Computing Sciences]

47

Ordering type constraints §III

I One is free to choose the order in which the constraints
should be considered by the greedy constraint solver.
(Although there is a restriction for an implicit instance
constraint)

I Instead of returning a list of constraints, return a
constraint tree that follows the shape of the AST.

I A tree-walk flattens the constraint tree and orders the
constraints.

I W: almost a post-order tree walk
I M: almost a pre-order tree walk
I Bottom-up: ...
I Pushing down type signatures: ...

[Faculty of Science
Information and Computing Sciences]

48

A realistic type rule §III

I Some constraints ’belong’ to certain subexpressions:

I c1 is generated by the conditional, but associated with the
boolean subexpression.

I Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do c1 before TC1).

[Faculty of Science
Information and Computing Sciences]

49

Global constraint solver §III

Uses type graphs allow us to solve the collected type constraints
in a more global way. These can represent inconsistent sets of
constraints.

I Advantages:
I Global properties can be detected
I A lot of information is available
I The type inference process can be unbiased
I It is easy to include new heuristics to spot common

mistakes.

I Disadvantage:
I Extra overhead makes this solver a bit slower
I But: only for the first inconsistent binding group!

[Faculty of Science
Information and Computing Sciences]

50

Type graphs (for xs : [4, 5, 6]) §III

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

[Faculty of Science
Information and Computing Sciences]

51

Type graph heuristics §III

If a type graph contains an inconsistency, then heuristics help to
choose which location is reported as type incorrect.

I Examples:
I minimal number of type errors
I count occurrences of clashing type constants (3×Int versus

1×Bool)
I reporting an expression as type incorrect is preferred over

reporting a pattern
I wrong literal constant (4 versus 4.0)
I not enough arguments are supplied for a function

application
I permute the elements of a tuple
I (:) is used instead of (++)

[Faculty of Science
Information and Computing Sciences]

52

Heuristics in Helium §III

listOfHeuristics options siblings path =
...
[avoidForbiddenConstraints -- remove constraints that should NEVER be reported
, highParticipation 0.95 path
, phaseFilter -- phasing from the type inference directives
] ++
[Heuristic (Voting (

[siblingFunctions siblings
, siblingLiterals
, applicationHeuristic
, variableFunction -- ApplicationHeuristic without application
, tupleHeuristic -- ApplicationHeuristic for tuples
, fbHasTooManyArguments
, constraintFromUser path -- From .type files
, unaryMinus (Overloading ‘elem‘options)
] ++
[similarNegation | Overloading ‘notElem‘options] ++
[unifierVertex | UnifierHeuristics‘elem‘options]))] ++

[inPredicatePath | Overloading ‘elem‘options] ++
[avoidApplicationConstraints, avoidNegationConstraints
, avoidTrustedConstraints, avoidFolkloreConstraints
, firstComeFirstBlamed -- Will delete all except the first
]

[Faculty of Science
Information and Computing Sciences]

53

The Helium message §III

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

(2,9): Warning: Definition "len" is not used

(1,11): Type error in constructor

expression : :

type : a -> [a] -> [a]

expected type : [Int] -> [Int] -> b

probable fix : use ++ instead

[Faculty of Science
Information and Computing Sciences]

54

Example: permute function arguments §III

test :: Parser Char String
test = option "" (token "hello!")

In Helium:

(2,8): Type error in application

expression : option "" (token "hello!")

term : option

type : Parser a b -> b -> Parser a b

does not match : String -> Parser Char String -> c

probable fix : flip the arguments

[Faculty of Science
Information and Computing Sciences]

55

Limitations of Helium §III

I The Helium language is relatively small

I A major limitation of the type inference process: consistent
binding groups are never blamed.

myfold f z [] = [z]
myfold f z (x : xs) = myfold f (f z x) xs

rev = myfold (flip (:)) []

palin :: Eq a => [a] −> Bool
palin xs = rev xs == xs

I Helium blames palin, some other systems can blame
myfold instead. Signatures for rev and myfold improve
Helium’s message.

I Note: we use our intuition of what rev and palin do, a
compiler (typically) cannot.

[Faculty of Science
Information and Computing Sciences]

56

Who’s to blame? §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int
wrongxxx f x y = if f (x + y) then x ∗ y else x + y

Running helium -d Constraintnr.hs gets you (a.o.), after
some early filters:

cnr edge ratio info

--

#12* (35-97) 100% {conditional}

#1* (26-80) 100% {explicitly typed binding}

#2* (28-31) 100% {pattern of function binding}

#5* (31-36) 100% {variable}

#11* (36-96) 100% {application}

[Faculty of Science
Information and Computing Sciences]

57

The error path §III

I wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

I The error path goes from the explicit type for f as part of
wrongxxx ’s type signature, to the mismatch of the result
type of f with the Bool the conditional expects:

1 v26 := Inst ((Int −> Int) −> Int −> Int −> Int)
2 v28 == v31
5 v31 == v36
11 v36 == v37 −> v35
12 v35 == Bool

I The constraint v26 == v28 −> v29 −> v30 −> v27 was
exonerated earlier.

[Faculty of Science
Information and Computing Sciences]

58

Blaming a constraint §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

Run helium --select-cnr=12 ... to blame v35 == Bool :

(9,21): Type error in conditional

expression : if f (x + y) then x * y else x + y

term : f (x + y)

type : Int

does not match : Bool

v35 denotes the return type of f , the Bool is the one from the
type rule for conditionals.

[Faculty of Science
Information and Computing Sciences]

58

Blaming a constraint §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

Constraint #11: v36 == v37 −> v35

(20,21): Type error in application

expression : f (x + y)

term : f

type : Int -> Int

does not match : Int -> Bool

[Faculty of Science
Information and Computing Sciences]

58

Blaming a constraint §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

Constraint #5: v31 == v36

(9,21): Type error in variable

expression : f

type : Int -> Int

expected type : Int -> Bool

[Faculty of Science
Information and Computing Sciences]

58

Blaming a constraint §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

Constraint #2: v28 == v31

(9,10): Type error in pattern of function binding

pattern : f

type : Int -> Bool

does not match : Int -> Int

[Faculty of Science
Information and Computing Sciences]

58

Blaming a constraint §III

wrongxxx :: (Int −> Int) −> Int −> Int −> Int

wrongxxx f
v28

x y = if f
v36

x + y v37

then x ∗ y else x + y

Constraint #1:
v26 := Inst ((Int −> Int) −> Int −> Int −> Int)

(9,1): Type error in explicitly typed binding

definition : wrongxxx

inferred type : (a -> Bool) -> a -> a -> a

declared type : (Int -> Int) -> Int -> Int -> Int

v26 denotes the type inferred for wrongxxx ’s implementation.
Not all knowledge about a has been used.

[Faculty of Science
Information and Computing Sciences]

59

The next logical step... §III

I Put control over the order of constraint solving in the
hands of the programmer

I Associate your own error message with a given constraint

I ⇒ domain-specific type error diagnosis

[Faculty of Science
Information and Computing Sciences]

60

Summary §III

We have described a parametric type inferencer

I Constraint-based: specification and implementation are
separated

I Standard algorithms can be simulated by choosing an order
for the constraints

I Two implementations are available to solve the constraints

I Type graph heuristics help in reporting the most likely
mistake

solve constraints

global (type graph)

solve constraints

greedy

flatten

treeconstraints

collectAST tree
constraint constraint

list
substitution +

type errors

type rules
specialized treewalk

type graph
heuristics

[Faculty of Science
Information and Computing Sciences]

61

IV. Domain Specific Type Error Diagnosis

[Faculty of Science
Information and Computing Sciences]

62

What is a DSL? §IV

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

62

What is a DSL? §IV

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

63

Embedded Domain Specific Languages §IV

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

I According to Hudak “the ultimate abstraction”

[Faculty of Science
Information and Computing Sciences]

64

What host language? §IV

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In most languages we just have to make do
I In Haskell, EDSLs are simply libraries that provide some

form of “fluency”
I Consisting of domain terms and types, and special

operators with particular priority and fixity

[Faculty of Science
Information and Computing Sciences]

65

Challenges for EDSLs §IV

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisation and error diagnosis are also costly in a
non-embedded setting, but there we have more control.

I Can we achieve this control for error diagnosis?

[Faculty of Science
Information and Computing Sciences]

66

Parser combinators §IV

I Parser combinators (before Applicative): an EDSL for
describing parsers

I An executable and extensible form of EBNF
I Concatenation/juxtaposition: p〈∗〉q, and p〈∗q
I Choice: p <|> q
I Semantics: f 〈$〉p and f 〈$p
I Repetition: many , many1 , ...
I Optional: option p default
I Literals: token "text", pKey "->"
I Others introduced as needed, and defined at will

pExpr = pAndPrioExpr
<|> sem Expr Lam -- a function of two arguments
〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

[Faculty of Science
Information and Computing Sciences]

67

A small mistake §IV

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions
〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

68

A closer look at the message §IV

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

I Message is large and looks complicated

I You have to discover why the types don’t match yourself

I No mention of “parsers” in the error message

I It happens to be a common mistake, and easy to fix

[Faculty of Science
Information and Computing Sciences]

69

The solution in a nutshell §IV

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem (see earlier)

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

69

The solution in a nutshell §IV

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem (see earlier)

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

70

How is this organised in Helium? §IV

I For a given source module Abc.hs, a DSL designer may
supply a file Abc.type containing the directives

I The directives are automatically used when the module is
imported

I The compiler will adapt the type error mechanism based
on these type inference directives.

I The directives themselves are also a(n external) DSL!

[Faculty of Science
Information and Computing Sciences]

71

The type inference process §IV

I We piggy-back ride on Haskell’s underlying type system

I Type rules for functional languages are often phrased as a
set of logical deduction rules

I Inference is then implemented by means of an AST
traversal

I Ad-hoc or using attribute grammars

[Faculty of Science
Information and Computing Sciences]

72

The rule for type checking applications §IV

Γ H̀M f : τa → τr Γ H̀M e : τa

Γ H̀M f e : τr

I Γ is an environment, containing the types of identifiers
defined elsewhere

I Rules for variables, anonymous functions and local
definitions omitted

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

73

Specializing a type rule (1/3) §IV

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators (pre-Applicative), for
instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

73

Specializing a type rule (1/3) §IV

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators (pre-Applicative), for
instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule

(x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

73

Specializing a type rule (1/3) §IV

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators (pre-Applicative), for
instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

74

Specializing a type rule (2/3) §IV

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, 〈$〉.

x : τ1 y : τ2

x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2

x <$> y : τ3


τ1 ≡ a1 → b1

τ2 ≡ Parser s1 a2

τ3 ≡ Parser s2 b2

s1 ≡ s2

a1 ≡ a2

b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

74

Specializing a type rule (2/3) §IV

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, 〈$〉.

x : τ1 y : τ2

x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2

x <$> y : τ3


τ1 ≡ a1 → b1

τ2 ≡ Parser s1 a2

τ3 ≡ Parser s2 b2

s1 ≡ s2

a1 ≡ a2

b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

75

Specializing a type rule (3/3) §IV

x : τ1 y : τ2

x <$> y : τ3


τ1 ≡ a1 → b1

τ2 ≡ Parser s1 a2

τ3 ≡ Parser s2 b2

s1 ≡ s2

a1 ≡ a2

b1 ≡ b2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1

t2 == Parser s1 a2

t3 == Parser s2 b2

s1 == s2

a1 == a2

b1 == b2

[Faculty of Science
Information and Computing Sciences]

76

Special type error messages §IV

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

s1 == s2 : parser has an incorrect symbol type

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This
message is reported if the corresponding constraint cannot
be satisfied.

[Faculty of Science
Information and Computing Sciences]

77

Example §IV

test :: Parser Char String
test = map toUpper〈$〉"hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

77

Example §IV

test :: Parser Char String
test = map toUpper〈$〉"hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

78

Error message attributes §IV

The error message attached to a type constraint might now
look like:

x :: t1; y :: t2;

x <$> y :: t3;

...

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a

expression : @expr.pp@ parser

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@

...

[Faculty of Science
Information and Computing Sciences]

79

Example §IV

test :: Parser Char String
test = map toUpper〈$〉"hello, world!"

This results in the following type error message (including the
inserted error message attributes):

(2,21): The right operand of <$> should be a parser

expression : map toUpper <$> "hello, world!"

right operand : "hello, world!"

type : String

does not match : Parser Char String

[Faculty of Science
Information and Computing Sciences]

80

Other facilities §IV

x :: t1; y :: t2;

x <$> y :: Parser s b;

constraints x

t1 == a1 -> b : left operand is not a function

constraints y

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to ...

I Interpolate constraints into the rule (cf. Parser s b): no
effort for default behaviour

I Control over solving order wrt. subexpressions

I Automatic check for soundness and completeness

I Phase numbers for more control over solving order

[Faculty of Science
Information and Computing Sciences]

81

Another directive: siblings §IV

I Certain combinators are known to be easily confused:
I cons (:) and append (++)
I 〈$〉 and 〈$
I (.) and (++) (PHP programmers)
I (+) and (++) (Java programmers)

I These combinations can be listed among the specialized
type rules.

siblings <$> , <$

siblings ++ , +, .

I The siblings heuristic will try a sibling if an expression with
such an operator fails to type check.

[Faculty of Science
Information and Computing Sciences]

82

Example §IV

data Expr = Lambda [String] Expr

pExpr
= pAndPrioExpr

<|> Lambda 〈$ pKey "\\"

〈∗〉many pVarid
〈∗ pKey "->"

〈∗ pExpr

Extremely concise:

(11,13): Type error in the operator <*

probable fix: use <*> instead

[Faculty of Science
Information and Computing Sciences]

83

V. Towards Haskell 2010 and onwards

[Faculty of Science
Information and Computing Sciences]

84

Introducing DOMSTED §V

DOMain Specific Type Error Diagnosis

I Enable embedded DSL developers to control the error
messages produced by the compiler

I Focus on those errors coming from ill-typed expressions
I Target a full-blown type system

I Haskell 2010 + type classes, functional dependencies, type
families, GADTs, kind polymorphism. . .

I In the works: higher-rank and impredicative instantiation

I Constraint-based approach to typing

[Faculty of Science
Information and Computing Sciences]

85

Why Haskell 98 is not complicated enough §V

Statistics computed some years back:
Extension # Hackage # Top 20

FlexibleInstances 332 10
MultiParamTypeClasses 321 9
FlexibleContexts 232 3
ScopedTypeVariables 192 3
ExistentialQuantification 149 6
FunctionalDependencies 139 4
TypeFamilies 114 1
OverlappingInstances 108 3
Rank2Types 100 3
GADTs 88 3
RankNTypes 81 1
UnboxedTuples 20 4
KindSignatures 20 0

[Faculty of Science
Information and Computing Sciences]

86

What have we accomplished? §V

I Two-phase specialized type rules (ESOP 2016)

I Implementation on top of OutsideIn(X)

I We implemented some of our work into GHC

[Faculty of Science
Information and Computing Sciences]

87

VI. Customizing type error diagnosis in GHC

[Faculty of Science
Information and Computing Sciences]

88

Ondertussen, in GHC... §VI

instance TypeError (Text "Cannot ’Show’ functions." :$$:
Text "Perhaps a missing argument?")

=> Show (a −> b) where ...

I Leverages type-level programming techniques in GHC
(Diatchki, 2015)

I Very restricted:
I Only available for type class and family resolution
I May not influence the ordering of constraints
I Messages cannot depend on who generated the constraint

[Faculty of Science
Information and Computing Sciences]

89

How far can we take this? §VI

We provide

I control over the content of the type error message
I the same constraint (to the solver) may result in different

messages

I (some) control over the order in which constraints are
checked

I Expression level error messages by type level programming
I GHC’s abstraction facilities allow for reuse and uniformity

I A type level embedded DSL for diagnosing embedded DSLs

I integrated as a patch in GHC version 8.1.20161202

I soundness and completeness for free

[Faculty of Science
Information and Computing Sciences]

90

How much effort is involved? §VI

I We get a lot for a few non-invasive changes to GHC, with
TypeError and the Constraint kind as enablers

I Constraint resolution needs some changes to track
messages, and deal with priorities

I A few additions to TypeLits.hs in the base library and a
new module TypeErrors.hs (62 lines) that exposes the API

I One additional compiler pragma CHECK_ARGS_BEFORE_FN.

I We employ many language extensions:

DataKinds, TypeOperators, TypeFamilies,

ConstraintKinds, FlexibleContexts, PolyKinds,

UndecidableInstances, UndecidableSuperclasses

but the EDSL programmer only the first four, the EDSL
user none.

[Faculty of Science
Information and Computing Sciences]

91

A very stupid mistake §VI

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! You must be Donald. Donald, please read

this error message. It’s a great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

91

A very stupid mistake §VI

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! You must be Donald. Donald, please read

this error message. It’s a great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

92

Our wrapped Donald-aware identity function §VI

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! You must be Donald. "

:� : E .Text "Donald, please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I E qualifier to address type level Text

I id ′ is a type error aware wrapper for id

I id ′ = id ensures id ′ is sound

I Completeness can be achieved too, dually

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

93

Type errors Class I: type inconsistencies §VI

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n, Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

writing atop True gives

Couldn’t match type ’QDiagram b v n m’ with type ’Bool’

or for atop cube3d plane2d might give

Couldn’t match type ’V2’ with type ’V3’

[Faculty of Science
Information and Computing Sciences]

94

Type error Class II: left-undischarged errors §VI

From the persistent library (Snoyman, 2012)

insertUnique :: (MonadIO m, PersistUniqueWrite backend ,
PersistEntity record)

=> record −>
ReaderT backend m (Maybe (Key record))

use of insertUnique gives rise to type class predicates that may
be left undischarged, because the programmer forgot to write a
PersistEntity instance.

We’d like to get something like:

Data type ’Person’ is not declared as a Persistent

entity. Hint: entity definition can be automatically

derived. Read more at http://www.yesodweb.com/...

[Faculty of Science
Information and Computing Sciences]

95

Type error Class III: ambiguous type errors §VI

I Defaulting seems to be a more apt solution, or simply
adding type annotations

I We wondered: are these ever “domain-specific”? We’d like
to hear about it.

I Our work handles Class I and Class II errors

[Faculty of Science
Information and Computing Sciences]

96

Before we go on: Constraints §VI

GHC supports a special kind Constraint so that type level
programming can be applied to constraints

type JSONSerializable a = (FromJSON a, ToJSON a)

and use type families as type-level functions:

type family All (c :: k −> Constraint) (xs :: [k]) where
All c [] = ()
All c (x : xs) = (c x , All c xs)

so we can write All Show [Int, Bool] instead of
(Show Int, Show Bool)

This is what opens the door to manipulating constraints and
type error messages in a reusable fashion.

[Faculty of Science
Information and Computing Sciences]

97

The running example §VI

atop :: (OrderedField n, Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

can also be written as

atop :: (d1 ∼ QDiagram b1 v1 n1 m1,
d2 ∼ QDiagram b2 v2 n2 m2,
b1 ∼ b2, v1 ∼ v2, n1 ∼ n2, m1 ∼ m2,
OrderedField n1, Metric v1, Semigroup m1)

=> d1 −> d2 −> d1

Failure to satisfy either b1 ∼ b2 or v1 ∼ v2 should lead to
different messages.

[Faculty of Science
Information and Computing Sciences]

98

Approach I: attaching hints to constraints §VI

atop :: (
(d1 ∼ QDiagram b1 v1 n1 m1)
‘IH‘ (Text "argument #1 to ’atop’ must be a diagram"),
(d2 ∼ QDiagram b2 v2 n2 m2)
‘IH‘ (Text "argument #2 to ’atop’ must be a diagram"),
(b1 ∼ b2)
‘IH‘ (Text "the diagrams must use the same back-end"),
(v1 ∼ v2)
‘IH‘ (Text "diagrams must live in the same vector space"),
... same for n1, n2, m1 and m2

OrderedField n1, Metric v1, Semigroup m1)
=> d1 −> d2 −> d1

atop = Diagrams.Combinators.atop

The constraint solving machinery propagates messages along
with the associated type level error message. The IH
annotations/predicates ensure the message is reported.

[Faculty of Science
Information and Computing Sciences]

99

Some observations §VI

I Message is attached as a hint if a constraint cannot be
satisfied

example = atop True ’c’

* Couldn’t match type ’QDiagram b v n m’ with ’Bool’

...

* In the expression: atop True ’c’

...

* Hint: argument #1 to ’atop’ must be a diagram

I Very simple to implement

I May sometimes give unexpected results (more info in the
paper)

[Faculty of Science
Information and Computing Sciences]

100

Before we go on: a Class II example §VI

We can also associate a hint with a type class predicate so that
the hint is shown if that predicate is left undischarged:

insertUnique ::
(MonadIO m, PersistUniqueWrite backend ,

PersistEntity record ‘LeftUndischargedHint‘ (
Text "Data type ’"

:� : ShowType record
:� : Text "’ is not declared as entity."

:$$: Text "Hint: entity definition can be "

:� : "automatically derived."

:$$: Text "Read more at http://www.yesodweb.com/..."

)
=> record −> ReaderT backend m (Maybe (Key record))

[Faculty of Science
Information and Computing Sciences]

101

Approach II: controlling the order §VI

I The problem of Approach I arises from the order in which
constraints may be solved by the constraint solver

I The solution is to give control over that order to the
developer

I The basic combinator we introduce is IfNot

IfNot (c :: Constraint) (fail :: Constraint) (ok :: Constraint)

I IMPORTANT: the ok branch will also be chosen if the
constraint c is not yet known to be consistent or not!

I E.g., if c = α ∼ β, we have to wait for more information.

I In other words: IfNot does not perform a unification.

[Faculty of Science
Information and Computing Sciences]

102

Example §VI

atop ::
IfNot (d1 ∼ QDiagram b1 v1 n1 m1)

(TypeError "Arg. #1 to ’atop’ must be a diagram")
(IfNot (d2 ∼ QDiagram b2 v2 n2 m2)

(TypeError "Arg. #2 to ’atop’ must be a diagram")
(IfNot (b1 ∼ b2)

(TypeError "Back-ends do not coincide")
....))))

=> d1 −> d2 −> d1

I Better syntax later (defined on top of IfNot)

[Faculty of Science
Information and Computing Sciences]

103

Controlling the solving order §VI

I IfNots can be nested which induce a preferred solving order

I The constraint solver uses priorities to ensure solving obeys
the dictated order (more details in the paper)

I The priorities cannot be generally controlled in relation to
the rest of the program: too invasive

I We do offer one pragma: CHECK_ARGS_BEFORE_FN.
I Ensures that we get the most out of arguments before

looking at the application

[Faculty of Science
Information and Computing Sciences]

104

From IfNot to WhenApart §VI

I WhenApart a b f o represents IfNot (a ∼ b) f o

I WhenApart was introduced along with closed type families:
the constraint is true if at this point a and b can never be
reconciled.

I We cannot reduce Int :==: α until we know more about α,
but if we have Int :==: [α] we can rewrite to False for the
following type family:

type family a :==: b :: Bool where
a :==: a = True
a :==: b = False

[Faculty of Science
Information and Computing Sciences]

105

The EDSL-developer facing API (version 1) §VI

Apartness is represented by the operator

infixl 5 :6∼:

We deal with two kinds of failure:

data ConstraintFailure =
∀ t . t :6∼: t | Undischarged Constraint

A CustomError is then a failure and a message

infixl 4 :V:
data CustomError =

ConstraintFailure :V: ErrorMessage | Check Constraint

The latter if we do not want a message.

[Faculty of Science
Information and Computing Sciences]

106

Running back to our example §VI

atop :: CustomErrors [
d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram",
b1 :6∼: b2

:V: Text "Back-ends do not coincide",
...
Check (OrderedField n1), Check (Metric v1),
Check (Semigroup m1)
] => d1 −> d2 −> d1

The CustomErrors type family traverses the list to build the
constraint structure.

[Faculty of Science
Information and Computing Sciences]

107

Abstraction and reuse §VI

For consistency and conciseness we can define a type level
implementation for the checks of back-ends, vector spaces, etc.

type DoNotCoincide what a b =
a :6∼: b :V: Text what :� : Text " do not coincide: "

:� : ShowType a :� : Text " vs. " :� : ShowType b

Note that ShowType and type level Texts are provided by GHC.

[Faculty of Science
Information and Computing Sciences]

108

The EDSL-developer facing API (version 2) §VI

Some constraints can be checked independently: partition
constraints into a list of lists.

atop :: CustomErrors [
[d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram"],
[DoNotCoincide "Back-ends" b1 b2,
DoNotCoincide "Vector spaces" v1 v2,
DoNotCoincide "Numerical fields" n1 n2,
DoNotCoincide "Query annotations" m1 m2],

[Check (OrderedField n1), Check (Metric v1),
Check (Semigroup m1)]

] => d1 −> d2 −> d1

[Faculty of Science
Information and Computing Sciences]

109

Return of the giant siblings §VI

(〈$〉) :: Sibling "(<$>)" (Applicative f) ((a −> b) −> f a −> f b)
"(<$)" (a −> f b −> f a)
fn

=> fn

Given f :: Char −> Bool −> Int,
f 〈$〉 [1 :: Int] 〈∗〉 "a" 〈∗〉 [True] leads to

* Type error in ’(<$>)’, do you mean ’(<$)’

* In the first argument of ’(<*>)’, namely ’f <$> [1 :: Int]’

...

What are these fns doing there?

[Faculty of Science
Information and Computing Sciences]

110

Implementation of siblings §VI

We can define siblings on top of what we have (almost):

type Sibling nameOk extra tyOk nameWrong tyWrong fn
= IfNot (fn ∼ tyOk)

(ScheduleAtTheEnd (IfNot (fn ∼ tyWrong)
(fn ∼ tyOk)
(TypeError (Text "Type error in ’" ...

Text "’, do you mean ’"...))))
extra

One caveat: we need ScheduleAtTheEnd to assign the lowest
possible priority (otherwise fn ∼ tyWrong may succeed while
other constraints in the set contradict it).

[Faculty of Science
Information and Computing Sciences]

111

Alternatives and conversions §VI

I diagrams distinguishes vectors from points

I You can compute the perpendicular of a vector (but not a
point (pair)) with perp

I Can we provide a hint on how to convert a pair to a vector
if the argument happens to be a pair?

* Expecting a 2D vector but got a tuple.

Use ’r2’ to turn the tuple into a vector.

As with siblings this may not be what the programmer intends,
but the change will resolve the type error.

[Faculty of Science
Information and Computing Sciences]

112

The new definition of perp §VI

perp :: CustomErrors [

[v : 6∼: V2 a :V?:

([v ∼ (a, a) :V!:
Text "Expecting a 2D vector but got a tuple."

:$$: Text "Use r2 to turn a tuple into a vector."

],

Text "Expected a 2D vector, but got "

:� : ShowType v)],
[Check (Num a)]] => v −> v

With every apartness check we can associate a list of further
checks on what in this case v might actually be.

[Faculty of Science
Information and Computing Sciences]

113

A word of warning §VI

I Why is the unification v ∼ (a, a) not so dangerous now?
I If we arrive there at all we know:

I compilation will fail
I we know the top level type constructor of v

I However: writing (a, a) does imply that a unification may
take place.

I To be safe: only compare against T a1 .. an with T a fixed
type constructor, and all ai fresh.

[Faculty of Science
Information and Computing Sciences]

114

What we did on our holidays §VI

I We have worked out some rules for
I path (Chris Done, 2015), appendix to the paper
I diagrams
I persistent
I map, Eq, and making foldr and foldl siblings
I formatting (Chris Done)

I They can be added to members of type classes too!

[Faculty of Science
Information and Computing Sciences]

115

Wrapping up §VI

Let’s visit the Terminal/jEdit and take a look at now and (%).

[Faculty of Science
Information and Computing Sciences]

116

Back to our slogan §VI

Expression level type error messages
by

type level programming

I In retrospect, this makes a lot of sense

I Kind level programming for diagnosing type level
programming?

I Possible relationships with dependently typed
programming, staged programming, and higher-ranked
analyses with effect operators

I All provide a way to perform computations at the type
level/compile time, with different restrictions.

[Faculty of Science
Information and Computing Sciences]

117

Beyond the scope of this tutorial §VI

I Type error diagnosis in Elm (with Falco Peijenburg and
Alejandro Serrano)

I Type error diagnosis in LambdaPi (with Joey Eremondi
and Wouter Swierstra)

I Refining type guards in Typescript (with Ivo Gabe de
Wolff)

I Unification modulo type isomorphism (with Arjen
Langebaerd and Bastiaan Heeren)

I Questions can be asked off-line

[Faculty of Science
Information and Computing Sciences]

118

Recent and ongoing developments §VI

I GADTs in Helium

I Type families in Helium

I Formalizing system FC and row types

[Faculty of Science
Information and Computing Sciences]

118

Recent and ongoing developments §VI

I GADTs in Helium

I Type families in Helium

I Formalizing system FC and row types

[Faculty of Science
Information and Computing Sciences]

118

Recent and ongoing developments §VI

I GADTs in Helium

I Type families in Helium

I Formalizing system FC and row types

[Faculty of Science
Information and Computing Sciences]

119

More plans §VI

I Type class flavours in Helium

I Higher-ranked/impredicative types and error diagnosis in
Helium

I Optimisation assistance in Helium

I TED for dependently typed languages

[Faculty of Science
Information and Computing Sciences]

119

More plans §VI

I Type class flavours in Helium

I Higher-ranked/impredicative types and error diagnosis in
Helium

I Optimisation assistance in Helium

I TED for dependently typed languages

[Faculty of Science
Information and Computing Sciences]

119

More plans §VI

I Type class flavours in Helium

I Higher-ranked/impredicative types and error diagnosis in
Helium

I Optimisation assistance in Helium

I TED for dependently typed languages

[Faculty of Science
Information and Computing Sciences]

119

More plans §VI

I Type class flavours in Helium

I Higher-ranked/impredicative types and error diagnosis in
Helium

I Optimisation assistance in Helium

I TED for dependently typed languages

[Faculty of Science
Information and Computing Sciences]

120

Thank you for your attention

[Faculty of Science
Information and Computing Sciences]

121

VII. Other approaches

[Faculty of Science
Information and Computing Sciences]

122

Type error slicing §VII

I Sulzmann, Wazny, Stuckey: Chameleon system
I Could deal with some language extensions

I Haack and Wells, and later also Rahli and a few others:
type error slicing for (full) ML

I Thomas Schilling did something like this for Haskell

[Faculty of Science
Information and Computing Sciences]

123

Heuristics §VII

I IFL 2006, Helium’s heuristics

I Nabil el Boustani translated it to Generic Java

I Danfeng Zhang and Andrew Myers (Bayesian predictor)

I Pavlinovic et al. (uses SMT solver to find optimal
solutions)

[Faculty of Science
Information and Computing Sciences]

124

Repair systems §VII

I Suggesting fixes

I Helium’s siblings

I McAdam’s unification modulo type isomorphism

I Arjen Langebaerd MSc thesis (on Helium)

[Faculty of Science
Information and Computing Sciences]

125

Black box systems §VII

I Seminal (Lerner et al.): use type system on variations of
the type incorrect program to determine how to diagnose
the error

I Advantage: non-invasive, low effort and low risk

[Faculty of Science
Information and Computing Sciences]

126

Counterfactual typing §VII

I Erwig and Chen: counterfactual typing

I Allows the use of a type incorrect identifier to decide the
correct type for the identifier

I The basis of the technology comes from feature selection

[Faculty of Science
Information and Computing Sciences]

127

Beyond the intrinsic type system §VII

I Weijers, Hage and Holdermans, Security type error
diagnosis, SCP 2014

I Combines slicing (to get an over approximation of the
locations), uses heuristics to further narrow down

[Faculty of Science
Information and Computing Sciences]

128

Domain specific type error diagnosis §VII

I Scripting The Type Inferencer by Heeren, Hage, Swierstra,
2003

I For Scala Hubert Plociniczak, Odersky and others did
something similar

I Current work on Domsted

[Faculty of Science
Information and Computing Sciences]

129

Post-processing §VII

I David Raymond Christensen: better error diagnosis through
post-processing in the dependently type Idris language

	Introduction and Motivation
	Constraint-based Type Inference
	Type Inferencing in Helium
	Domain Specific Type Error Diagnosis
	Towards Haskell 2010 and onwards
	Customizing type error diagnosis in GHC
	Other approaches

