[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Constraint-based Type Error Diagnosis
(Tutorial)

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.HageGuu.nl

June 23, 2022

About me

» Full professor and Head of Department, Heriot-Watt
University, Edinburgh

» Before that, two decades at Utrecht University

» Topics of interest:
» Static analysis of functional languages
> Non-standard/type and effect systems

» Program plagiarism detection, object-sensitive analysis, soft
typing of dynamic languages, and switching classes

» PhD students active in legacy system modernization, and
testing

» Type error diagnosis (for functional languages/EDSLs)

» PhD positions in Edinburgh?

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
2 NS

Credits

The following people have contributed to this talk:

v

Alejandro Serrano Mena, current PhD student
» Bastiaan Heeren, PhD student between 2000-2004
Patrick Bahr, visiting postdoc in 2014

v

v

Atze Dijkstra, implementor of UHC
» Many master students

» Many people contributed to Helium

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
3 £

. Introduction and Motivation

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Static type systems sl

» Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

> “well-typed programs can't go wrong"

> type incorrect programs = the need for diagnosis

» When type checking we typically assume various simple
local properties to have been checked:
> syntactic correctness
> well-scopedness
> definedness of variables

» Which properties it enforces, depends intimately on the
language
» Cf. does every function have the right number of
arguments in C vs. Haskell
g\‘% [Faculty of Science
%

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

s N

What is type error diagnosis? gl

» Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

» This may involve information

» that a program is type incorrect
which inconsistency was detected

which parts of the program contributed to the inconsistency
how the inconsistency may be fixed

vV vy

» Traditionally, functional languages have more room for
inconsistencies = at least some attention was paid to type
error diagnosis

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
6 NS

Languages follow Lehmann’s sixth law gl

» Java has seen the introduction of parametric polymorphism
(and type errors suffered)

> Java has seen the introduction of anonymous functions (I
have not dared look)

» Languages like Scala embrace multiple paradigms

» Odersky's “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

> In terms of maintainability of (sizable) programs, dynamic
languages do not seem to scale well

» New trends: dynamic languages becoming more static

» Again, the need for diagnosis

5&\\“% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]
K

N

e simple Haskell §1

reverse = foldr (flip (3)) []
palindrome xs = reverse xs == xs

Is this program well typed?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e simple Haskell §1

reverse = foldr (flip (3)) []
palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]11]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == Xs

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

at is wrong? §1

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]1]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == Xs

[Faculty of Science
¢ Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

What is wrong? gl

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]1]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse Xxs == XS
» It does not point to the source of the error — not precise
> It's intimidating — not succint
» It shows an artifact of the implementation — mechanical
» “Occurs check” is part of the unification algorithm
» Generally, message not very helpful

v

Anyone know the likely fix?

ESW’B)) [Faculty of Science

8 = Universiteit Utrecht Information and Computing Sciences]

9 %%m§§

What is wrong? gl

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]1]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse Xxs == XS

» It does not point to the source of the error — not precise

> It's intimidating — not succint

» It shows an artifact of the implementation — mechanical

» “Occurs check” is part of the unification algorithm

» Generally, message not very helpful

» Anyone know the likely fix? foldr should be fold/
i, [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]

9 N

esolved top-level overloading gl

xxxx = xs : [4,5, 6]
where len = length xs
xs =[1,2,3]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Unresolved top-level overloading gl

xxxx = xs: [4,5,6]
where len = length xs
xs =[1,2,3]

The Hugs message (GHC's message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading
% Binding I XXXX

x+x Qutstanding context : (Num [b], Num b)

» Type classes make the type error message hard to
understand

» The location of the mistake is rather vague

&y > No suggestions how to fix the program

[Faculty of Science
fg Universiteit Utrecht Information and Computing Sciences]
10 ‘{/AA!“

Very old school parser combinators gl

pExpr = pAndPrioExpr
<|> sem_Expr_Lam
($pKey "\\"
(x)pFoldrl (sem_Lamlds_Cons, sem_Lamlds_Nil) pVarid
(x)pKey "->"
() pExpr

gives

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <*> pKey "->"

% Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int, (Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Levell,[S] -> [S]))
-> Type -> d -> [([Char], (Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,f -> £,[S] -> [S]1), [Token])]
*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char], (Type,Int,Int)
-> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> £,[S] -> [S]), [Token.
@V}'ﬁ}}))] (PP- P 1 (5D, DI [Faculty of Science
= é Universiteit Utrecht Information and Computing Sciences]

11 %AA!“\

der is arbitrary (in Hugs) §1

yyyy :: (Bool = a) — (a, a, a)
yyyy = \f = (f True, f False, f [])

What's wrong with this program?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Order is arbitrary (in Hugs) q

yyyy :: (Bool = a) —> (a, a, a)
yyyy =\ f = (f True, f False, f [])

What's wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False
**xx Term : False
**x*x Type : Bool

xx* Does not match : [a]

» There is a lot of evidence that £ False is well typed
» The type signature is not taken into account

» The type inference process suffers from (right-to-left) bias

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
12 N

Order is arbitrary (in GHC) q

zzzz =\ f = (f [],f True, f False)

Ov.hs:8:23:
Couldn’t match expected type ’[t2]’ with actual type ’Bool’
Relevant bindings include
£ :: [t2] -> t (bound at Ov.hs:8:9)
zzzz :: ([t2] -> t) -> (t, t, t) (bound at Ov.hs:8:1)
In the first argument of ’f’, namely ’True’
In the expression: f True

» No signature to take into account
» Both f True and f False are found to be in error
» The type inference process suffers from (left-to-right) bias

N
= é Universiteit Utrecht

13 %%%ﬂ§§

[Faculty of Science
Information and Computing Sciences]

Good Error Reporting Manifesto gl

From Improved Type Error Reporting by Yang, Trinder and

Wells
1. Correct detection and correct reporting
2. Precise: the smallest possible location
3. Succint: maximize useful and minimize non-useful info
4. Does not depend on implementation, i.e., amechanical
5. Source-based: not based on internal syntax
6. Unbiased
7. Comprehensive: enough to reason about the error

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
14 NS

Il. Constraint-based Type Inference

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Hindley-Milner (intuitive summary) s

» Consider the expression \ x — x + 2.
> Hindley-Milner will
> introduce a fresh « for x
> look at the body x + 2: unify the arguments of + with
their formal types (here all Int)
> « becomes Int, and the whole expression has type
Int = Int

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

16

Adding let-polymorphism to the mix il

Consider

lety=\z—>z
in \x > yx+2

For z, oy is introduced, so that the body of y has type a3
Since a7 does not show up in any other type (it is free) we
may generalize over oy sothat y :V 3.8 — (8

Visit the body, introducing « for x, and instantiating 3 in
y to, say, ap to give ap —> a2

Unifying a with a will identify the two, (arbitrarily)
leading to x :: & and the instance of y :: v = «

» Then we perform the unifications of the previous slide
&\\Wi},; [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
17 TN

The polymorphic lamdba-calculus il

T < (x)
I by x:7

I v oer e:m

MNxU{x:n1} b e:m

N by €17 Mx U {x:generalize(l', 1)} b e :m
by let x=e1in e : 7

» Algorithm W is a (deterministic) implementation of these
typing rules.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

18

Characteristics of Algorithm WV gl

» Can infer most general types for the let-polymorphic
lambda-calculus

» Can deal with user-provided type information

» For extensions like higher-ranked types, type signatures
must be provided

» Binding group analysis may need to be performed (always
messy)

» Minor disadvantage: let-polymorphism does not integrate
that well with some advanced type system features.

» Major disadvantage: algorithmic bias

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
19 N

What bias? 81

> Unifications are performed in a fixed order

» Order may be changed: many alternative implementations
of HM exist

» Order of unification is unimportant for the resulting types,

> but it is important if you blame the first unification that is
inconsistent with the foregoing.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
20 N

to cope §l1

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

» But which one to use when?

[Faculty of Science
B = Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

How to cope §ll

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

» But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they

are solved.
» generate and collect the constraints that describe the
unifications that were to be performed, e.g., @« == Int

> choose the order to solve them in some way that may be
determined by the programmer, or by the program

» Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

5&\\“% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]

21 7{4&“

Constraint-based type inference il

» Popular approach (see Pottier et al., Wells et al.,
Outsideln(X), Pavlinovic et al.)

» A basic operation for type inference is unification.
Property: let S be unify(m1, 2), then ST1 = Sm)

We can view unification of two types as a constraint.

[Faculty of Science

NI
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

22

Constraint-based type inference il

» Popular approach (see Pottier et al., Wells et al.,
Outsideln(X), Pavlinovic et al.)

» A basic operation for type inference is unification.
Property: let S be unify(m1, 2), then ST1 = Sm)

We can view unification of two types as a constraint.

» An equality constraint imposes two types to be equivalent.
Syntax: 71 = 7
» We define satisfaction of an equality constraint as follows.
S satisfies (11 = 12) =g ST1 =ST
> Example:
> [r1 := Int, 7 := Int] satisfies 1 — 71 = 7 — Int

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
22 N

Bottom-up typing rules il

{x:B} 0y x: 8 [VAR]s,

A1, C1 lsy e 71 Az, Co sy &1

A
A1UA, CLUGU{m =1 — B} ke @1 e: 08 [APP]s,

A C Ky e: T
A\x, CU{r’ =8 |x:7" € A} vy Mx—=e: (B—T1)

[ABS]g:

» A judgement (A, C ks e: 7) consists of the following.

» A: assumption set (contains assigned types for the free
variables)

» C: constraint set

> e: expression

» 7: asssigned type (variable)

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
23 N

mple il

twice =\ f = \x = f (f x)

ABS(f)
ABSK) Constraints
APP
VAR(f) APP
VAR(f) VAR(X)
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

mple il

twice =\ f = \x = f (f x)

ABS(f)
ABSKX) Constraints
APP
A={f:t1}
VAR(f) APP
t1
VAR(f) VAR(X)
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

mple il

twice =\ f = \x = f (f x)

ABS(f)
ABSKX) Constraints
APP
A={f:t1}
VAR(f) APP
t1
A={f:t2}
L, | VAR VAR(X)
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

mple il

twice =\ f = \x = f (f x)

ABS(f)
ABSKX) Constraints
APP
A={f:t1}
VAR(f) APP
t1
A={f:t2 A={x:t3
{ } VAR(f) VAR(X) { }
t2 t3
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

mple

s

twice =\ — \x = f (f x)

ABS(f)
i Constraints
t2 = t3 -> t4
APP
A={f:t1} VAR(®) APP A={f:t2, x:t3}
tl t4
A={f:t2} VAR(®) VARX) A={x:t3}
t2 t3
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

ample

twice =\ f — \x = f (f x)

ABS(f)
ABS(x)
A={f:t1, f:t2, x:
APP
t5
A={f:t1} A={f:t2,
VAR(f) APP
t1l t4
A={f:t2}
VAR() VAR(X)
t2
& Universiteit Utrecht

s

Constraints

t2

t1
t 3}

x:t3}

A={x: 13}
3

= t3 -> t4
= t4 -> tb

[Faculty of Science
Information and Computing Sciences]

o F = E E 9DQAC¢

ample

twice =\ f — \x = f (f x)

s

ABS(f)
ABSH :{f;t th f:12} Constraints
t2 = t3 > t4
tl = t4 > tb
APP A={f:t1, f:t2, x:t3} t3 = t6
t5
A={f:t1} VAR®) app | A2 xit3)
tl ta
A={f:t2} VAR() VARK) A={x:t3}
t2 t3
3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

ample

twice =\ f = \x = f (f x)

s

Constraints

ABS(f) A=
t7 -> (t6 -> t5)
A={f:t1, f:t2}
ABSK) t6 -> t5
t2
t1
APP A={f:tl, f:t2, x:t3} t3
t5
t1
t2
A={f:t1} A={f:t2, x:t3}
VAR(f) APP
tl t4
A={f:t2} VAR(®) VARKX) A={x:1t3}
t2 t3
Universiteit Utrecht

= t3 > t4
= t4 -> tb
= t6
= t7
= t7

[Faculty of Science
Information and Computing Sciences]

=] F = E E 9DQAC¢

Example

§1

twice =\f = \x = f (f x)

t2
t1
» C=<(t3
t1
t2

t3 -> t4
t4 -> tb
t6
t7
t7

t3,t4,t5

s { £1,t2,t7

t6 -> t6
t6

» S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t7 -> t6 —> t5) = (t6 -> t6) -> t6 —> t6

;‘i\\ % Unlvfgﬁe;‘t-’w}eghq
NS

32 H

[Faculty of Science
Information and Computing Sciences]

hstraints and polymorphism §ll

» Syntax of an instance constraint:

TTSMT

» Semantics with respect to a substitution S:

S satisfies (11 <y 72) =def ST1 < generalize(SM, STy)

> Example:
» [t1 := t2, t4 := t5 -> t5] satisfies t4 <p t1 -> t2

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Constraints and polymorphism 11

» Syntax of an instance constraint:

TTSMT
» Semantics with respect to a substitution S:
S satisfies (11 <y 72) =def ST1 < generalize(SM, STy)

> Example:
» [t1 := t2, t4 := t5 -> tbH] satisfies t4 <p t1 —> t2

Ay, C1 sy e 71 Az, Co Fy e 1
A]_UA2\X, ClLJCQU{T/S/\//Tl’XZT/G.Az}
by let x=e1ine:m

[LET]py

Q ﬁ)é [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

33

mple

APP

LET(i)
ABS(x)
VAR(X) VAR(i)
Universiteit Utrecht

identity =let i =\ x — xinii

VAR(i)

s

Constraints

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

mple

APP

LET(i)
ABS(x)
VAR(X) VAR(i)
Universiteit Utrecht

identity =let i =\ x — xinii

VARI(i)

s

Constraints

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

mple

APP

LET(i)
ABS(x)
VAR(X) VAR(i)
Universiteit Utrecht

identity =let i =\ x — xinii

VAR()

s

Constraints
tl = t2

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

mple

APP

LET(i)
ABS(x)
VAR(X) VAR()
A={i:t3}
t3
Universiteit Utrecht

identity =let i =\ x — xinii

VAR(i)

s

Constraints
tl1 = t2

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

mple il

identity =let i =\ x — xinii

Constraints

tl = t2
LET(i)
ABS(x) APP
i i A={i:t4}
VAR(X) VAR() VAR() aa
A={i:t3}
t3
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

ample il

identity =let i =\x — xinii

Constraints

tl = t2
t3 = t4 -> tb
LET(i)
A={i:t3, i:t4}
ABS(x) APP
t5
i i A={i:t 4}
VAR(X) VAR() VAR() »
A={i:t3}
t3
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ample

s

identity =let i =\x — xinii

Constraints

tl = t2
_ t3 = t4 -> t5
LET() A=}
t5 t3 g t2 > t1
t4 g t2 -> tl
A={i:t3, i:t4}
ABS(x) APP
t5
i X A={i:t 4}
VAR(X) VAR() VAR() o
A={i:t3}
t3
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Example gl

identity =let i =\ x = xinii

t1 = t2
t3 = t4 -> t5
| 2 C =
t3 <p t2 > t1
t4 <p t2 -> t1
tl = t2
> S = t3 = (t6 -> t6) -> t6 —-> t6
t4,tb = t6 -> t6

» S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t5) =t6 -> t6

:~§\\‘Wf/)) for ident lty [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]

41

I1l. Type Inferencing in Helium

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

The Helium compiler gl

v

Constraint based approach to type inferencing

v

Implements many heuristics, multiple solvers

v

Existing algorithms/implementations can be emulated

> cabal install helium
cabal install lvmrun

v

Only: Haskell 98 minus type class and instance definitions

v

And bias still exists from early binding groups to later ones
» Others have addressed this issue

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
43 NS

The Helium compiler gl

» Constraint based approach to type inferencing
> Implements many heuristics, multiple solvers
» Existing algorithms/implementations can be emulated
> cabal install helium
cabal install lvmrun
» Only: Haskell 98 minus type class and instance definitions
» And bias still exists from early binding groups to later ones
» Others have addressed this issue
» Supports domain specific type error diagnosis

» Details of the type rules: see Bastiaan Heeren's PhD

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
43 TN

Some important compiler flags gl

» —-overloading and —--no-overloading
» —-enable-logging, ——host and --port

> ——algorithm-w and -—algorithm-m

» ——experimental gives many more flags
» —-kind-inferencing
» --select-cnr to select a particular constraint for blame
» flags for choosing a particular solver
» many other treewalks for ordering constraints
gz‘% Universiteit Utrecht Information and Co[rfla;:tlitr{gogcsiz:?:ecs?
44 ‘ﬂﬂ!“\

Constraints generated by Helium gl
For the program,
allinc =\ xs = map (+1) xs

Helium generates (—d option)
v5 := Inst(forall a b. (a -> b) -> [a] -> [b]l)

v9 := Inst(forall a. Num a => a -> a -> a)

Int == v10 : {literal}

v9 == v8 -> v10 -> v7 : {infix application}

v8 -> v7 == v6 : {left section}

v3 == viil : {variable}

vb == v6 -> vil -> v4 : {application}

v3 -> v4 == v2 : {lambda abstraction}

v2 == vO : {right-hand side}

v0 == vl : {right hand side}
&, 522 1= Gen([1, v1) : {Generalize allinc&)
L Y—— e G

s N

Greedy constraint solver gl

Given a set of type constraints, the greedy constraint solver
returns a substitution that satisfies these constraints, and a list
of constraint that could not be satisfied by the solver. The
latter is used to produce type error messages.

» Advantages:

» Efficient and fast
» Straightforward implementation

» Disadvantage:

» The order of the type constraints strongly influences the
reported error messages. The type inference process is

biased.
ESW’B)& 5 . . [Facul.ty of S'ciem:e
= N S Universiteit Utrecht Information and Computing Sciences]
46 NS

Ordering type constraints gl

> One is free to choose the order in which the constraints
should be considered by the greedy constraint solver.
(Although there is a restriction for an implicit instance
constraint)

> Instead of returning a list of constraints, return a
constraint tree that follows the shape of the AST.

> A tree-walk flattens the constraint tree and orders the
constraints.

» W: almost a post-order tree walk
» M: almost a pre-order tree walk
» Bottom-up: ...

» Pushing down type signatures: ...

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
47 NS

A realistic type rule 11

» Some constraints 'belong’ to certain subexpressions:

IJE: = [02563} Q +Clv%la%21%3§
cg=(Mm=Bool) ca=(m=p0 cz3=(m=06)
A, Teiber:im
Az, Teo -eg i 7o A3, Teg Fes: 73

A1 H Ay + Az, Te Fif e; then e, else e3:

> c1 is generated by the conditional, but associated with the
boolean subexpression.

» Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do c; before 7¢y).

5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
48 K/

Global constraint solver lll

Uses type graphs allow us to solve the collected type constraints
in a more global way. These can represent inconsistent sets of
constraints.

» Advantages:

v

Global properties can be detected

A lot of information is available

The type inference process can be unbiased

It is easy to include new heuristics to spot common
mistakes.

vV vy

» Disadvantage:

» Extra overhead makes this solver a bit slower
» But: only for the first inconsistent binding group!

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
49 NS

ype graphs (for xs:[4,5,6]) il

‘[4,5, 6]‘

xs: [4,5, 6] Hmi n‘

main = xs : [4,5, 6]
where len = length xs
xs =[1,2,3]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Type graph heuristics gl

If a type graph contains an inconsistency, then heuristics help to
choose which location is reported as type incorrect.

» Examples:

» minimal number of type errors

» count occurrences of clashing type constants (3x Int versus
1x Bool)

> reporting an expression as type incorrect is preferred over
reporting a pattern

» wrong literal constant (4 versus 4.0)

» not enough arguments are supplied for a function
application

» permute the elements of a tuple

> (:) is used instead of (++)
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
51 K

Heuristics in Helium lll

listOfHeuristics options siblings path =

[avoidForbiddenConstraints -- remove constraints that should NEVER be reported
, highParticipation 0.95 path

, phaseFilter -- phasing from the type inference directives

] ++

[Heuristic (Voting (
[siblingFunctions siblings

, siblingLiterals

, applicationHeuristic

, variableFunction -- ApplicationHeuristic without application
, tupleHeuristic -- ApplicationHeuristic for tuples

, fbHasTooManyArguments

, constraintFromUser path -- From .type files

, unaryMinus (Overloading'elem‘options)

1| 4=+

[similarNegation | Overloading‘notElem‘options] ++
[unifierVertex | UnifierHeuristics'elem‘options]))] ++
[inPredicatePath | Overloading'elem‘options] ++
[avoidApplicationConstraints, avoidNegationConstraints
, avoid TrustedConstraints, avoidFolkloreConstraints
, firstComeFirstBlamed -- Will delete all except the first

]

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
52 NS

The Helium message 11

53

main = xs : [4,5, 6]
where len = length xs
xs =[1,2,3]

(2,9): Warning: Definition "len" is not used
(1,11): Type error in constructor

expression 3 8
type D a -> [a] -> [a]
expected type : [Int] -> [Int] -> b
probable fix : use ++ instead

&\\‘Wﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

Example: permute function arguments gl

test :: Parser Char String
test = option "" (token "hello!")

In Helium:

expression
term

type

probable fix

(2,8): Type error in application

: option "" (token "hello!")

: option

: Parser a b -> b -> Parser a b
does not match :
: flip the arguments

String -> Parser Char String -> ¢

AW
§ Y é Universiteit Utrecht
54 NS

[Faculty of Science
Information and Computing Sciences]

Limitations of Helium lll

» The Helium language is relatively small

» A major limitation of the type inference process: consistent
binding groups are never blamed.

myfold f z [] = [z]

myfold f z (x : xs) = myfold f (f z x) xs
rev = myfold (flip (%)) []

palin :: Eq a => [a] — Bool

palin xs = rev xs == xs

» Helium blames palin, some other systems can blame
myfold instead. Signatures for rev and myfold improve
Helium's message.

» Note: we use our intuition of what rev and palin do, a
&, compiler (typically) cannot. [Faculty of Science

§ Universiteit Utrecht Information and Computing Sciences]

55 N

Who’s to blame? lll

wrongxxx :: (Int — Int) = Int — Int — Int
wrongxxx f x y = if f (x + y) then x x y else x + y

Running helium -d Constraintnr.hs gets you (a.o.), after
some early filters:

cnr edge ratio info
#12*x (35-97) 100% {conditional}
#1x (26-80) 100% {explicitly typed binding}
#2x (28-31) 100% {pattern of function binding}
#5x (31-36) 100% {variable}
#11x (36-96) 100% {application}
N/ Faculty of Science
é\U% Universiteit Utrecht Information and CcEmputitr):g Sciences]
56 NS

The error path gl

> wrongxxx :: (Int = Int) = Int = Int = Int

Wrongxxx 7% x y =if 0 % + yV37

then x x y else x + y

» The error path goes from the explicit type for f as part of
wrongxxx's type signature, to the mismatch of the result
type of f with the Bool the conditional expects:

1 v26 := Inst ((Int — Int) — Int — Int —> Int)
#2v28 == v31

#5v31 == v36

11 v36 == v37 — v35

12 v35 == Bool

» The constraint v26 == v28 — v29 — v30 —> v27 was

_‘\\‘Wﬁ’ 1 [Faculty of Science
% &) % Univeer)s(igglejrgcthetd earller' Information and Computing Sciences]
57 NS

Blaming a constraint 11

wrongxxx :: (Int = Int) = Int — Int — Int

Wrongxxx 7% x y =if 0 % + yV37

then xx y else x + y

Run helium --select-cnr=12 ... to blame v35 == Bool:

(9,21): Type error in conditional

expression : if £ (x + y) then x * y else x + y
term :f (x + y)
type : Int

does not match : Bool

v35 denotes the return type of f, the Bool is the one from the
type rule for conditionals.

N/ Faculty of Science
NN

7; :‘ Universiteit Utrecht Information and Computing Sciences]
58 TN

Blaming a constraint 11

wrongxxx :: (Int = Int) = Int — Int — Int

Wrongxxx 7% x y =if 0 % + yV37

then x x y else x + y

Constraint #11: v36 == v37 — v35

(20,21): Type error in application

expression :f (x + y)
term g &
type : Int -> Int

does not match : Int -> Bool

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
58 NS

ming a constraint gl

wrongxxx :: (Int = Int) = Int — Int — Int

Wrongxxx 7% x y =if 0 xT il

then x x y else x + y

Constraint #5: v31 == v36

(9,21): Type error in variable
expression 3 o
type : Int -> Int
expected type : Int -> Bool

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Blaming a constraint 11

58

wrongxxx :: (Int — Int) = Int — Int — Int

Wrongxxx 7% x y =if 0 % + yV37

then x x y else x + y

Constraint #2: v28 == v31

(9,10): Type error in pattern of function binding
pattern g

type : Int -> Bool

does not match : Int -> Int

&\\‘Wﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

Blaming a constraint 11

wrongxxx :: (Int = Int) = Int — Int — Int
Wrongxxx 7% x y =if [l v
then x x y else x + y

Constraint #1:
v26 := Inst ((Int — Int) — Int — Int — Int)

(9,1): Type error in explicitly typed binding

definition ! Wrongxxx
inferred type : (@ -> Bool) ->a ->a ->a
declared type : (Int -> Int) -> Int -> Int -> Int

v26 denotes the type inferred for wrongxxx's implementation.
Not all knowledge about a has been used.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
58 NS

next logical step... g1

» Put control over the order of constraint solving in the
hands of the programmer

» Associate your own error message with a given constraint

» = domain-specific type error diagnosis

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Summary §l11

We have described a parametric type inferencer

» Constraint-based: specification and implementation are
separated

» Standard algorithms can be simulated by choosing an order
for the constraints

» Two implementations are available to solve the constraints

» Type graph heuristics help in reporting the most likely

mistake
type graph
heuristics
specialized
typerules !
i
! ! solve constraints
] 3 P A 3 substitution +
constraint constraint lobal (type graph)
AST collect tree flatten list J (typegraph) type errors
— = =
constraints tree -
—_— solve constraints
greedy
5&\\“% [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

= U
60 N

IV. Domain Specific Type Error Diagnosis

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

at is a DSL? §IV

» Walid Taha:

» the domain is well-defined and central

» the notation is clear,
» the informal meaning is clear,
» the formal meaning is clear and implemented.
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

What is a DSL? §IV

» Walid Taha:

> the domain is well-defined and central
» the notation is clear,
» the informal meaning is clear,
> the formal meaning is clear and implemented.
» Missing is:
» and an implementation of the DSL can communicate with
the programmer about the program in terms of the domain

» “domain-abstractions should not leak”

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
62 N

Embedded Domain Specific Languages §IV

v

Embedded (internal a la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

v

Some (arguable) advantages:

familiarity host language syntax
escape hatch to the host language
existing libraries, compilers, IDE's, etc.
combining EDSLs

At the very least, useful for prototyping DSLs

>
>
>
>

v

v

According to Hudak “the ultimate abstraction”

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
63 N

What host language? §IV

» Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

» Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++
> In most languages we just have to make do

» In Haskell, EDSLs are simply libraries that provide some
form of “fluency”

» Consisting of domain terms and types, and special
operators with particular priority and fixity

5&\\“’%}) [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
64 NS

Challenges for EDSLs §IV

» How to achieve:
» domain specific optimisations
» domain specific error diagnosis
» Optimisation and error diagnosis are also costly in a
non-embedded setting, but there we have more control.

» Can we achieve this control for error diagnosis?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

65

Parser combinators §IV

» Parser combinators (before Applicative): an EDSL for
describing parsers

» An executable and extensible form of EBNF

Concatenation/juxtaposition: p(x)q, and p(xq

Choice: p <[> g

Semantics: f($)p and f($p

Repetition: many, manyl, ...

Optional: option p default

Literals: token "text", pKey "->"

Others introduced as needed, and defined at will

vV vV vV vV VYV VY

pExpr = pAndPrioExpr

<|> sem_Expr_Lam -- a function of two arguments
($ pKey "\\"
(x)pFoldrl (sem_Lamlds_Cons, sem_Lamlds_Nil) pVarid
(x)pKey "=>"
() pExpr

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

66 %{ﬂ@

A small mistake §IV

pExpr = pAndPrioExpr

<|> sem_Expr_Lam -- Semantics for lambda expressions
<$ pKe_)/ n\\n
(x)pFoldrl (sem_Lamlds_Cons, sem_Lamlds_Nil) pVarid
(x)pKey "->"
() pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

**x Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <x> pKey "->"

%% Term : sem_Expr_Lam <$ pKey "\\" <> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid

x Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int, (Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Levell,[S] -> [S]))
-> Type -> d -> [([Char], (Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,f£ => £,[8] -> [S]), [Token])]

*#** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char], (Type,Int,Int)
)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]), [Tokenl)]

5&\\“’%}) [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
67 NS

A closer look at the message §IV

ERROR "BigTypeError.hs":1 - Type error in application

% Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <x> pKey "->"

%% Term : sem_Expr_Lam <$ pKey "\\" <> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid

+ Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int, (Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Levell,[S] -> [S]))
-> Type -> d -> [([Char], (Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,£ => £,[8] -> [S]), [Token])]

*#%% Does not match : [Token] -> [([Char] -> Type -> d -> [([Char], (Type,Int,Int)
)1 -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> £,[S] -> [S]), [Token])]

> Message is large and looks complicated

» You have to discover why the types don't match yourself
» No mention of “parsers” in the error message
» It happens to be a common mistake, and easy to fix
;&\\‘Wﬁ,) [Faculty of Science
:? &) é Universiteit Utrecht Information and Computing Sciences]
68 AN

The solution in a nutshell §IV

1 Bring the type inference mechanism under control
» by phrasing the type inference process as a constraint
solving problem (see earlier)
2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions
> specialize type error messages for a particular domain
» control the order in which constraints are solved
» drive heuristics that suggest fixes for often-made mistakes

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
69 N

The solution in a nutshell §IV

1 Bring the type inference mechanism under control

» by phrasing the type inference process as a constraint

solving problem (see earlier)
2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

> specialize type error messages for a particular domain

» control the order in which constraints are solved

» drive heuristics that suggest fixes for often-made mistakes
» Changing the type system is forbidden!

» Only the order of solving, and the provided messages can

be changed
_’\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
69 K

How is this organised in Helium? §IV

» For a given source module Abc.hs, a DSL designer may
supply a file Abc.type containing the directives

» The directives are automatically used when the module is
imported

» The compiler will adapt the type error mechanism based
on these type inference directives.

» The directives themselves are also a(n external) DSL!

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
70 NS

The type inference process §IV

» We piggy-back ride on Haskell's underlying type system

» Type rules for functional languages are often phrased as a
set of logical deduction rules

» Inference is then implemented by means of an AST
traversal

» Ad-hoc or using attribute grammars

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
71 NS

The rule for type checking applications §IV

[VI A SRR I g @2 7n
by fe:r

» [is an environment, containing the types of identifiers
defined elsewhere

» Rules for variables, anonymous functions and local
definitions omitted

» Algorithm W is a (deterministic) implementation of these
typing rules.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

72

cializing a type rule (1/3) S\

Applying the type rule for function application twice in
succession results in the following:

[e x ‘op’ y o 73

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Specializing a type rule (1/3) §IV

Applying the type rule for function application twice in
succession results in the following:

b op:T1 — 1 — T3 M by x: 71 by Yy im

r l_Hl[X 'Op‘ y . 7—3

Consider one of the parser combinators (pre-Applicative), for
instance <$>.

<$>:: (a— b) — Parsers a — Parsers b

We can now create a specialized type rule by filling in this type
in the type rule

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
73 NS

Specializing a type rule (1/3) §IV

Applying the type rule for function application twice in
succession results in the following:

b op:T1 — 1 — T3 M by x: 71 by Yy im

r l_Hl[X 'Op‘ y . 7—3

Consider one of the parser combinators (pre-Applicative), for
instance <$>.

<$>:: (a— b) — Parsers a — Parsers b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the

given type)

Ny x:a— b I b y: Parsers a
r l_H\I X <$> y . ParSer 5 b [Faculty of Science

I
N) § Universiteit Utrecht Information and Computing Sciences]

N
E=
—
= K/

Specializing a type rule (2/3) §IV

> Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

» [is unchanged, and therefore omitted from the rule

» Type rules are invalidated by shadowing, here, ($).

T = a—b
X T y 72
T T2 = P arser s a
X LT
y-m 73 = Parsers b
@Wﬁ)) [Faculty of Science
::% &) é Universiteit Utrecht Information and Computing Sciences]
74 NS

Specializing a type rule (2/3) §IV

> Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

» [is unchanged, and therefore omitted from the rule

» Type rules are invalidated by shadowing, here, ($).

X T Ve M = a—b
1Tl I T2
ST 7> = Parsers a
X LT
y-m 73 = Parsers b

Split up the type constraints in "smaller” unification steps.

X T = a— b 1 =
- 71 - 12
T T2 = Parser 51 ar a = ao
X LT
L 73 = Parsers; bp b1 = by
&\\Wi},; [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
74 NS

cializing a type rule

(3/3)

§1V

[m]

=

Tm = a1 — b s1 = s
X Tl y T2 L L 1 L e
BV v 7> = Parsersi aa a1 = a»
X S5
R 73 = Parsers, b, by = by
X :: tl; y o t2;
x <$> y :: t3;
tl == al -> bl
t2 == Parser sl a2
t3 == Parser s2 b2
sl == s2
al == a2
bl == b2
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

DEE

Special type error messages

76

§1V

tl == al -> bl : left operand is not a function

t2 == Parser sl a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

sl == s2 : parser has an incorrect symbol type

al == a2 : function cannot be applied to parser’s resul
bl == b2 : parser has an incorrect result type

» Supply an error message for each type constraint. This
message is reported if the corresponding constraint cannot

[Faculty of Science
Information and Computing Sciences]

be satisfied.
§ L’% Universiteit Utrecht
KN

a mple §IV

test :: Parser Char String
test = map toUpper($)"hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Example §IV

test :: Parser Char String
test = map toUpper($)"hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

> Inferred types for (sub-)expressions, and intermediate type
variables
> Pretty printed expressions from the program

» Position and range information

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
77 N

Error message attributes §IV

The error message attached to a type constraint might now
look like:

t2 == Parser sl a2 :

Q@expr.pos@: The rlght operand of <$> should be a
expression : Qexpr.pp@ parser
right operand : Qy.pp@

type : 0t20

does not match : Parser @sl1@ Qa2@

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

% &) § Universiteit Utrecht Information and Computing Sciences]

TN
78

Example

79

§1V

test :: Parser Char String
test = map toUpper($)"hello, world!"

This results in the following type error message (including the
inserted error message attributes):

ERY!

(2,21): The right operand of <$> should be a parses

expression : map toUpper <$> "hello, world!|
right operand : "hello, world!"
type : String

does not match : Parser Char String

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

KN

Other facilities §IV

x <$> y :: Parser s b;

constraints x

tl ==al > b : left operand is not a function
constraints y

t2 == Parser s a2 : right operand is not a parser
al == a2 : function cannot be applied to

» Interpolate constraints into the rule (cf. Parser s b): no
effort for default behaviour

» Control over solving order wrt. subexpressions

» Automatic check for soundness and completeness

‘\ ﬁ' » ulty of Science
% é e w“mmgmcgmbers for more control over agnl]ytm nS’E‘gr?,fmmg £ Science
80

Another directive: siblings §IV

» Certain combinators are known to be easily confused:
» cons (:) and append (++)
($) and ($
(.) and (++) (PHP programmers)
(+) and (++) (Java programmers)
» These combinations can be listed among the specialized
type rules.
siblings <$> , <$
siblings ++ , +,

vV vy

» The siblings heuristic will try a sibling if an expression with
such an operator fails to type check.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
81 N

Example §IV

data Expr = Lambda [String] Expr
pExpr
= pAndPrioExpr
<|> Lambda ($ pKey "\\"
(*)many pVarid
(x pKey "->"
(* pExpr

Extremely concise:

(11,13): Type error in the operator <*
probable fix: use <*> instead

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
82 N

V. Towards Haskell 2010 and onwards

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Introducing DOMSTED §V

DOMain Specific Type Error Diagnosis

» Enable embedded DSL developers to control the error
messages produced by the compiler
» Focus on those errors coming from ill-typed expressions

» Target a full-blown type system

» Haskell 2010 + type classes, functional dependencies, type
families, GADTs, kind polymorphism. ..
> In the works: higher-rank and impredicative instantiation

» Constraint-based approach to typing

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
84 NS

Why Haskell 98 is not complicated enough §V

Statistics computed some years back:

] Extension \ # Hackage \ # Top 20 ‘
Flexiblelnstances 332 10
MultiParamTypeClasses | 321 9
FlexibleContexts 232 3
ScopedTypeVariables 192 3
ExistentialQuantification | 149 6
FunctionalDependencies | 139 4
TypeFamilies 114 1
Overlappinglnstances 108 3
Rank2Types 100 3
GADTs 88 3
RankNTypes 81 1
UnboxedTuples 20 4

o KindSignatures 20 0 hacuty of Sciance
= b = Universiteit Utrecht Information and Computing Sciences]
85 N

at have we accomplished?

» Two-phase specialized type rules (ESOP 2016)
» Implementation on top of OutsideIn(X)

» We implemented some of our work into GHC

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

sV

VI. Customizing type error diagnosis in GHC

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Ondertussen, in GHC... §VI

instance TypeError (Text "Cannot ’Show’ functions." :$$:
Text "Perhaps a missing argument?")
=> Show (a —> b) where ...

> Leverages type-level programming techniques in GHC
(Diatchki, 2015)
> Very restricted:

> Only available for type class and family resolution
» May not influence the ordering of constraints
» Messages cannot depend on who generated the constraint

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
88 N

How far can we take this? §VI

We provide

» control over the content of the type error message

> the same constraint (to the solver) may result in different
messages

» (some) control over the order in which constraints are
checked

» Expression level error messages by type level programming
» GHC's abstraction facilities allow for reuse and uniformity
> A type level embedded DSL for diagnosing embedded DSLs

> integrated as a patch in GHC version 8.1.20161202

» soundness and completeness for free

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
89 N

How much effort is involved? §VI

90

» We get a lot for a few non-invasive changes to GHC, with
TypeError and the Constraint kind as enablers

» Constraint resolution needs some changes to track
messages, and deal with priorities

» A few additions to TypeLits.hs in the base library and a
new module TypeErrors.hs (62 lines) that exposes the API

» One additional compiler pragma CHECK_ARGS_BEFORE_FN.
» We employ many language extensions:

DataKinds, TypeOperators, TypeFamilies,
ConstraintKinds, FlexibleContexts, PolyKinds,
UndecidableInstances, UndecidableSuperclasses

but the EDSL programmer only the first four, the EDSL
user none.

4 2. [Faculty of Science
; % Universiteit Utrecht Information and Computing Sciences]

AW
KN

ery stupid mistake §VI

intid :: Int
intid = id" True

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

A very stupid mistake §VI

intid :: Int
intid = id" True

FormatEx.hs:17:9: error:
* Hi! You must be Donald. Donald, please read
this error message. It’s a great error message.
The argument and result types of ’id’ do not
coincide: Bool vs. Int
* In the expression: id’ True
In an equation for ’intid’: intid = id’ True

5&\\“’%}) [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
91 NS

Our wrapped Donald-aware identity function §VI

id" :: CustomErrors
[[at: b
:=: E.Text "Hi! You must be Donald. "
:0: E.Text "Donald, please read this error message."
10 E.Text " It’s a great error message."

:$9:
E.Text "The argument and result types of ’id’"
o1 E.Text " do not coincide: ":o: VS a b]

]=>a—>b
id =id
» E qualifier to address type level Text
» id’ is a type error aware wrapper for id
» id' = id ensures id’ is sound
» Completeness can be achieved too, dually

0 _ 1,99 _ 4
RN » With {#- INLINE id’ -#2} no run-time overher'igadCulty of Science
= é Universiteit Utrecht Information and Computing Sciences]

92 %{ﬂ»\

Type errors Class |: type inconsistencies §VI

From the diagrams library (Yorgey, 2012/2016)
atop :: (OrderedField n, Metric v, Semigroup m)
=> QDiagram bv n m —

QDiagram b v n m —
QDiagram b v n m

writing atop True gives
Couldn’t match type ’QDiagram b v n m’ with type ’Bool’
or for atop cube3d plane2d might give

Couldn’t match type ’V2’ with type ’V3’

5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
03 N

Type error Class |l: left-undischarged errors §VI

From the persistent library (Snoyman, 2012)

insertUnique :: (MonadlO m, PersistUniqueWrite backend,
PersistEntity record)
=> record —>
ReaderT backend m (Maybe (Key record))

use of insertUnique gives rise to type class predicates that may
be left undischarged, because the programmer forgot to write a
PersistEntity instance.

We'd like to get something like:

Data type ’Person’ is not declared as a Persistent
entity. Hint: entity definition can be automatically

derived. Read more at http://www.yesodweb.com/.

‘S\ ﬁ/) [Faculty of SCIence
% <= Universiteit Utrecht Information and Computing Sciences]
N
TN

94

Type error Class Ill: ambiguous type errors §VI

» Defaulting seems to be a more apt solution, or simply
adding type annotations

» We wondered: are these ever “domain-specific’ ? We'd like
to hear about it.

» Our work handles Class | and Class Il errors

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

95

Before we go on: Constraints §VI

GHC supports a special kind Constraint so that type level
programming can be applied to constraints

type JSONSerializable a = (FromJSON a, ToJSON a)

and use type families as type-level functions:

type family All (c :: k = Constraint) (xs :: [k]) where
All ¢ [] =()
All ¢ (x: xs) = (¢ x, All ¢ xs)

so we can write All Show [Int, Bool] instead of
(Show Int, Show Bool)

This is what opens the door to manipulating constraints and

type error messages in a reusable fashion.
&‘\\‘Wf/} [Faculty of Science
%

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

% ?{ﬂ»\

The running example §VI

atop :: (OrderedField n, Metric v, Semigroup m)
=> QDiagram bv n m —
QDiagram b v n m —
QDiagram b v n m

can also be written as

atop :: (dy ~ QDiagram by vi ny my,
dr ~ QDiagram by vo ny my,
by ~ by, vi ~ vp,n1 ~ N2, my ~ my,
OrderedField ny, Metric vi, Semigroup my)
=d; > dr > di

Failure to satisfy either by ~ by or vi ~ v» should lead to
@W}dlfferent messages.
LA

% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]
NS

Approach |: attaching hints to constraints §VI

atop
(d1 ~ QDiagram by v1 ny my)
‘IH* (Text "argument #1 to ’atop’ must be a diagram"),
(d2 ~ QDiagram by vo np my)
‘IH' (Text "argument #2 to ’atop’ must be a diagram"),
(b1 ~ b2)
‘IH' (Text "the diagrams must use the same back-end"),
(v1 ~)
‘IH* (Text "diagrams must live in the same vector space"),
.. same for ny, ny, my and my
OrderedField ny, Metric vy, Semigroup m;)
= d1 — d2 — d1
atop = Diagrams.Combinators.atop

The constraint solving machinery propagates messages along
with the associated type level error message. The IH
\\Wﬂannotatlons/predlcates ensure the message is reported

dculty of Science
#f Universiteit Utrecht Information and Computing Sciences]

08 ‘{/AA!“

Some observations §VI

> Message is attached as a hint if a constraint cannot be
satisfied

example = atop True ’c’
* Couldn’t match type ’QDiagram b v n m’ with ’Bool’
* In the expression: atop True ’c’

* Hint: argument #1 to ’atop’ must be a diagram
» Very simple to implement

» May sometimes give unexpected results (more info in the

paper)
_’\\\‘Wﬁ) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
99 K

Before we go on: a Class Il example §VI

We can also associate a hint with a type class predicate so that
the hint is shown if that predicate is left undischarged:

insertUnique ::
(MonadlO m, PersistUniqueWrite backend,
PersistEntity record ‘LeftUndischargedHint' (
Text "Data type "
:0: ShowType record
:0: Text "’ is not declared as entity."
:$$: Text "Hint: entity definition can be "
:¢: "automatically derived."
:$%: Text "Read more at http://www.yesodweb.com/..."
)
=> record —> ReaderT backend m (Maybe (Key record))

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
100 N

Approach |l: controlling the order §VI

» The problem of Approach | arises from the order in which
constraints may be solved by the constraint solver

> The solution is to give control over that order to the
developer

» The basic combinator we introduce is /fNot

IfNot (c :: Constraint) (fail :: Constraint) (ok :: Constraint)

» IMPORTANT: the ok branch will also be chosen if the
constraint ¢ is not yet known to be consistent or not!

» E.g., if c =a ~ [, we have to wait for more information.

» In other words: /fNot does not perform a unification.

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
101 N

Example §VI

atop ::
IfNot (di ~ QDiagram by vi ny my)
TypeError "Arg. #1 to ’atop’ must be a diagram"
g p g
(IfNot (dp ~ QDiagram by vo ny my)
TypeError "Arg. #2 to ’atop’ must be a diagram"
Yi g P g
(IfNOt (bl ~ b2)
(TypeError "Back-ends do not coincide")

)

=d > dr > di

» Better syntax later (defined on top of /fNot)

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
02 N

Controlling the solving order §VI

IfNots can be nested which induce a preferred solving order

v

The constraint solver uses priorities to ensure solving obeys
the dictated order (more details in the paper)

v

The priorities cannot be generally controlled in relation to
the rest of the program: too invasive
We do offer one pragma: CHECK_ARGS_BEFORE_FN.

» Ensures that we get the most out of arguments before
looking at the application

v

v

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
103 N

From /fNot to WhenApart §VI

» WhenApart a b f o represents IfNot (a ~ b) f o

» WhenApart was introduced along with closed type families:
the constraint is true if at this point a and b can never be

reconciled.
» We cannot reduce Int :==: « until we know more about ¢,
but if we have Int :==:[a] we can rewrite to False for the

following type family:

type family a:==: b:: Bool where
a:==:a= True
a:==: b= False

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
104 N

The EDSL-developer facing API (version 1) §VI

Apartness is represented by the operator
infixl 5 :7(:
We deal with two kinds of failure:

data ConstraintFailure =
V't .t t| Undischarged Constraint

A CustomError is then a failure and a message

infixl 4 :=:
data CustomError =
ConstraintFailure :=: ErrorMessage | Check Constraint

The latter if we do not want a message.
5&\\“@ [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]
K0

105

Running back to our example §VI

atop :: CustomErrors |
dq ot QDiagram by vi ny my
:=: Text "Arg. #1 to ’atop’ must be a diagram",
do ot QDiagram by vo ny mo
:=: Text "Arg. #2 to ’atop’ must be a diagram",
by ot by
:=: Text "Back-ends do not coincide",

Check (OrderedField ny), Check (Metric v1),
Check (Semigroup my)
|=d—>dr—>dh

The CustomErrors type family traverses the list to build the
constraint structure.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
106 N

Abstraction and reuse §VI

For consistency and conciseness we can define a type level
implementation for the checks of back-ends, vector spaces, etc.

type DoNotCoincide what a b =
a:b: b:=: Text what :¢: Text " do not coincide: "
:0: ShowType a:o: Text " vs. " :0: ShowType b

Note that ShowType and type level Texts are provided by GHC.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
107 N

The EDSL-developer facing API (version 2) §VI

Some constraints can be checked independently: partition
constraints into a list of lists.

atop :: CustomErrors |
[dh :9¢: QDiagram by vi ny my
:=: Text "Arg. #1 to ’atop’ must be a diagram",
d2 2742 QDiagram b2 Vo N my
:=: Text "Arg. #2 to ’atop’ must be a diagram"],
[DoNotCoincide "Back-ends" b1 bo,
DoNotCoincide "Vector spaces" Vi Vo,
DoNotCoincide "Numerical fields" nj np,
DoNotCoincide "Query annotations" my ma],
[Check (OrderedField ny), Check (Metric vy),
Check (Semigroup my)]
] =d > dr > d

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
108 N

Return of the giant siblings §VI

(($)) :: Sibling " (<$>)" (Applicative f) ((a = b) = f a — f b)
"(<$)" (a — fb—>fa)
fn

=>fn

Given f :: Char — Bool —> Int,
f($) [1::Int] (x) "a" (x) [True] leads to

* Type error in ’(<$>)’, do you mean ’(<$)’
* In the first argument of ’(<*>)’, namely ’f <$> [1

What are these fns doing there?

5&\\“’%}) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

= U
109 N

Implementation of siblings §VI

110

We can define siblings on top of what we have (almost):

type Sibling nameOk extra tyOk nameWrong tyWrong fn
= IfNot (fn ~ tyOk)
(ScheduleAt TheEnd (IfNot (fn ~ tyWrong)
(fn ~ tyOk)
(TypeError (Text "Type error in ’" ..
Text ">, do you mean ’"...))))
extra

One caveat: we need ScheduleAtTheEnd to assign the lowest
possible priority (otherwise fn ~ tyWrong may succeed while
other constraints in the set contradict it).

[Faculty of Science

RN : iy Gif &
% &) § Universiteit Utrecht Information and Computing Sciences]
TN

Alternatives and conversions §VI

» diagrams distinguishes vectors from points

» You can compute the perpendicular of a vector (but not a
point (pair)) with perp

» Can we provide a hint on how to convert a pair to a vector
if the argument happens to be a pair?

* Expecting a 2D vector but got a tuple.
Use ’r2’ to turn the tuple into a vector.

As with siblings this may not be what the programmer intends,
but the change will resolve the type error.

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
11 NS

The new definition of perp §VI

perp :: CustomErrors [
[vigt: V2 a =7

([v ~ (a,a) ="
Text "Expecting a 2D vector but got a tuple."

:$$: Text "Use r2 to turn a tuple into a vector."
]
Text "Expected a 2D vector, but got "
201 ShowType v)],
[Check (Num a)]] = v —> v

With every apartness check we can associate a list of further
checks on what in this case v might actually be.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
112 N

A word of warning §VI

» Why is the unification v ~ (a, a) not so dangerous now?
> If we arrive there at all we know:
» compilation will fail
» we know the top level type constructor of v
» However: writing (a, a) does imply that a unification may
take place.
» To be safe: only compare against T al ..an with T a fixed

type constructor, and all ai fresh.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
113 N

What we did on our holidays §VI

» We have worked out some rules for

path (Chris Done, 2015), appendix to the paper
diagrams

persistent

map, Eq, and making foldr and foldl siblings
formatting (Chris Done)

vV vy vy VvVYYy

» They can be added to members of type classes too!

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

114

apping up §VI

Let's visit the Terminal /jEdit and take a look at now and (%).

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Back to our slogan §VI

Expression level type error messages
by
type level programming

> In retrospect, this makes a lot of sense

» Kind level programming for diagnosing type level
programming?

» Possible relationships with dependently typed
programming, staged programming, and higher-ranked
analyses with effect operators

» All provide a way to perform computations at the type
level /compile time, with different restrictions.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
116 N

Beyond the scope of this tutorial §VI

» Type error diagnosis in EIm (with Falco Peijenburg and
Alejandro Serrano)

» Type error diagnosis in LambdaPi (with Joey Eremondi
and Wouter Swierstra)

» Refining type guards in Typescript (with Ivo Gabe de
Wolff)

» Unification modulo type isomorphism (with Arjen
Langebaerd and Bastiaan Heeren)

» Questions can be asked off-line

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
117 NS

ent and ongoing developments

§VI

» GADTs in Helium

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ent and ongoing developments

§VI
» GADTs in Helium

> Type families in Helium

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ent and ongoing developments

§VI
» GADTs in Helium
> Type families in Helium

» Formalizing system FC and row types

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

re plans §VI

» Type class flavours in Helium

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

re plans §VI

» Type class flavours in Helium

» Higher-ranked /impredicative types and error diagnosis in
Helium

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

re plans §VI

» Type class flavours in Helium

» Higher-ranked /impredicative types and error diagnosis in
Helium

» Optimisation assistance in Helium

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

pre plans §VI

» Type class flavours in Helium

» Higher-ranked /impredicative types and error diagnosis in
Helium

» Optimisation assistance in Helium

» TED for dependently typed languages

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Thank you for your attention

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

VIl. Other approaches

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Type error slicing §VII

» Sulzmann, Wazny, Stuckey: Chameleon system
» Could deal with some language extensions

» Haack and Wells, and later also Rahli and a few others:
type error slicing for (full) ML

» Thomas Schilling did something like this for Haskell

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
122 N

Heuristics §VII

» |IFL 2006, Helium’'s heuristics
» Nabil el Boustani translated it to Generic Java
» Danfeng Zhang and Andrew Myers (Bayesian predictor)
» Pavlinovic et al. (uses SMT solver to find optimal
solutions)
i —— temtionsnd Compti Scemee]
123 AN

pair systems §VII

v

Suggesting fixes

v

Helium's siblings

v

McAdam'’s unification modulo type isomorphism

v

Arjen Langebaerd MSc thesis (on Helium)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ck box systems §VII

» Seminal (Lerner et al.): use type system on variations of
the type incorrect program to determine how to diagnose
the error

» Advantage: non-invasive, low effort and low risk

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Counterfactual typing §VII

» Erwig and Chen: counterfactual typing

» Allows the use of a type incorrect identifier to decide the
correct type for the identifier

» The basis of the technology comes from feature selection

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

126

Beyond the intrinsic type system §VII

127

» Weijers, Hage and Holdermans, Security type error
diagnosis, SCP 2014

» Combines slicing (to get an over approximation of the
locations), uses heuristics to further narrow down

[Faculty of Science

NI
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

ain specific type error diagnosis §VII

» Scripting The Type Inferencer by Heeren, Hage, Swierstra,
2003

» For Scala Hubert Plociniczak, Odersky and others did
something similar

» Current work on Domsted

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

5t-processing §VII

» David Raymond Christensen: better error diagnosis through
post-processing in the dependently type Idris language

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

	Introduction and Motivation
	Constraint-based Type Inference
	Type Inferencing in Helium
	Domain Specific Type Error Diagnosis
	Towards Haskell 2010 and onwards
	Customizing type error diagnosis in GHC
	Other approaches

