
Big Data
Exercises: PAC learning with finite hypothesis classes

Part 1: The Realizable Case

We first assume that the true labeling function is in the hypothesis set, that is, f ∈ H.

Exercise 1

On slide 17 of lecture 5, the following result was stated (in slightly different notation):

PD∼P(X)m
[
LD,f (hD) > ε

]
≤ |HB|(1− ε)m,

where hD is any hypothesis output by a consistent learner, that is, LD(hD) = 0, and
HB = {h ∈ H : LD,f (h) > ε} denotes the set of bad hypotheses. Hence, another way to
state the result is

PD∼P(X)m
[
∃h ∈ H : LD(h) = 0 ∧ LD,f (h) > ε

]
≤ |HB|(1− ε)m.

Let’s build up this result step by step. We have to find the probability after seeing m
samples from P(X), that the version space still contains a bad hypothesis (if it doesn’t,
then our consistent learner will certainly output a hypothesis with true error less than ε).
For concreteness, let’s list the bad hypotheses as h1b , h

2
b , . . . , h

k
b .

(a) First, we consider some fixed bad hypothesis, say h1b .

1. Bound the probability that h1b classifies the first training example correctly.

2. Bound the probability that h1b classifies all m training examples correctly.

(b) Bound the probability that any of the k = |HB| bad hypotheses classifies all m
training examples correctly.

(c) Give an upper bound for |HB|.

(d) Using the fact that for 0 ≤ ε ≤ 1, (1− ε) ≤ e−ε, show that if we want

PD∼P(X)m [∃h ∈ H : LD(h) = 0 ∧ LD,f (h) > ε]

to be at most δ, then

m ≥ 1

ε

(
ln |H|+ ln

1

δ

)
training examples will suffice.
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(e) Verify that qualitatively, the dependence of m on |H|, ε and δ makes sense:

1. For bigger hypothesis sets, we need more/less training examples?

2. If we want the true error of the classifier to be smaller, we need more/less
training examples?

3. If we want bigger confidence that we achieve the required true error, we need
more/less training examples?

(f) Use a similar argument to show that for any fixed sample size m and confidence
parameter δ, with probability at least 1−δ any consistent learner returns a hypothesis
hD with:

LD,f (hD) ≤ 1

m

(
ln |H|+ ln

1

δ

)
Exercise 2: Axis-aligned rectangles

For any integers a ≤ b, c ≤ d ∈ [0, n− 1], let

h(x1, x2) =

{
1 if a ≤ x1 ≤ b and c ≤ x2 ≤ d
0 otherwise

In a picture:

c

d

a b

x2

x1

Let H denote the class of all such axis-aligned rectangles.

(a) As a function of n, how many distinct rectangles are there in H?

(b) Let n = 100. How many training examples suffice to ensure that for any f ∈ H, any
consistent learner that uses H will, with probability at least 95% output a hypothesis
with error at most 0.15?

(c) Describe a consistent learner for the hypothesis class of axis-aligned rectangles.
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Exercise 3: Regular depth-2 decision trees

Consider the hypothesis class of regular depth-2 decision trees over n boolean variables
x1, x2, . . . , xn. A regular depth-2 decision tree is a depth-2 decision tree (a tree with four
leaves, all at distance 2 from the root) in which the left and right child of the root are
required to split on the same variable. For instance, the following tree is a regular depth-2
decision tree:

x5

x2 x2

true false

1 0 0 1

true truefalse false

Note that the decision tree may use any of the n variables to split on; in this example it
happened to be x2 and x5. The tree above represents the following prediction rule:

• If x5 = true and x2 = true then h(x5, x2) = 1

• If x5 = true and x2 = false then h(x5, x2) = 0

• If x5 = false and x2 = true then h(x5, x2) = 0

• If x5 = false and x2 = false then h(x5, x2) = 1

(a) As a function of n, how many different trees are there in H?

(b) As a function of ε, δ and n, how many training examples suffice to ensure that for
any f ∈ H, any consistent learner that uses H will, with probability at least 1 − δ
output a hypothesis with error at most ε ?
How does the “sufficient sample size” grow with the number of variables?

(c) Do all trees that look different really express different hypotheses? If not, does that
mean your answer to question (b) is incorrect?

Part 2: Agnostic PAC-learning

We drop the assumption that there is a hypothesis in H with zero true error (the real-
izability assumption), and move to agnostic PAC-learning. We are still considering only
finite hypothesis classes.
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Exercise 4: Sample complexity of agnostic PAC-learning

If we require

PD∼P(X,Y )m

[
LD(hD) > min

h∈H
{LD(h)}+ ε

]
≤ δ,

where hD is any hypothesis output by an ERM learner, then it suffices to obtain a sample
that is ε

2
representative with probabability at least 1− δ. That is, we need

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

2

]
≤ δ.

By the union bound and Hoeffding’s inequality we have that

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

2

]
≤ 2|H|e−

1
2
ε2m.

Hence, for δ ≥ 2|H|e− 1
2
ε2m we’re good.

(a) Derive a formula for the sufficient sample size to meet given (ε, δ) requirements.
Compare this to the formula we obtained in the realizable case.

(b) Show that if the sample is ε
2

representative with respect to H, then

LD(hD) ≤ min
h∈H
{LD(h)}+ ε,

for any ERM hypothesis hD.

Exercise 5: Learning threshold functions

Consider the class of threshold functions H = { 1
10
, 2
10
, . . . , 9

10
}, and let x be a real number

in the interval [0, 1]. For example, one of the members of H is the function:

h(x) =

{
1 if x ≥ 1

10

0 otherwise

(a) How many examples suffice to agnostically PAC learn this hypothesis class
for ε = 0.01 and δ = 0.05?

(b) What if ε = 0.1?

(c) What if x can be any real number?
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Exercise 6: Axis-aligned rectangles

For any integers a ≤ b, c ≤ d ∈ [0, 99], let

h(x1, x2) =

{
1 if a ≤ x1 ≤ b and c ≤ x2 ≤ d
0 otherwise

Let H denote the class of all such axis-aligned rectangles.

How many training examples suffice to ensure that any ERM learner that uses H will,
with probability at least 95% output a hypothesis with true error at most 0.15 worse than
the hypothesis with lowest true error in H? Compare this sample size, to the one that was
sufficient in the realizable case.
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