
Big Data
Solutions: PAC learning with finite hypothesis classes

Part 1: The Realizable Case

Exercise 1

Recall that LD,f (h) is the probability that h misclassifies an example drawn at random
from the population:

LD,f (h) = Px∼P(X)[h(x) 6= f(x)],

where f(x) is the true class label of x, and h(x) is the class label assigned to x by h.

In contrast, LD(h) is the fraction of training examples misclassified by h:

LD(h) =
1

m

m∑
i=1

I[h(xi) 6= f(xi)],

where I denotes the indicator function for the truth of its argument, i.e., I[A] = 1 if A is
true, and I[A] = 0 if A is false. A set of m training examples is generically denoted as:

D = {(x1, f(x1)), (x2, f(x2)), . . . , (xm, f(xm))}

(a) 1. Since h1b is a bad hypothesis, we know that LD,f (h
1
b) > ε, that is,

Px∼P(X)[h
1
b(x) 6= f(x)] > ε. The first training example, like any other training

example, has been drawn at random from P(X) (and labeled according to f),
so we may conclude that P [h1b(x1) = f(x1)] ≤ 1− ε.

2. The training examples have been drawn independently from P(X), so the events
h1b(xi) = f(xi) and h1b(xj) = f(xj) are independent as well (for i 6= j of course).
Hence the joint probability of these m events is equal to the product of their
individual probabilities:

P
[
h1b(x1) = f(x1) ∧ h1b(x2) = f(x2) ∧ . . . ∧ h1b(xm) = f(xm)

]
≤ (1− ε)m

(b) Using the union bound we can guarantee that this probability is ≤ |HB|(1− ε)m
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(c) |HB| ≤ |H| − 1. Since we’re in the realizable case, we know that there is at least
one hypothesis in H with zero training error. For notational simplicity we’ll throw in
that single hypothesis we were able to exclude as well. So we’ll just use |HB| ≤ |H|.

(d) We want
PD∼P(X)m [∃h ∈ H : LD(h) = 0 ∧ LD,f (h) > ε] ≤ δ (1)

We have
PD∼P(X)m [∃h ∈ H : LD(h) = 0 ∧ LD,f (h) > ε] ≤ |H|e−εm (2)

So for δ ≥ |H|e−εm inequality (1) is satisfied. But we want to know for which values
of m inequality (1) is satisfied. Here are the detailed steps:

δ ≥ |H|e−εm (Divide by |H|)
δ

|H|
≥ e−εm (Take natural log)

ln

(
δ

|H|

)
≥ −εm (ln a

b
= ln a− ln b)

ln δ − ln |H| ≥ −εm (Multiply by −1)

ln |H| − ln δ ≤ εm (Divide by ε)

m ≥ 1

ε
(ln |H| − ln δ) (− ln a = ln 1

a
)

m ≥ 1

ε

(
ln |H|+ ln

1

δ

)
This many training examples will suffice.

(e) 1. For bigger hypothesis sets, we need more training examples.

2. If we want the true error of the classifier to be smaller, we need more training
examples.

3. If we want bigger confidence that we achieve the required true error, we need
more training examples.

(f) We start from
PD∼P(X)m [LD,f (hD) > ε] ≤ |H|e−εm.

This implies that
PD∼P(X)m [LD,f (hD) ≤ ε] ≥ 1− |H|e−εm. (3)

We want to guarantee that

PD∼P(X)m [LD,f (hD) ≤ ε] ≥ 1− δ. (4)

By equation (3) this holds for δ ≥ |H|e−εm. Solving this inequality for ε, we obtain

ε ≥ 1

m

(
ln |H|+ ln

1

δ

)
(5)
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Finally, we conclude that for ε ≥ 1
m

(
ln |H|+ ln 1

δ

)
, equation (4) is satisfied. The

strongest conclusion we can draw now is that

PD∼P(X)m

[
LD,f (hD) ≤ 1

m

(
ln |H|+ ln

1

δ

)]
≥ 1− δ. (6)

This type of bound is called a generalization bound.

Exercise 2: Axis-aligned rectangles

(a) The number of distinct hypotheses is:

|H| =
((

n

1

)
+

(
n

2

))2

=

(
n(n+ 1)

2

)2

Explanation: in each of the x1 and x2 dimensions, we can pick any pair of (not
necessarily different) values from [0, n− 1] and assign the lower of the two values to
the lower bound, and the higher of the two values to the upper bound of the rectangle
in that dimension. So for each dimension we have

(
n
1

)
+
(
n
2

)
different choices. Each

choice for x1 can be combined with each choice for x2 to yield a different rectangle.

(b) For n = 100, we have:

|H| =
(

100× 101

2

)2

= 25, 502, 500

For ε = 0.15 and δ = 0.05 we require

m ≥ 1

ε

(
ln |H|+ ln

1

δ

)
=

1

0.15

(
ln(25, 502, 500) + ln

1

0.05

)
= 133.67

So m = 134 will do.

(c) Return the smallest rectangle that includes all the positive (i.e. class label = 1)
examples present in the training sample.

Exercise 3: Regular depth-2 decision trees

(a) We have to find the number of ways to complete the picture below according to the
rules for regular depth-2 decision trees:
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true false

true truefalse false

We can choose any of the n variables for the root node, and then there are n − 1
variables left to choose from for the children of the root node. Finally, we can assign
class labels to the leaf nodes in 24 = 16 ways. So the total number of different trees
is

16n(n− 1)

(b)

m ≥ 1

ε

(
ln(16n) + ln(n− 1) + ln

1

δ

)
The “sufficient sample size” grows as the logarithm of the number of variables.

(c) Not all trees that look different express different hypotheses. For example, the order
of the two variables that are used actually doesn’t matter. For every tree with xi
in the root, and xj to follow, there is an equivalent tree (i.e. expressing the same
hypothesis) with xj in the root and xi to follow. So we could have counted just
8n(n− 1) hypotheses.

Since we counted too many hypotheses, the bound given at (b) is still valid, even
though it is a bit more “loose” then necessary.

Part 2: Agnostic PAC-learning

Exercise 4: Sample complexity of agnostic PAC-learning

(a) Starting with δ ≥ 2|H|e− 1
2
ε2m and solving for m you should find:

m ≥ 2

ε2

(
ln 2|H|+ ln

1

δ

)
.

In the realizable case we got:

m ≥ 1

ε

(
ln |H|+ ln

1

δ

)
.
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The most important difference is that in the agnostic case we have the factor 2
ε2

,
instead of 1

ε
in the realizable case. Since ε is between 0 and 1, and typically close to

0, we have that ε2 is smaller than ε, and hence 1
ε2

is bigger than 1
ε
. Bottom line is we

need more data in the agnostic case.

(b) There are formal proofs on the lecture slides and in the book. But the idea can be
seen from the following picture:

ε
2

ε
2

Error

Hypotheses

The dots indicate the training error of different hypotheses. Since the sample is ε
2

representative, we know that the true error is within ε
2

of the training error. This
interval is indicated by the horizontal bar. Our ERM-algorithm will return a hy-
pothesis with minimum training error. In the picture, both the red and the blue
hypothesis achieve the minimum training error, so an ERM algorithm might return
either one of them. Let’s say our ERM-algorithm returns the red one. Worst thing
that can happen is that its true error (the red cross) is ε

2
higher than its training

error, whereas for the hypothesis we did not select, the true error (the blue cross)
is ε

2
smaller than its training error. But even then the true error of the selected

hypothesis is still within ε of the best true error.

Exercise 5: Learning threshold functions

(a) Filling in the numbers in the formula we found in exercise 4, we get:

m ≥ 2

ε2

(
ln 2|H|+ ln

1

δ

)
=

2

0.012

(
ln 18 + ln

1

0.05

)
= 117, 722.1.

Rounding up to the nearest integer, we get m ≥ 117, 723.
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Notice that we don’t have to divide ε by 2, because we already filled in ε
2

in the
Hoeffding inequality.

(b) m ≥ 1178.

(c) This doesn’t make any difference. What matters is the number of hypothesis in H,
and that is still 9.

Exercise 6: Axis-aligned rectangles

For the number of hypotheses in this set, see the solution to exercise 2. Filling in the
numbers in the formula we found in exercise 4, we get:

m ≥ 2

ε2

(
ln 2|H|+ ln

1

δ

)
=

2

0.152

(
ln 51, 005, 000 + ln

1

0.05

)
= 1, 843.837.

Rounding up to the nearest integer, we get m ≥ 1, 844.

6


