
Big Data
Exercises: sampling for frequent itemset mining

Exercise 1

(a) If the true relative support of an itemset Z is πZ = 0.1, then what is the probability
that a random sample of size n = 100 transactions will have π̂Z > 0.2? Here π̂Z = m

n
,

where m is the number of transactions in the sample that contain Z. (Hint: use the
binomial distribution. In R, use pbinom or dbinom to compute binomial probabilities).

(b) Use the Hoeffding inequality to bound the probability that π̂Z > 0.2 in the situation
described under (a). Hint: since we only want to bound the error in one direction,
use only half of the two-sided bound. Compare the bound to the probability you
computed under (a).

(c) You may have found that the bound provided by the Hoeffding inequality is not very
“tight” when compared to the exact probability provided by the binomial distribu-
tion. But when we want to bound the probability of error in estimating the true
support of an itemset in the database, using the Hoeffding inequality has a distinct
advantage over using the binomial distribution. What is that advantage?

Exercise 2

On slide 6 of lecture 4 it is stated that if we want

P(|π − π̂| > ε) < δ,

then, using the Hoeffding inequality, we should choose n such that

δ ≥ 2e−2ε
2n.

Verify that it follows we should choose

n ≥ 1

2ε2
ln

2

δ
.
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Hint: recall some basic properties of logarithms (not all of them necessarily required!)

1. ln(x× y) = ln x+ ln y.

2. ln x
y

= lnx− ln y.

3. ln ex = x.

4. lnxy = y lnx.

5. The logarithmic function is monotone increasing.

Exercise 3

Consider a frequent itemset mining problem with k items (the number of different prod-
ucts in the collection of the supermarket is k). Suppose we want to guarantee with high
probability (≥ 1− δ) that for all itemsets Z

|πZ − π̂Z | ≤ ε.

That is, we want the estimated relative support to be close to the true relative support for
all itemsets. Formally stated, the requirement is:

P

 ⋃
Z⊆{1,...,k}

|πZ − π̂Z | > ε

 ≤ δ

(a) Use the Hoeffding bound in combination with the union bound (slide 35 of lecture
1) to determine the required sample size n, in terms of ε, δ and k.

(b) Referring to the table on slize 7 of lecture 4, what would be the required sample size
for ε = 0.01, δ = 0.01, and k = 50?

(c) The union bound assumes that the events |πZ − π̂Z | > ε for different itemsets Z are
mutually exclusive. This is good if you want to give an absolute guarantee that the
bound holds. But is this assumption realistic?

(d) Suppose that the events |πZ − π̂Z | > ε for different itemsets Z are independent of
each other. Derive a bound on

P

 ⋃
Z⊆{1,...,k}

|πZ − π̂Z | > ε


for this case. Is the bound much better than the one based on the union bound?
(plot the two bounds for ε = 0.01, k = 5, and n in the range from 15, 000 to 45, 000.)
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Exercise 4: Lowering the threshold

Suppose that X is a frequent itemset at minimum (relative) support threshold t = 0.01,
that is, πX ≥ 0.01. If the sample size is n = 100, 000, and we want the probability that
we miss X on the sample to be at most one in a thousand, what should be the minimum
support threshold t′ that we use to mine on the sample? (round to 3 decimal places).
Hint: see theorem 3 in the paper by Toivonen, and the slides of lecture 4.

Instead, suppose we use the normal approximation of the binomial distribution, and a
pessimistic estimate of the variance. What value of t′ do we obtain in that case?
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