
Big Data 2018: Solutions Exercise Set 2

1. (a) In six ways: (1) 2+2+6 (2) 2+4+4 (3) 2+3+5 (4) 1+4+5 (5) 1+3+6 (6) 3+3+4

(b) No, you also have to take into account in how many different orders the combi-
nations can be thrown.

2. Taking into account the number of different orders in which the combinations can be
thrown, we get:

P(T = 9) =
6 + 6 + 3 + 3 + 6 + 1

216
=

25

216

P(T = 10) =
3 + 3 + 6 + 6 + 6 + 3

216
=

27

216

3. We get the following probability distributions:

(a) The probability distribution of the random variable U is:

u 0 1 2 3 4
P(U = u) 0.01 0.12 0.36 0.32 0.19

(b) The distribution of V is:

v 0 1 2 3 4
P(V = v) 0.04 0.13 0.44 0.27 0.12

(c) The distribution of W is:

w 0 1 2 3 4 5 6 7 8
P(W = w) 0.00 0.04 0.06 0.08 0.29 0.16 0.18 0.10 0.09

(d) The distribution of D is:

d −4 −3 −2 −1 0 1 2 3 4
P(D = d) 0.00 0.00 0.00 0.13 0.55 0.25 0.07 0.00 0.00

(e) The conditional distribution of U given V = 2 is:

u 0 1 2 3 4
P(U = u | V = 2) 0.00 0.09 0.59 0.25 0.07
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4. Use Bayes’rule:

P(Rap|bitch) =
P(bitch|Rap)P(Rap)

P(bitch|Rap)P(Rap) + P(bitch|Metal)P(Metal)

=
0.6× 0.2

0.6× 0.2 + 0.05× 0.8
= 0.75.

5. Probability of drawing an apple
(use the law of total probability):

P(A) = P(A|R)P(R) + P(A|B)P(B) + P(A|G)P(G)

= 0.3× 0.2 + 0.5× 0.2 + 0.3× 0.6 = 0.34

Probability of green box given orange (use Bayes’ rule):

P(G|O) =
P(O|G)P(G)

P(O|R)P(R) + P(O|B)P(B) + P(O|G)P(G)
=

0.18

0.36
= 0.5

6. (a) For the men we get:

P(Yes |Male) =
P(Yes,Male)

P(Male)
=

0.34

0.34 + 0.16
= 0.68

For the women:

P(Yes |Female) =
P(Yes,Female)

P(Female)
=

0.16

0.34 + 0.16
= 0.32

(b) No, they are not independent. The men have a much higher probability of being
accepted than the women.

(c) Yes, we have

P(Yes |Male, Program A) = P(Yes |Female, Program A) = P(Yes |Program A) = 0.2

(d) Yes, we have

P(Yes |Male, Program B) = P(Yes |Female, Program B) = P(Yes |Program B) = 0.8

(e) Most women apply to program A, which has a very strict selection. Only 20%
of all applicants gets accepted into program A, regardless of gender. Most men
apply to program B, which has a very weak selection. A whopping 80% of all
applicants gets accepted for program B, regardless of gender. When the prob-
abilities are aggregated over the program dimension the result is a dependence
between gender and admission.
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7. (a) The population mean and variance are:

µ =

∑N
i=1Xi

N
=

4 + 8 + 8 + 8 + 9 + 9 + 9 + 9

8
= 8

σ2 =

∑N
i=1(Xi − µ)2

N
=

(4− 8)2 + 3× (8− 8)2 + 4× (9− 8)2

8
= 2.5

(b) We get the following probability distribution:

x 4 8 9

p(x) 1
8

3
8

1
2

E(X) = 4× 1

8
+ 8× 3

8
+ 9× 4

8
= 8

Var(X) = E[(X−E(X))2] = (4−8)2×1

8
+(8−8)2×3

8
+(9−8)2×4

8
= 2+0+0.5 = 2.5

By making a random draw from the population, we obtain a random variable
with expected value equal to the population mean and variance equal to the
population variance.

(c) We obtain the following distribution of the sample (for convenience we added
three columns of sample statistics for later use):

(x1, x2) p(x1, x2) x̄ σ̂2 s2

(4, 4) 1
8
× 1

8
= 1

64
4 0 0

(4, 8) 1
8
× 3

8
= 3

64
6 4 8

(4, 9) 1
8
× 4

8
= 4

64
6.5 6.25 12.5

(8, 4) 3
8
× 1

8
= 3

64
6 4 8

(8, 8) 3
8
× 3

8
= 9

64
8 0 0

(8, 9) 3
8
× 4

8
= 12

64
8.5 0.25 0.5

(9, 4) 4
8
× 1

8
= 4

64
6.5 6.25 12.5

(9, 8) 4
8
× 3

8
= 12

64
8.5 0.25 0.5

(9, 9) 4
8
× 4

8
= 16

64
9 0 0

(d) We obtain the following sampling distribution for the sample mean:

x̄ p(x̄)

4 1
64

6 6
64

6.5 8
64

8 9
64

8.5 24
64

9 16
64
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(e) The expected value of the sample mean is (use the answer to (d)):

E(X̄) = 4× 1

64
+ 6× 6

64
+ 6.5× 8

64
+ 8× 9

64
+ 8.5× 24

64
+ 9× 16

64
= 8

So in this case E(X̄) = µ. We show later (exercise 10) that this is not a
coincidence.

(f) The sampling distribution of σ̂2 is:

σ̂2 p(σ̂2)

0 26
64

0.25 24
64

4 6
64

6.25 8
64

(g) The expected value is not equal to σ2:

E(σ̂2) = 0× 26

64
+ 0.25× 24

64
+ 4× 6

64
+ 6.25× 8

64
= 1.25

Hence σ̂2 is a biased estimator of σ2. However, the bias becomes smaller and
smaller as the sample size gets bigger: σ̂2 is called asymptotically unbiased.

(h) The sampling distribution of s2 is:

s2 p(s2)

0 26
64

0.5 24
64

8 6
64

12.5 8
64

(i) The expected value is equal to σ2:

E(s2) = 0× 26

64
+ 0.5× 24

64
+ 8× 6

64
+ 12.5× 8

64
= 2.5

As can be shown (proof omitted), s2 is an unbiased estimator of σ2 and for that
reason often preferred over σ̂2.

8. F = 1
n

∑n
i=1Xi. Use the fact that E(Xi) = π and Var(Xi) = π(1− π).

(a) E(F ) = E
(
1
n

∑n
i=1Xi

)
= 1

n
E (
∑n

i=1Xi) = 1
n

∑n
i=1 E(Xi) = 1

n
nπ = π

(b)

Var(F ) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2
Var

(
n∑

i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
nπ(1− π)

n2
=
π(1− π)

n
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Here we used the rule Var(cX) = c2Var(X) and the fact that the Xi are inde-
pendent.

9.

E[Z] = E
[
X − µ
σ

]
=

1

σ
E[X − µ]

=
1

σ
(E[X]− E(µ))

=
1

σ
(µ− µ) = 0

Var(Z) = Var

(
X − µ
σ

)
=

1

σ2
Var(X − µ)

=
1

σ2
(Var(X) + Var(µ))

=
1

σ2
σ2 = 1

10.

E[X̄] = E

[
1

n

n∑
i=1

Xi

]

=
1

n
E

[
n∑

i=1

Xi

]

=
1

n

n∑
i=1

E[Xi]

=
1

n
nµ = µ
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Var[X̄] = Var

[
1

n

n∑
i=1

Xi

]

=
1

n2
Var

[
n∑

i=1

Xi

]

=
1

n2

n∑
i=1

Var[Xi]

=
1

n2
nσ2 =

σ2

n

11. (a) The expectation is:

E(X) =

∫ u

0

1

u
x dx =

x2

2u

∣∣∣∣u
0

=
1

2
u.

(b) We will use the rule that Var(X) = E(X2)− E(X)2. The expectation of X2 is:

E(X2) =

∫ u

0

1

u
x2 dx =

x3

3u

∣∣∣∣u
0

=
1

3
u2.

Hence

Var(X) =
1

3
u2 − 1

4
u2 =

1

12
u2.

(c) Call the estimator û. Clearly û cannot be smaller than the sample maximum,
since then we would have observations with probability zero in the sample.
This would reduce the probability of the whole sample to zero. For every value
û ≥ max{x1, . . . , xn}, the probability of the sample is given by

p(x1, . . . , xn) =
n∏

i=1

1

û
=

(
1

û

)n

Clearly, the higher the value of û, the lower the probability of the sample. Hence
we should choose û = max{x1, . . . , xn}.

(d) The estimate is always below the true value, so it must be downward biased.

(e)

E(2X̄) =
2

n

n∑
i=1

E(Xi)

=
2

n

n

2
u = u
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(f)

Var(2X̄) = Var

(
2

n

n∑
i=1

Xi

)

=
4

n2
Var

(
n∑

i=1

Xi

)
=

4

n2

n∑
i=1

Var(Xi)

=
4

n2

n

12
u2 =

u2

3n

(g) You should find that the mean square error of the maximum likelihood estimator
is smaller than that of the unbiased estimator. So many would prefer the ML
estimator. Here’s a small R program to make the computations:

biasvar <- function(m, n, u,seed)

{

# m : number of samples

# n : sample size

# u : max of uniform distribution

# seed: random seed

call <- match.call()

uhat.1 <- uhat.2 <- vector(length = m)

set.seed(seed)

for(i in 1:m) {

# draw sample of size n from uniform distribution U(0,u)

x <- runif(n, min = 0, max = u)

# compute first estimator

uhat.1[i] <- 2 * mean(x)

# compute second estimator

uhat.2[i] <- max(x)

}

m1 <- mean(uhat.1)

b1 <- m1-u

m2 <- mean(uhat.2)

b2 <- m2-u

v1 <- var(uhat.1)

v2 <- var(uhat.2)

mse1 <- b1^2+v1

mse2 <- b2^2+v2

boxplot(uhat.1,uhat.2,names=c("unbiased","maximum likelihood"))

list(call = call, m1 = m1, m2 = m2, v1 = v1, v2 = v2,

b1 = b1, b2 = b2, mse1 = mse1, mse2 = mse2)

}
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We added an argument seed for reproducibility of results. Here’s how you can
use the program.

> exp.1 <- biasvar(1000,10,5,12345)

> exp.1

$call

biasvar(m = 1000, n = 10, u = 5, seed = 12345)

$m1

[1] 5.006812

$m2

[1] 4.535683

$v1

[1] 0.8573584

$v2

[1] 0.1877325

$b1

[1] 0.006811609

$b2

[1] -0.4643173

$mse1

[1] 0.8574047

$mse2

[1] 0.4033231

This call produces the following box plot (we decided to use boxplots rather
than histograms).
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