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Exercise 1: Threshold functions

(a) You can set the threshold between any pair of consecutive points, before the smallest
point, or after the largest point. That makes m+ 1 different dichotomies in total. So
τ(m) = m+ 1.

(b) τ(1) = 2, τ(2) = 3, τ(3) = 4.

(c) IfH shatters a set of m points, then it can realize all 2m possible dichotomies on those
m points. The VC-dimension of H is the size of the largest set that H can shatter.
Looking at the growth function, we see that τ(1) = 2 = 21. So the VC-dimension is
at least 1. Continuing, we see that τ(2) = 3 < 22 = 4. So for m = 2, the number of
dichotomies that H can realize falls short of 2m. We conclude that the VC-dimension
of H is 1.

Note that it is not a particularly good idea to determine the VC-dimension via the
growth function, because determining the growth function will typically be harder.
But the growth function is of interest in its own right, and we wanted to point out
the connection with the VC-dimension.

Exercise 2: Intervals

(a) You can choose the two endpoints of the interval in
(
m+1
2

)
ways. This gives(

m+ 1

2

)
=
m(m+ 1)

2
=

1

2
m2 +

1

2
m

In addition, we can choose the two endpoints of the interval in the same line segment
between two points. This produces the “all-negative” labeling. So in total we can
realize

τ(m) =
1

2
m2 +

1

2
m+ 1

different dichotomies.

(b) τ(1) = 2, τ(2) = 4, τ(3) = 7.
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(c) For m = 2, τ(m) is equal to 2m. For m = 3, τ(m) falls short of 2m. The VC-dimension
is 2.

Exercise 3: Axis-aligned rectangles

(a) Arrange the points as the corners of a diamond shape:

x1

x2

I drew in a few dichotomies in different colors. You should be able to complete the
picture. Note that you cannot shatter a set of 4 points that are the corners of an
axis-aligned rectangle, because then you won’t be able to separate the two points on
one diagonal from the two points on the other diagonal.

(b) Consider any set of 5 points. Let xleft denote the leftmost point, that is the point with
the smallest value for x1. Likewise, let xright, xlow and xhigh denote the rightmost,
lowest and highest points respectively. Every rectangle that includes these points
includes all 5 points. Hence, the dichotomy that assigns a positive label to xleft,
xright, xlow and xhigh, and assigns a negative label to the remaining point(s) cannot
be realized.
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Exercise 4: Bounding the growth function

We first verify the base cases k = 0 and k = 1:

0∑
i=0

(
m

i

)
=

(
m

0

)
= 1 ≤ m0 + 1

1∑
i=0

(
m

i

)
=

(
m

0

)
+

(
m

1

)
= 1 +m ≤ m1 + 1.

So far, so good. Next we show that if the claim is true for k, then it is also true for
k + 1. Assume (induction hypothesis):

k∑
i=0

(
m

i

)
≤ mk + 1.

To prove:
k+1∑
i=0

(
m

i

)
≤ mk+1 + 1.

Proof:

k+1∑
i=0

(
m

i

)
=

k∑
i=0

(
m

i

)
+

(
m

k + 1

)
(use induction hypothesis)

≤ mk + 1 +
m!

(m− k − 1)!(k + 1)!

= mk + 1 +
m(m− 1) · · · (m− k)

(k + 1)!
((k + 1)! > 1; lift out the (m− 1) term)

≤ mk + 1 + (m− 1)mk.

= mk+1 + 1.

Exercise 5: Application of the bound on the growth function

(a) At exercise 1 we found that for threshold functions, τ(m) = m + 1 and the
VC-dimension was 1. Filling in d = 1 in the bound given by Sauer’s Lemma,
we obtain

τ(m) ≤
(
m

0

)
+

(
m

1

)
= 1 +m.

So in this case the bound gives the exact growth function.
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(b) At exercise 2, we found that τ(m) = 1
2
m2 + 1

2
m+ 1, and the VC dimension was

d = 2. Filling in d = 2 in the bound given by Sauer’s Lemma, we obtain

τ(m) ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
= 1 +m+

m(m− 1)

2
=

1

2
m2 +

1

2
m+ 1.

So in this case the bound gives the exact growth function. Note that this is not
true in general.

(c) For m = 10: (
10

0

)
+

(
10

1

)
+

(
10

2

)
+

(
10

3

)
+

(
10

4

)
= 386.

For m = 20: (
20

0

)
+

(
20

1

)
+

(
20

2

)
+

(
20

3

)
+

(
20

4

)
= 6, 196.

The total number is 210 = 1, 024 respectively 220 = 1, 048, 576.

Exercise 6: Linear classifiers with a single predictor variable

(a) A “brute force” approach informs us that it is best to put the threshold between
19 and 21. The corresponding classifier makes 5 errors on the training set:
the three positive examples to the left of the threshold, and the two negative
examples to the right. The training error therefore is:

LD =
5

25
= 0.2

Any threshold in the interval (19, 21] produces the same labeling of the training
set, so the ERM solution is not unique.

(b) Choose for example w0 = −20 and w1 = 1. Then we predict class +1 if

−20 + x ≥ 0

x ≥ 20

This gives us a threshold in the interval (19, 21], producing 5 errors and a train-
ing error of 20%. Again, the ERM solution is not unique. We can dream up
infinitely many weight combinations that result in a threshold in the interval
(19, 21].
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(c) The linear classifier predicts class +1 if

w0 + w1x ≥ 0

w1x ≥ −w0

x ≥ −w0

w1

(if w1 is positive)

x ≤ −w0

w1

(if w1 is negative)

So the linear classifier is more powerful because we can also predict the positive
class to the left of the threshold −w0/w1, namely if w1 < 0.

(d) To determine the growth function, we can reason as follows. Pick any m distinct
points, and consider them in their sorted order. We can choose the weights to
produce a threshold between any pair of consecutive points, which gives m− 1
possibilities. For each threshold we can predict + to the right of the threshold
and − to the left, or vice versa; this gives a total of 2(m− 1) possible labelings.
In addition, we can also produce the “all positive” and “all negative” labeling
by choosing the weights to give a threshold to the left of the smallest point, or
to the right of the largest point. Hence, the growth function is τ(m) = 2m. We
evaluate the growth function until it falls short of 2m:

τ(1) = 2 = 21

τ(2) = 4 = 22

τ(3) = 6 < 23

We conclude that the size of the largest set that is shattered is 2, that is, the
VC-dimension is 2.

Exercise 7: The VC-dimension of linear classifiers

We discuss the general case, where we have to shatter d + 1 points in IRd (that is, there
are d predictor variables). Choose the points as follows (recall we add x0 ≡ 1 for w0):

x0 x1 x2 . . . xd
x0 1 0 0 . . . 0
x1 1 1 0 . . . 0
x2 1 0 1 . . . 0
...

...
...

...
. . .

...
xd 1 0 0 . . . 1

The first column consists entirely of 1’s, and the main diagonal consists entirely of 1’s as
well. All remaining entries are 0. Using results from linear algebra we can reason as follows.
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Let’s call the given data matrix X. To produce any given labeling y = (y0, y1, . . . , yd), we
must choose weight values such that

Xw = y

Since X is invertible, the unique solution is:

w = X−1y.

We could stop here, but this argument is not convincing unless you are familiar with the
results from linear algebra that we used. So let’s reason from first principles. To produce
any given labeling, we must choose w such that:

yi = w · xi, i = 0, . . . , d.

Of the weight vector w, only w0 and wi are relevant for producing yi, because the remain-
ing entries of xi are all 0. We see immediately that if y0 = +1, we must choose w0 = +1
as well. We continue on the premiss that y0 = +1. For i > 0, if yi = +1, choose wi = 0,
and if yi = −1, choose wi = −2. The case for y0 = −1 is completely analogous, and is left
as an exercise.

We have shown that we can shatter a set of d + 1 points. To finish the proof that the
VC-dimension is d+ 1, we must show that no set of size d+ 2 is shattered.

As given in the hint, we can write one of the rows as a linear combination of the other
rows:

xj =
∑
i 6=j

cixi, (1)

where not all ci are zero because the first component of every vector has the value 1.
Now assign the label −1 to row j, that is, yj = −1. To produce this label, we must have:

w · xj < 0.

Furthermore, for ci 6= 0, set yi = sign(ci). This requires that sign(w · xi) = sign(ci).
From equation(1) it follows that:

w · xj = w ·
∑
i 6=j

cixi =
∑
i 6=j

ci(w · xi). (2)

For all i, ci(w · xi) ≥ 0 since sign(w · xi) = sign(ci). This implies that w · xj ≥ 0. This
leads to a contradiction with the requirement that w · xj < 0. Hence, it is not possible to
produce the requested labeling.
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