
Big Data
Exercises Infinite Hypothesis Classes

Introduction to infinite hypothesis classes

In the results we have derived so far, the size of the hypothesis class always played an
important role. For example, to determine what would be a sufficient number of train-
ing examples to meet some (ε, δ) requirements, |H| always appeared prominently in the
formula. Such results become useless when H has infinite size. In most realistic machine
learning problems H has (at least conceptually) infinite size, so we would really like to
obtain similar results for infinite hypothesis classes. We have seen that there are infinite
hypothesis classes that can be learned (e.g. the threshold function) and there are infinite
hypothesis classes thet cannot be learned (e.g. the set of all functions f : X → {0, 1}
where the domain of X is infinite). So how can we distinguish the infinite classes that are
learnable from the infinite classes that are not learnable?

As it turns out, we can characterize the complexity of infinite hypothesis classes by a
number called the VC-dimension. This number will play a similar role for infinite hypoth-
esis classes as the size of H did in the results for finite hypothesis classes.

The VC-dimension of a hypothesis class H is the size of the largest data set for which
H can guarantee zero training error for any assignment of class labels to the data points
in that set. When H can produce all possible 2m ways to assign class labels to a set of m
data points, we say that H shatters this set of data points. It is important to note that if
there is any set of m data points that H can shatter, then the VC-dimension of H is at
least m. It is not required that H shatters all sets of m data points! In other words, you
may choose the set of points in the most favourable way so that H can shatter them.

We’ll call an assignment of class labels to a set of data points a dichotomy. For a given
set of data points, many different members of H will produce the same dichotomy because
we only look at how h labels the set of data points concerned (as opposed to how h labels
the entire space of all possible data points).

Before we start with the exercises, we make one final definition. The growth function
τH(m) of H is the maximum number of dichotomies that H can produce on a set of m
points. Again, you get to choose the m data points so as to maximize the number of
dichotomies. So τH(m) is the maximum over all data sets of size m of the number of
dichotomies that H can produce on this set. If for some number a, τH(a) = 2a, then there
is a set of a points that is shattered by H, so H has VC-dimension at least a (at least,
because there might be a bigger set that is also shattered by H).
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Exercise 1: Threshold functions

Consider the class Ht of threshold functions:

h(x) =

{
+1 if x ≥ t
−1 if x < t,

where x, t ∈ IR. Notice that this is an infinite hypothesis class, since t can be any real
number.

(a) Consider a set of m distinct data points x1, x2, . . . , xm. How many dichotomies, as a
function of m, can Ht produce on such a set? (the answer to this question is what
we call the growth function for this hypothesis class).
The following picture may be helpful:

x1 xm
x

(b) Compute the value of the growth function of Ht for m = 1, 2, 3.

(c) What is the VC-dimension of Ht?

Exercise 2: Intervals

Consider the class H(t1,t2) of intervals:

h(x) =

{
+1 if t1 ≤ x ≤ t2
−1 otherwise ,

where x, t1, t2 ∈ IR.

(a) Consider a set of m distinct data points x1, x2, . . . , xm. How many dichotomies can
H(t1,t2) produce on such a set?

(b) Compute the value of the growth function of H(t1,t2) for m = 1, 2, 3.

(c) What is the VC-dimension of H(t1,t2)?
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Exercise 3: Axis-aligned rectangles

This question is about the VC-dimension of axis-aligned rectangles in IR2.
For any a, b, c, d ∈ IR, let

h(x1, x2) =

{
+1 if a ≤ x1 ≤ b and c ≤ x2 ≤ d
−1 otherwise

In a picture:

c

d

a b

x2

x1

Let Hrect denote the class of all such axis-aligned rectangles.
Show that the VC-dimension of Hrect is 4, by showing that

(a) There is a set of 4 points that is shattered by Hrect.

(b) No set of 5 points is shattered by Hrect.

Exercise 4: Bounding the growth function

By Sauer’s Lemma, we know that

τH(m) ≤
d∑

i=0

(
m

i

)
, (1)

where d is the VC-dimension of H. Prove by induction that

k∑
i=0

(
m

i

)
≤ mk + 1,

and hence
τH(m) ≤ md + 1. (2)
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Exercise 5: Application of the bound on the growth function

(a) We have derived the growth function for threshold functions from “first principles”
in exercise 1. Compare this bound to the bound provided by Sauer’s Lemma (equa-
tion 1). Is the bound provided by Sauer’s Lemma tight in this case?

(b) Repeat (a) for the hypothesis class of intervals (exercise 2).

(c) We have determined that the VC-dimension of axis-aligned rectangles in IR2 is 4.
Use this in combination with Sauer’s Lemma to bound the number of dichotomies
that this hypothesis class can realize on m = 10 respectively m = 20 data points.
Compare these numbers to the total number of dichotomies possible for m = 10,
respectively m = 20.

Introduction to Linear Classifiers

A linear classifier in IRd is a classifier of the form:

h(x1, x2, . . . , xd) =

{
+1 if w0 +

∑d
j=1wjxj ≥ 0

−1 if w0 +
∑d

j=1wjxj < 0

The d+1 coefficients (or weights) wj (j = 0, 1, . . . , d) can have any real number as a value.
In IR2 the decision boundary w0 +w1x1 +w2x2 = 0 is a line. In IR3 the decision boundary
w0 +w1x1 +w2x2 +w3x3 = 0 is a plane. The weight w0 is often called the bias (not to be
confused with inductive bias); if w0 = 0 the decision boundary passes through the origin.

To give a concrete example, consider a linear classifier for credit approval. Let x1
represent the income of the applicant, and let x2 represent the age of the applicant. Fur-
thermore, let y = +1 if the applicant is accepted and y = −1 if the applicant is rejected.
For this concrete example, the linear classifier is:

h(income, age) =

{
accept if w0 + w1 income + w2 age ≥ 0
reject if w0 + w1 income + w2 age < 0

For brevity we switch to vector notation. Let x = (x0, x1, . . . , xd), where x0 ≡ 1, and
w = (w0, w1, . . . , wd). Now we can conveniently write:

w · x = w0 +
d∑

j=1

wjxj

A more compact way to define the class of linear classifiers now is: h(x) = sign(w · x).
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Exercise 6: Linear classifiers with a single predictor variable

A linear classifier in IR1 is a classifier of the form:

h(x) =

{
+1 if w0 + w1x ≥ 0
−1 if w0 + w1x < 0

Consider an example where we want to predict whether someone is able to complete a
programming assignment in time, based on the number of months of programming expe-
rience of this person. We have collected the following 25 examples:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x 4 4 5 6 6 8 9 11 12 13 13 14 18 18 19
y −1 −1 −1 −1 −1 +1 −1 −1 −1 −1 +1 −1 +1 −1 −1

i 16 17 18 19 20 21 22 23 24 25
x 21 22 22 24 25 28 29 30 30 32
y +1 +1 +1 −1 +1 +1 −1 +1 +1 +1

Here, the x variable is experience: the number of months of programming experience
of a person. The variable success is the y variable (the class label), and has the value +1
if the programming assignment was completed in time, and the value −1 if the assignment
was not completed in time. Note that i is just an index for the training examples, it is not
part of the data. For example, training example 1 (i = 1) represents a person who has 4
months of programming experience who did not finish the assignment in time. There are
25 training examples in total, and 11 programming assignments were completed in time.

(a) Determine a threshold value for experience that minimizes the empirical risk of the
threshold function on this data set. What is the value of the training error? Is the
ERM solution unique?

(b) Give values for w0 and w1 that minimize the empirical risk of the linear classifier on
this data set. What is the value of the training error? Is the ERM solution unique?

(c) The threshold classifier requires one parameter less than the linear classifier (one
threshold versus two weights), but it seems to have the same expressive power!
Is this indeed the case? (Hint: consider the above data set, but with the labels
inverted: +1 becomes −1 and vice versa).

(d) Determine the growth function and VC-dimension of the linear classifier with one
predictor variable.

Exercise 7: The VC-dimension of linear classifiers

Let’s denote the class of linear classifiers in IRd as Hd
lin. Let’s start with IR2. We’ll show

that the VC-dimension is at least 3, by giving the following set of 3 points that is shattered:
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x0 x1 x2
x0 1 0 0
x1 1 1 0
x2 1 0 1

The difference between boldface (vectors) and normal font now becomes important. For
example x0 is the first row of the data table, that is, the first data point (excluding the class
label). We number the data points beginning at zero just for convenience, as will become
clear later. Formally, x0 = (x0,0, x0,1, x0,2) = (1, 0, 0) is a vector with three components.
The normal face x0 is the variable x0 that always has the value 1 (remember it is just there
to accommodate the bias weight w0). Likewise, the normal face x1 could stand for income,
and x2 could stand for age in the credit approval example.

(a) To show that the given set of three points (rows) is shattered, we must show that
we can obtain any label assignment to them by choosing appropriate values for the
weights. We’ll even be a bit more demanding: show that we can obtain

y0 = w · x0

y1 = w · x1

y2 = w · x2

for any label assignment y0, y1, y2 (yi ∈ {−1,+1}) by choosing appropriate weight
values w0, w1, w2.

Plot the three data points in the (x1, x2)-plane, and draw in the decision bound-
ary (line) for a few weight vectors corresponding to different label assignments.

(b) Generalize the result found under (a), by giving a rule for how to choose the weight
values w0, w1, . . . , wd depending on the labeling that has to be produced on d + 1
data points. Choose the data points in a similar way as was done under (a).

(c) (Hard) Show that no set of d+ 2 data points in IRd is shattered by Hd
lin.

Hint: you need to use the result from linear algebra that any set of n + 1 vec-
tors in IRn is linearly dependent. Therefore, we can write one of the rows (say we
pick row j) as a linear combination of the other rows:

xj =
∑
i 6=j

cixi,

where not all ci are zero because the first component of every vector has the value 1
(x0 ≡ 1).

Note: we actually have d+ 2 vectors in IRd+1 (not IRd) since we added x0.
We follow the standard terminology however, which can be a bit confusing.
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