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The VC dimension and frequent item sets

Introduction

We have seen that for finite hypothesis classes,

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

]
≤ 2|H|e−2ε2m (1)

by the union bound and Hoeffding’s inequality.
To adapt this result to the case of infinite hypothesis classes, one could loosely argue

as follows. We can replace |H| by the number of dichotomies that H can realize on a data
set of size m. All hypotheses that display the same behaviour on the training sample are
counted as one hypothesis only. Hence, we can just replace |H| by τH(m) in equation (1):

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

]
≤ 2τH(m)e−2ε

2m. (2)

This argument is not quite correct, but in a qualitative sense it leads to the correct con-
clusion. The correct inequality is:

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

]
≤ 4τH(2m)e−

1
8
ε2m. (3)

If H has finite VC-dimension d, then the growth function τH(m) is bounded above by md

(see the previous exercise set). Filling in this upper bound for τH(2m) in equation 3, we
obtain:

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

]
≤ 4(2m)d

e
1
8
ε2m

.

As m → ∞, the polynomial md gets annihilated by the exponential em, and so the prob-
ability of error goes to zero. If H does not have finite VC-dimension, then τH(m) = 2m.
Filling this in in equation 3 gives:

P ≤ 22m+2

e
1
8
ε2m

.

This ratio does not go to zero as m goes to infinity.
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Exercise 1: The VC generalization bound

Starting from the VC-inequality:

PD∼P(X,Y )m

[
∃h ∈ H :

∣∣LD(h)− LD(h)
∣∣ > ε

]
≤ 4τH(2m)e−

1
8
ε2m (4)

we can reverse the statement

PD∼P(X,Y )m

[
∀h ∈ H :

∣∣LD(h)− LD(h)
∣∣ ≤ ε

]
≥ 1− 4τH(2m)e−

1
8
ε2m (5)

Hence, in particular we have

PD∼P(X,Y )m

[∣∣LD(hD)− LD(hD)
∣∣ ≤ ε

]
≥ 1− 4τH(2m)e−

1
8
ε2m (6)

where hD denotes a hypothesis returned by an ERM algorithm.

Set δ = 4τH(2m)e−
1
8
ε2m, and solve for ε to show that with probability ≥ (1− δ):

LD(hD) ≤ LD(hD) +

√
8

m
ln

(
4τH(2m)

δ

)
Analyzing this expression, what can you say about how close LD(hD) gets to LD(hD), as
m→∞, for hypothesis classes with finite VC-dimension?

Exercise 2: d-index and d-bound

Consider the following database with 9 transactions:

tid Items
1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Here A,B, etc. denote single items. For example, in the third transaction the items B and
C were bought. tid denotes the transaction id.

(a) Compute the d-index and the d-bound for the given transaction database.

(b) Repeat, but now without the last transaction.
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(c) Suppose that, just to increase its size, we replicate a transaction database a number
of times. For example, we copy each transaction 10 times. Does the d-index increase,
decrease, or stay the same?

(d) Consider a transaction database D with 1, 000, 000 transactions on 500 items. The
d-bound of D is 80. Let ε = 0.05 and δ = 0.05. How many transactions should we
sample to obtain an ε-close approximation with probability at least 1− δ?

(e) Repeat with ε = 0.01.

Exercise 3: An even looser upper bound

(a) Suppose we also think it is too much trouble to check if two transactions are different.
Define an upper bound for the VC-dimension that gets rid of this condition as well,
and argue that it is indeed a valid upper bound.

(b) Suppose you have the following statistics about a supermarket transaction database
(see the table on the next page). The column “size” indicates the number of items in
a transaction, and the column “# transactions” contains the number of transactions
in the database with the given size. For example, there are 6919 transactions that
contain exactly 3 items. Give an upper bound (as small as possible) for the VC-
dimension of this transaction database.

Exercise 4: Some intuition about the VC-dimension

By using the VC-dimension we try to improve over the union bound in computing the
probability of a “bad event”. In a sense, the VC-dimension measures the amount of over-
lap between bad events (recall that the union bound is valid even if the overlap is zero,
that is, if the bad events are mutually exclusive). The bigger the overlap, the smaller the
VC-dimension and vice versa.

Consider two transaction databases with the same number of transactions, the same num-
ber of items |I|, and the same distribution over supports of single items. In one data base
the items are independent (like shampoo and bread), and in the other they are correlated
(like bread and ham). Which database do you expect to have a bigger VC-dimension?
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size # transactions
1 3016
2 5516
3 6919
4 7210
5 6814
6 6163
7 5746
8 5143
9 4660

10 4086
11 3751
12 3285
13 2866
14 2620
15 2310
16 2115
17 1874
18 1645
19 1469
20 1290
21 1205
22 981
23 887
24 819
25 684
26 586
27 582
28 472
29 480
30 355
31 310
32 303
33 272
34 234
35 194
36 136

size # transactions
37 153
38 123
39 115
40 112
41 76
42 66
43 71
44 60
45 50
46 44
47 37
48 37
49 33
50 22
51 24
52 21
53 21
54 10
55 11
56 10
57 9
58 11
59 4
60 9
61 7
62 4
63 5
64 2
65 2
66 5
67 3
68 3
71 1
73 1
74 1
76 1
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