
Classification
Finite Hypothesis Classes

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

Universiteit Utrecht

Recap

We want to learn a classifier, i.e., a computable function

f : X → Y

using a finite sample
D ∼ D

Ideally we would want a function h that minimizes:

LD,f (h) = Px∼D [h(x) 6= f (x)]

But because we do not know either f nor D we settle for a
function h that minimizes

LD(h) =
|{(xi , yi) ∈ D | h(xi) 6= yi}|

|D|

We start with a finite hypothesis class H

Finite isn’t that Trivial?

Examples of finite hypothesis classes are
I threshold function with 256 bits precision reals

I who would need or even want more?

I conjunctions
I a class we will meet quite often during the course

I all Python programs of at most 1032 characters
I automatic programming aka inductive programming
I given a (large) set of input/output pairs
I you don’t program, you learn!

Whether or not these are trivial learning tasks, I’ll leave to you

I but, if you think automatic programming is trivial, I am
interested in your system

It isn’t just about theory, but also very much about practice.

The Set-Up

We have

I a finite set H of hypotheses

I and a (finite) sample D ∼ D
I and there exists a function f : X → Y that does the labelling

Note that since Y is completely determined by X , we will often
view D as the distribution for X rather than for X × Y.

The ERMH learning rule tells us that we should pick a hypothesis
hD such that

hD ∈ argmin
h∈H

LD(h)

That is we should pick a hypothesis that has minimal empirical risk

The Realizability Assumption

For the moment we are going to assume that the true hypothesis is
in H; we will relax this later. More precisely, we are assuming that

there exists a h∗ ∈ H such that LD,f (h∗) = 0

Note that this means that with probability 1

I LD(h∗) = 0

(there are bad samples, but the vast majority is good).

This implies that,

I for (almost any) sample D the ERMH learning rule will give
us a hypothesis hD for which

LD(hD) = 0

The Halving Learner

A simple way to implement the ERMH learning rule is by the
following algorithm; in which Vt denotes the hypotheses that are
still viable at step t

I the first t d ∈ D you have seen are consistent with all
hypotheses in Vt .

I all h ∈ Vt classify x1, . . . , xt−1 correctly, all hypotheses in
H \ Vt make at least 1 classification mistake

V is used because of version spaces

1. V1 = H
2. For t = 1, 2. . . .

2.1 take xt from D
2.2 predict majority ({h(xt) | h ∈ Vt})
2.3 get yt from D (i.e., (xt , yt) ∈ D)
2.4 Vt+1 = {h ∈ Vt | h(xt) = yt}

But, How About Complexity?

The halving learner makes the optimal number of mistakes

I which is good

But we may need to examine every x ∈ D

I for it may be the very last x we see that allows us to discard
many members of Vt

In other words, the halving algorithm is

O (|D|)

Linear time is OK, but sublinear is better.

Sampling is one way to achieve this

Thresholds Again

To make our threshold example finite, we assume that for some
(large) n

θ ∈ {0, 1

n
,

2

n
, . . . , 1}

Basically, we are searching for an element of that set

I and we know how to search fast

To search fast, you use a search tree

I the index in many DBMSs

The difference is that we

I build the index on the fly

We do that by maintaining an interval

I an interval containing the remaining possibilities for the
threshold (that is, the halving algorithm)

Statistically halving this interval every time

I gives us a logarithmic algorithm

The Algorithm

I l1 := −0.5
n , r1 = 1 + 0.5

n
I for t = 1, 2, . . .

I get xt ∈ [lt , rt] ∩ {0, 1n ,
2
n , . . . , 1}

I (i.e., pick again if you draw an non-viable threshold)

I predict sign((xt − lt)− (rt − xt))
I get yt

I if yt = 1, lt+1 := lt , rt+1 := xt − 0.5
n

I if yt = −1, lt+1 := xt +
0.5
n
, rt+1 := rt

Note, this algorithm is only expected to be efficient
I you could be getting xt ’s at the edges of the interval all the

time
I hence reducing the interval width by 1

n only

I while, e.g., the threshold is exactly in the middle

Sampling

If we are going to be linear in the worst case, the problem is:

how big is linear?

That is, at how big a data set should we look

I until we are reasonably sure that we have almost the correct
function?

In still other words.

how big a sample should we take to be reasonably sure we
are reasonably correct?

The smaller the necessary sample is

I the less bad linearity (or even polynomial) will hurt

But, we rely on a sample, so we can be mistaken

I we want a guarantee that the probability of a big mistake is
small

IID

(Note, X ∼ D, Y computed using the (unknown) function f).
Our data set D is sampled from D. More precisely, this means that
we assume that

all the xi ∈ D have been sampled independently and iden-
tically distributed according to D

I when we sample xi we do not take into account what we
sampled in any of the previous (or future) rounds

I we always sample from D
If our data set D has m members we can denote the iid
assumption by stating that

D ∼ Dm

where Dm is the distribution over m-tuples induced by D.

Loss as a Random Variable
According to the ERMH learning rule we choose hD such that

hD ∈ argmin
h∈H

LD(h)

Hence, there is randomness caused by

I sampling D and

I choosing hD

Hence, the loss LD,f (hD) is a random variable. A problem we are
interested in is

I the probability to sample a data set for which LD,f (hD) is not
too large

usually, we denote

I the probability of getting a non-representative (bad) sample
by δ

I and we call (1− δ) the confidence (or confidence parameter)
of our prediction

Accuracy

So, what is a bad sample?

I simply a sample that gives us a high loss

To formalise this we use the accuracy parameter ε:

1. a sample D is good if LD,f (hD) ≤ ε
2. a sample D is bad if LD,f (hD) > ε

If we want to know how big a sample D should be, we are
interested in

I an upperbound on the probability that a sample of size m (the
size of D) is bad

That is, an upperbound on:

Dm ({D | LD,f (hD) > ε})

Misleading Samples, Bad Hypotheses
Let HB be the set of bad hypotheses:

HB = {h ∈ H | LD,f (h) > ε}

A misleading sample teaches us a bad hypothesis:

M = {D | ∃h ∈ HB : LD(h) = 0}

On sample D we discover hD . Now note that because of the
realizability assumption

LD(hD) = 0

So, LD,f (hD) > ε can only happen

I if there is a h ∈ HB for which LD(h) = 0

that is, if our sample is misleading. That is,

{D | LD,f (hD) > ε} ⊆ M

a bound on the probability of getting a sample from M gives us a
bound on learning a bad hypothesis!

Computing a Bound

Note that

M = {D | ∃h ∈ HB : LD(h) = 0} =
⋃

h∈HB

{D | LD(h) = 0}

Hence,

Dm ({D | LD,f (hD) > ε}) ≤ Dm(M)

≤ Dm

 ⋃
h∈HB

{D | LD(h) = 0}


≤
∑
h∈HB

Dm ({D | LD(h) = 0})

To get a more manageable bound, we bound this sum further, by
bounding each of the summands

Bounding the Sum

First, note that

Dm ({D | LD(h) = 0}) = Dm ({D | ∀xi ∈ D : h(xi) = f (xi)})

=
m∏
i=1

D ({xi : h(xi) = f (xi)})

Now, because h ∈ HB , we have that

D ({xi : h(xi) = yi}) = 1− LD,f (h) ≤ 1− ε

Hence we have that

Dm ({D | LD(h) = 0}) ≤ (1− ε)m ≤ e−εm

(Recall that 1− x ≤ e−x).

Putting it all Together

Combining all our bounds we have shown that

Dm ({D | LD,f (hD) > ε}) ≤ |HB |e−εm ≤ |H|e−εm

So what does that mean?

I it means that if we take a large enough sample (when m is
large enough)

I the probability that we have a bad sample
I the function we induce is rather bad (loss larger than ε)

I is small

That is, by choosing our sample size, we control how likely it is
learn we learn a well-performing function. We’ll formalize this on
the next slide.

Theorem

Let H be a finite hypothesis space. Let δ ∈ (0, 1), let ε > 0 and let
m ∈ N such that

m ≥ log (|H|/δ)

ε

Then, for any labelling function f and distribution D for which the
realizability assumption holds, with probability of at least 1− δ
over the choice of an i.i.d. sample D of size m we have that for
every ERM hypothesis hD :

LD,f (hD) ≤ ε

Note that this theorem tells us that our simple threshold learning
algorithm will in general perform well on a logarithmic sized
sample.

A Theorem Becomes a Definition

The theorem tells us that we can

Probably Approximately Correct

learn a classifier from a finite set of hypotheses

I with a sample of logarithmic size

The crucial observation is that we can turn this theorem

I into a definition

A definition that tells us when we

I reasonably expect to learn well from a sample.

PAC Learning (Version 1)

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over X
I for every labelling function f : X → {0, 1}

If the realizability assumption holds wrt H,D, f , then

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D labelled by f

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

L(D,f)(h) ≤ ε

The Details in PAC

As before,
I the realizability assumption tells us that H contains a true

hypothesis.
I more precisely, it tells us that there exists a h∗ ∈ H such that

LD,f (h∗) = 0

I ε tells us how far from this optimal results A will be, i.e., it is
the accuracy – hence Approximately Correct

I δ, the confidence parameter, tells us how likely A meets the
accuracy requirement – hence, Probably

The function mH : (0, 1)2 → N determines how many i.i.d. samples
are needed to guarantee a probably approximate correct hypothesis

I clearly, there are infinitely many such functions

I we take a minimal one

I it is known as the sample complexity

PAC Learning Reformulated

PAC learnability is a probabilistic statement, hence, we can write it
as a probability:

PD∼D,|D|≥m(L(D,f)(hD) ≤ ε) ≥ 1− δ

Note that the probability is a statement over the hypothesis hD we
learn on all (large enough) samples.

If we spell out the loss in this statement, we get

PD∼D,|D|≥m(Px∼D(f (x) 6= hD(x)) ≤ ε) ≥ 1− δ

in which the inner probability is a statement over a random x ∼ D

Finite Hypothesis Sets

Our theorem of of a few slides back can now be restated in terms
of PAC learning:

Every finite hypothesis class H is PAC learnable with sam-
ple complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)

ε

⌉
And, we even know an algorithm that does the trick: the halving
algorithm.

