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PAC Learning

Recall the general definition of PAC learning:

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function / : Z x H — R if there exists a function
my; 1 (0,1)?> — N and a learning algorithm A with the following
property:

> for every €,6 € (0,1)

» for every distribution D over Z

» when running A on m > my/(e, ) i.i.d. samples generated by

D
P A returns a hypothesis h € H such that with probability at
least 1 — 0

Lp(h) < min Lp(H
p(h) < min Lp(h') + ¢



So What?

The definition of PAC learning tells us

» when we consider we can learn something
It tells us precious little

P about what we can learn and how we learn that.
This is, of course, to be expected

» you have to know what you want before you can (try to)
achieve it

So, this is what we turn to next:

» discover what can be PAC learned and how



e-Representative

How well you can learn an hypothesis from a sample obviously
depends on the quality of that sample

» you can't learn anything from a bad sample, it'll tell you that
a bad hypothesis is good and a good one bad.

When is a sample good? Simple:

» a sample is good if the estimated quality (i.e., the loss) of an
hypothesis on that sample is close to its true loss (under the
distribution)

More formally:

A data set D is called e-representative wrt domain Z, hypothesis
class H, loss function [ and distribution D if

VheH: |Lp(h) — Lp(h)| < e



e-Representative Samples are Good

Lemma
Let data set D be €/2-representative wrt domain Z, hypothesis
class H, loss function | and distribution D. Then any output of
ERMy,(D) —i.e., any hp € argmin Lp(h) — satisfies

heH

Ln(hp) < min Lp(h
p( D)_,rgl?g p(h) + €

Proof
for any h € H:

LD(hD) < LD(hD)—|—€/2 < LD(h)+6/2 < LD(h)+€/2—|—€/2 = LD(h)+6

That is, on an ¢/2-representative sample D, the ERMy;-rule yields
an optimal result

P> optimal in the sense: as good as it gets.



Uniform Convergence

If e-representative samples allow us to learn as good as possible,
we can PAC learn if we can guarantee that we will almost always
get e-representative samples:

A hypothesis class H has the uniform convergence property wrt
domain Z and loss function / if

> there exists a function m{¢ : (0,1)2 - N
» such that for all (¢,0) € (0,1)?
» and for any probability distribution D on Z

If D is an i.i.d. sample according to D over Z of size
m > mYC(e,8). Then D is e-representative with probability of at
least 1 — 4.



A Tool to Prove PAC

The preceding discussion gives a tool to prove that we can PAC
learn a hypothesis class: just prove that it has the uniform
convergence property. More formally, we have

Corollary

If hypothesis class H has the uniform convergence property with
function mH , then H is agnost|ca||y PAC learnable with sample
complexity my(e,8) < mYC(e/2,5). Moreover, ERMy-rule is
successful agnostic PAC Iearner for H.

Using this tool, we'll now prove that finite hypothesis classes are
agnostically PAC learnable.



What We Need to Prove

To prove that finite hypothesis classes have the uniform
convergence property, we need to

» find for fixed ¢ and §
a sample size m
such that for any distribution D

>
>
» an i.i.d. sample D of size |D| > m
» with probability at least 1 — ¢
VheH: ‘LD(h) — LD(h)‘ <e
That is, we need to prove that
D" ({D | VheH: |Lo(h) — Lo(h)| < }) =10

Which is equivalent to

D" ({D|3heH: |Lp(h) — Lp(h)| > €}) <o



Some Simple Algebra
Clearly,

{D]3heH: |Lp(h)~Lo(h) > ¢} = |J{D | ILo(h)~Lo(h)| > ¢}
heH

we first gather per h the "bad” samples, and then take the union
of that set.

Probability theory (the union bound) then tells us that

D™ ({D | 3heH: |Lp(h) — Lp(h)| > €})
< ST DD |Lo(h) - Lp(h)] > ¢})

heH

So if we can prove that for a large enough m each of the terms
D™ ({D: |Lp(h) — Lp(h)[ > €})

is small enough, we are done.



Expectations

Recall that
> Lp(h) = Egq~p (I(d, h))
» while Lp is the expected value (i.e., the average) of the loss
on the sample D, i.e., Lp(h) = £ Y7 I(d;, h)
Each /(d;, h) is itself a random variable (because d; is randomly
sampled), its expected value is
> Lp(h)
Since expectation is a linear operator (E(A 4+ B) = E(A) + E(B))
> E(Lp(h)) =E (5, X271 /(dj, h)) = Lp(h)
This means that we aim to prove that the expected loss on a (large
enough) sample is close to the true expected loss

P but that is exactly what the concentration inequalities we
discussed in the second session measure

We are going to use Hoeffding's inequality



Hoeffding

Recall Hoeffding:

Let Z1,...,Z, be a sequence of i.i.d. _random variables and let
Z = % ST, Z;. Furthermore, Let E(Z) = p and assume that

Pla < Z; < b] =1, for every i. Then, for any € > 0, we have
1 m _ 2me2
P [ ;ZZI —p > e] < 2e ((b*a)z)
i=1
to use this inequality, for a fixed h

» let the /(d;, h) be the random variables 6;
» and assume that the loss is bounded, i.e., /(d;, h) € [a, b]

Then we have that
> Lp(h) = % ity I(di, h) = % > it 0i
> E(Lp(h)) = Lp(h) =

Now we can substitute



Substitute and Compute

Substitution gives us

M ({D:|Lp(h) — Lp(h)| > €}) = [ 29 _

< 26_(%>

o

Hence we have that

D"({D|3heH: |Lp(h) — Lp(h)| > e}) < Y 2e” (752)
heH

= 2’7{‘67(%)

2me

2
Solving § = 2|H|e ((b 2 ) for m gives us the desired result.



Finite Hypothesis Classes are PAC

Let H be a finite hypothesis class, let Z be a domain, and let
| : Z — [a, b] be a (bounded) loss function. Then H has the
uniform convergence property with sample complexity

ey < [0 2y og279)]

262

Moreover, H is agnostically PAC learnable using the ERM rule
with sample complexity

myy(e,0) < my©(e/2,8) < F(b —a)’ L‘;g(2|m/5)w




Discussing this Result

By going from realizability to agnostic and from 0/1 loss to a
general loss function, we go

» from my (e, §) < [7log(|?:|/6)-|

> to my(e,8) < [2(bfa)2 Isg(zlm/ﬂ

The biggest difference is

» that the denominator goes from ¢ to €2
Which means that for the same level of accuracy

» the minimal sample size grows by a factor of 1/¢
The same as we had already seen for inconsistent learning

» which is not surprising since we use the Hoeffding inequality
in both cases.

The contribution of a general loss functions is smaller

» and can often be normalized to [0, 1]



Finite Reconsidered

When we first restricted ourselves to the finite case, we already
remarked

P that this is not a strong limitation, it contains already many
practical examples, such as using 256 bit reals for thresholds,
or all Python programs of at most 1032 characters

If we take the former
> we have 2256 different hypothesis
Which because of the log
» gives only a "factor” of 256 in the sample size

And given that we have a (per step) efficient algorithm to learn
thresholds

» we can learn "unrestricted” thresholds efficiently in practice

The same is unfortunately not known for the Python programs.



A Note of Caution

The fact that H is agnostically PAC learnable using the ERM rule
P doesn’t mean that the result is any good
It only means that you can be reasonably sure that

» the ERM rule gives you a result that is close to the optimal
result.

If the optimal result is bad

» because, e.g., the chosen hypothesis class fits the data really
badly

The ERM rule will also give you a bad result.

PAC doesn't tell you that your hypothesis class fits the data well

» it only tells you that ifit fits well, the ERM rule will probably
give you a reasonable good hypothesis.



Bias and Variance

We can decompose our error as:

Lp(hp) = vanel?f} Lp(h) + €est

The first term is the approximation error
P it measures how well our hypothesis class fits the distribution
» it is independent of the particular sample
P it is the bias term

The second term is the estimation error

» it measures how well our particular sample let us estimate the
best classifier

» it varies with samples

» it is the variance term



Isn't Bias Bad?

Having en estimation error is inevitable if you work with samples
» and working with samples is itself inevitable

But a bias term? Bias is bad isn't it?
» bias is prejudice!

This is, both true and not true

P true in the sense that we should aim to minimize the effect of
our bias
> we want to minimize Lp(hp)
» and minimizing minyecy Lp(h), by choosing an appropriate H,
is an important component of this
P> not true, because it represents our background knowledge
» if we understand our data generating process well
> we can choose H such that minyey Lp(h) =0
P i.e., such that the realizability assumption holds
» if we don't understand it well enough, we'll make mistakes

We cannot learn perfectly without the proper background
knowledge



Sidestepping Bias?

What if we could simply force

min Lp(h) = 07
heH

by making H rich enough?
> i.e., by ensuring that H contains every possible hypothesis?
» i.e., by having H = {f : X — {0,1}}

Clearly with that set of hypotheses we will have

zero bias!

Unfortunately(?) this won't work

> is the consequence of a no free lunch theorem



No Free Lunch

Let A be any learning algorithm for a binary classifier wrt 0/1 loss
over domain X. Let m be any number smaller than |X|/2. Then
there exists a distribution D over X x {0, 1} such that

> there exists a function f : X — {0,1} with Lp(f) =0

» with probability of at least 1/7 over the choice of D ~ D™ we
have that Lp(A(D)) > 1/8

In other words, for every learning algorithm there are (in a sense
pathological) cases

» cases for which this algorithm will fail miserably
It is not this special case that is the problem
» another algorithm A’ may do completely fine

it simply means that an adversary can use the fact that A has no
clue what happens on the other half of the domain. We cannot
learn perfectly without the proper background knowledge



Setting Up the Proof

To prove the theorem, a distribution is constructed that will stymie
A. The basic ingredients are:

» Let C C X, such that |C| =2m

» There exist T = 22™ functions from C to {0,1}
» Denote these functions by fi, ..., fr.

» For each function f; define the distribution D; by

/1€ if y = fi(x)
D; = )
0 otherwise

That is, D; is perfect for f;. it will only generate samples on
which f; is correct (y = fi(x))

Hence Lp,(fi)) =0

v



Proof

Claim: for every learning algorithm A that receives a sample D of
m elements of C x {0,1} and returns a function
A(D): C — {0,1}:

max EDND!” [LDI(A(D))] > 1/4

ie[T] !
Assuming the claim, we have (by choosing a maximizing i) that for
every learning algorithm A’ that receives m examples from

X % {0,1} there exists a function f : X — {0,1} and a distribution
D over X x {0,1}, such that Lp(f) =0 and

Ep~pm [Lp(A(D))] > 1/4

Wlog assuming that our loss is bounded to [0, 1], Markov's
inequality tells us that for the random variable Lp(A'(D))

P (Lp(A'(D)) > 1/8) > 1/7



The Intuition Behind the Claim

2 :
There are k = < nT > possible samples of m elements from C.

» which is but a fraction of the 22™ distributions (and
functions) on C we just created

That is, for each such sample of m elements
> there are many distributions that are consistent with it
Given their sheer number

P it is not surprising that for each such distribution there is
another one that is very different on the m unseen elements of
C

Since each algorithm chooses 1 of these possible " continuations”

» it has to fail against a cunning adversary.

All possible functions is too rich a class to learn

> if you can predict everything, you can predict nothing



Corollary

A corollary of the No Free Lunch Theorem is:

Let X be an infinite domain and let H be the set of all
functions from X to {0,1}. The H is not PAC learnable.

In the end, for the simple reason that | X| > 2m for every m,
although it is slightly more subtle.

So, we cannot circumvent the bias term by taking a very rich class
of hypotheses.

» in fact by enlarging || we may make the bias term smaller,
but we will make the estimation term larger because of the
log |#| in that term.

The Bias/Variance trade off is a inherent aspect in learning

P it is a manifestation of the problem of induction



Is This It?

So, we know that
» finite cases can be PAC learned
» but mind the bias

» and that a very rich infinite class cannot
Is there anything in between?
» an infinite class that can be PAC learned?
Fortunately, there are such classes. We first look at a concrete one
» thresholds again, of course
And then we start working on the general case
» by defining the VC dimension

Later we will see that PAC learning is characterized by a finite VC
dimension.



Threshold Learning Reconsidered
We have seen that under the realizability assumption, threshold
functions cannot be PAC learned.
» in the end because there are (uncountable) infinitely many
options
By losing that assumption, we only have to get close to the true
value
» hence, all we have to prove is that whatever distribution there
is, the ERM rule will most probably get us close
Recall that in this case the ERM rule maintains an interval in
which the true value lies
> we know that all values to the left are classified as negative,
while all values to the right are classified as positive
So, let a* be the true value and define a1, a» € R such that

]P)XND(X S (al, a*)) = IP)XND(X S (a*,az)) =€

If we now can prove that we most likely get an example from this
interval, we are done



Computing the Bound

Let by be the largest element in data set D with b; < a* and let
by be the smallest element of d with a* < by. Then

Ppupm [LD(hD) > 6] < Pp~pm [b1 < 31] + Ppupm [b2 > 82]
Now, note that

Pppm [b1 < 31] = Pppm [VX eD:x Q (81, a*)]
_ (1 —E)m < eem

—€em

and similarly, Pppm [b2 > ap] < e
Hence, with a sample complexity

my(€,0) < [log(2/6)/€]

the derivation we gave shows the PAC learnability of threshold
functions.



Free Lunches vs Thresholds
So, why are threshold classifiers not a victim of the no free lunch
theorem?
» after all, we can PAC learn them
The reason is simple

» the class of threshold classifiers is so simple that an adversary
has no room to create an adversarial distribution

In fact, as our discussion above shows
> if two threshold classifiers agree on a large enough sample
> their respective thresholds will be close to each other

» there is no way you can force them to behave completely
differently on unseen examples.

If that would have been possible,
» we would have been able to create an adversarial distribution.

So, it seems necessary for PAC learnability that H isn't too
expressive



How Expressive is H?

In our classification context, a hypothesis is simply a function:
h: X — {0,1}

Hence the expressiveness of H
» is necessarily a measure of how many functions H can express.

In the light of the No Free Lunch theorem, not only functions on
X, but also functions on (finite) subsets of X

Let H be a set hypotheses, i.e., of functions from X to {0,1}, and
let C be a (finite) subset of X. The restriction of H to C, denoted
by Hc, is the set of functions from C to {0,1} that can be derived
from H.
C is shattered by H if H¢ is the set of all functions from C to
0,1}, i.e., if

[Hc| =2/



Vectors for Ease of Notation

Because C is a finite set, we can enumerate its elements
» C={c,,...,Cn}
Restricting h € H to C is simply
» he ={h(c1),h(c2),...,h(cn)}
If we fix an order on the elements of C
» which we can do easily because it is finite
The restriction becomes a vector over {0, 1}/¢!
» hc = (h(c1), h(c2),- .., h(cn))
And H shatters C exactly when
» {hc | h € H} equals the set of all vectors in {0, 1}/¢!

> i.e., if we can construct every 0/1 vector of length |C|



Thresholds Again

Let C be a one element set C = {1}
> eg,c=m

There are two 0/1 vectors of length 1
» (0) and (1)

And the thresholds 3 and 4
» map 7 to 1 and 0O respectively

Hence, C = {c} is shattered by H

For C ={c1, 0}, wlog a1 < &
> saycg=0and ¢ =1,
however, we can create only three vectors
» (0,0), (0,1), and (1,1)
It is impossible to create (1,0)
» there is no 6 such that 6 < ¢y A0 > ¢ since ¢c1 < &
Hence C = {c1, c»} is not shattered by H



Free Lunches Reuvisited

If you recall the Proof of the No Free Lunch theorem, you'll see
that we can create the same adversarial distribution if H shatters a

too large class.

Let H be a hypothesis class of functions h: X — {0,1} and m a
training set size. If there exists a set C C X of size 2m that is
shattered by 7, then for any learning algorithms A there exists a
distribution D over X x {0, 1} such that
» there exists a function f : X — {0,1} with Lp(f) =0
» with probability of at least 1/7 over the choice of D ~ D™ we
have that Lp(A(D)) > 1/8

Shattering is good, but don’t shatter too much.



The VC Dimension

The VC dimension of a set of hypotheses H is the size of the
largest set C C X such that C is shattered by H. If H can shatter
arbitrary sized sets, its VC dimension is infinite.

VC comes from Vapnik and Chervonenkis whom we encountered
before.

A simple consequence of the previous slide is:
Let H be a hypothesis class of infinite VC dimension, then it is not
PAC learnable



VC Dimension Example

Our discussion of shattering by threshold functions shows that
» this set has VC dimension 1
Now consider the set of interval predictors
> hpp(x) = 1iff x € [a, b]
Let C = {0,1} then
> hi_2 17=(0,0)
> hi_z0 = (1,0)
> hpo = (0,1)
> hi—12 = (1,1)
Hence the VC dimension is > 2. Now, note that for

C ={c1, 2,3} with a1 < ¢ < 3 we can not create (1,0,1); if ¢
and c3 are in the interval, so is ¢p. In other words,

» the VC dimension of interval classifiers is 2.



Linear Algebra
You will probably remember from high school that a line in the
plane is given by

y=ax+b
For vectors
al b1
an - b2
a=| . |,b=| .| €R"
an bn

their dot product is defined by

n
a-b= E a,-b,-
i=1

So, if we translate the traditional (x,y) in the plane to the
standard vector notation (xg,x2)" we specify a line by

w-X+b=0



Hyperplanes as Classifiers

If we take the vectors X, w € R", b € R. The equation
w-xX+b=0

specifies a hyperplane in R"

Such a hyperplane can be used as a (simple) classifier
P points above the plane belong to one class
» points below the plane to the other class

In other words. the classifier is given by
fr.p) (%) = sign (- £+ b)

What would the VC dimension of this class be?. Let us start with
lines in the plane



Three Points in the Plane

If we have c1, ¢, c3 € R? not on one line, it is easy to with a line
classifier we can construct (—1,—1,—1) and (1,1,1) easily

» draw the line above (below) all three points

All other cases give one point a different class then the other 2; say
c1 and ¢ are labelled as +1 and ¢3 by —1

» draw the line /; through ¢; and o

» draw the perpendicular from ¢3 to /1 and determine py
halfway c3 and )

» draw k parallel to /1, through ps

Clearly I separates the two classes. Convince yourself that this
means that there is a set of three points in R? that is shattered by
a line

Hence the VC dimension is > 3



Four Points in the Plane

Let c1, ¢, c3, ca € R?

» if three or more are on one line, they can not be shattered by
a line

If no three are on one line, we can draw

» six lines that connect the different points
Clearly

» two of these lines, say /; and h, cross
If we now label

> the cjon /1 by +1

» and the ¢; on b by —1

there is no line that separates the two classes

Hence the VC dimension of lines in the plane is 3.



The VC dimension of Hyperplane Classifiers

Exercise: Prove the the VC dimension of hyperplane classifiers in
R™is n+ 1.



