
PAC Learning

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

Universiteit Utrecht

Recall: PAC Learning (Version 1)

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over X
I for every labelling function f : X → {0, 1}

If the realizability assumption holds wrt H,D, f , then

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D labelled by f

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

L(D,f)(h) ≤ ε

Recall: Finite Hypothesis Sets

And we had a theorem about the PAC learnability:

Every finite hypothesis class H is PAC learnable with sam-
ple complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)

ε

⌉
And, we even know an algorithm that does the trick: the halving
algorithm.

Before we continue, however, it is worthwhile to consider some
concrete classes. In this case, boolean expressions, starting with
conjunctions of boolean literals

Boolean Literals
Let x1, . . . , xn be boolean variables. A literal is

1. a boolean variable xi

2. or its negation ¬xi
The concept class (aka hypothesis class) Cn

I consists of conjunctions of upto n literals

I in which each variable occurs at most once

For example, for n = 4, x1 ∧ ¬x2 ∧ x4 ∈ C4

I (1, 0, 0, 1) is a positive example of this concept

I while (0, 0, 0, 1) is a negative example

(as usual, we equate 1 with true and 0 with false)

Similarly, ¬x1 ∧ x3 ∧ ¬x4 has

I has (0, 0, 1, 0) and (0, 1, 1, 0) as positive examples

I and (1, 0, 0, 0), (1, 0, 1, 0), and (0, 1, 1, 1) as negative
examples.

Cn is PAC

Clearly, Cn is finite, so Cn is PAC learnable. In fact

|Cn| = 3n

(either xi is in the expression or ¬xi is in, or neither is in).

Hence we have sample complexity:

mCn ≤
⌈

log(3n/δ)

ε

⌉
=

⌈
n log(3) + log(1/δ)

ε

⌉
For example, for δ = 0.02, ε = 0.01 and n = 10

I we need at least 149 examples

I with these 149 examples the bound guarantees (at least) 99%
accuracy with (at least) 98% confidence

Learning Cn

Let b = (b1, . . . bn) be an example to learn an expression in Cn, if

I b is a positive example and bi = 1, then ¬xi is ruled out

I b is a positive example and bi = 0, then xi is ruled out

I if b is a negative example, we can conclude nothing (we do
not know which of the conjuncts is false)

A simple algorithm is, thus,

I start with the set of all possible literals

I with each positive example delete the literals per above

I when all positive examples have been processed return the
conjunction of all remaining literals

I if all examples were negative, you have learned nothing

Note that this is obviously polynomial.

Conjunctive Normal Form

A conjunctive normal form formula is conjunction of disjunctions,
more in particular, a k-CNF formula T is

I an expression of the form T = T1 ∧ · · · ∧ Tj

I in which each Ti is the disjunction of at most k literals

Note that even if we do not specify a maximal j ∈ N
I something we don’t do on purpose

k-CNF is obviously finite. For there are only

k∑
i=1

(
2n

i

)
disjunctions of at most k literals. Without specifying a maximal j ,
computing an expression for the sample complexity is rather
cumbersome and is, thus, left as an exercise.

Learning k-CNF

For each possible disjunction u1 ∨ . . . ∨ ul of at most k literals
from {x1, . . . , xn} we introduce a new variable w(u1,...,ul), where the
truth value of this new variable is determined by

w(u1,...,ul) = u1 ∨ . . . ∨ ul

If we now transform our examples to these new variables, learning
k-CNF reduces to learning Cm, which is polynomial.

Note that by transforming the examples, we transform the
distribution. This doesn’t matter as PAC learning is agnostic to
the underlying distribution.

Disjunctive Normal Form

Similarly to the conjunctive normal form, we can consider
disjunctive normal form formula, i.e., disjunctions of conjunctions.
More in particular, we consider k-DNF formula, which consist of

I the disjunction of at most k terms

I where each term is the conjunction of at most n literals

(note that more than n literals lead to an always false term
anyway).

There are 3nk such disjunctions, and hence, the sample complexity
is given by

mk-DNF ≤
⌈
nk log(3) + log(1/δ)

ε

⌉

Learning k-DNF

Given that we need a modest (polynomial) sample size and
learning, e.g., k-CNF is polynomial, you may expect that learning
k-DNF is polynomial as well.

I unfortunately, it is not

Well, more precisely, we do not know

I the reduction from the graph k-colouring problem (which is
NP hard)

I to k-DNF learning (i.e., this is in NP)
I turn the graph into a sample and show that there exists a

corresponding k-DNF formula iff the graph is k-colourable)

I shows that there is no efficient (polynomial) algorithm for
k-DNF learning

I unless RP = NP
I if H is (polynomially) PAC learnable, ERMH is in RP

I which is considered unlikely

Randomised Polynomial

The class RP consists of those decision problems (Yes/No
problems) for which there exists a probabilistic algorithm (it is
allowed to flip coins while running), such that

1. the algorithm is polynomial in its input size

2. if the correct answer is NO, the algorithm answers NO

3. there exists a constant a ∈ (0, 1) such that if the correct
answer is YES, the algorithm will answer YES with probability
a and NO with probability 1− a.

note that often a ≥ 1/2 is assumed, but that is not necessary.

Obviously, P ⊆ RP ⊆ NP

I for both relations it is, however, unknown whether or not
equality holds

Why Randomised is Good

The importance of RP algorithms is that

I if the answer is YES, you are done

I if the answer is NO, you simply run again, after all,

∀a ∈ (0, 1) : limn→∞(1− a)n = 0

I hence, if after a 1000 trials you only have seen NO, the
answer probably is NO

Note that since the algorithm is polynomial, one run takes
polynomial time, this loop is a viable approach

The best known problem in RP (well, the one I learned when I was
a student) is probably primality testing

I although there is a polynomial algorithm since 2002.

But, first a simple example of a randomised algorithms

Searching for a

We have array A of size n

I half the entries are a

I the other half is b

and we want to find an entry a

The simple solution is to

I to iterate over A[i] until an a is encountered

This is an O(n) algorithm

I can we do it faster?

By randomization we can, probably

Randomised Search

The idea is simple

I choose k elements from A
I inspect the k entries

I no a among them: probability
(
1
2

)k
I at least one a: probability 1−

(
1
2

)k
Since k is a constant this is Θ(1) algorithm

You can always run it multiple times

Miller Rabin

From elementary number theory: is n prime:

I n is presumed prime, hence n− 1 is even (you are not going to
test whether or not 2 is prime, are you?)

I hence, n − 1 = 2rd , for an odd d

If there is an a ∈ {0, 1, . . . , n} such that

1. ad 6≡ 1 mod n and

2. ∀s ∈ 0, . . . , r − 1 : a2
sd 6≡ −1 mod n

then n is not prime

The co− RP algorithm is, thus:

I choose a random a ∈ {0, 1, . . . , n}
I perform the tests above

I if the answer is NO, you are done (≥ 3/4 of the possible a
values will witness NO if n is composite)

I otherwise, repeat as often as you want.

Wait A Second!

Both CNF and DNF are normal forms for Boolean expressions
I this means in particular that every CNF formula can be

rewritten in a DNF formula and vice versa
I note that k disjuncts do not necessarily translate to k

conjuncts or vice versa
I hence our liberal view of k-CNF

So, how can it be that

I PAC learning CNF is polynomial

I while PAC learning DNF is not?

The reason is simple rewriting is (probably) harder than you think:

I learning a CNF and then rewriting it to a DNF is in NP

I learning a CNF is easy, so rewriting is hard

In learning:

representation matters

A Larger Class

Each k-CNF formula, each k-DNF formula, and each Cn formula
determines a subset of Bn (the set of boolean n-tuples)

I the subset of Bn that renders the formula true

What if we want to learn arbitrary subset of Bn? This is known as
the universal concept class Un.

Note that |Un| = 22
n
, finite, but very large. Per our theorem, the

sample complexity is in the order of⌈
2n log(2) + log(1/δ)

ε

⌉
Which is exponential in n, the number of variables. So, yes Un is
finite and hence PAC learnable, but we will need exponential time
(to inspect exponentially many examples).

I it is not PAC learnable in any practical sense

In General

PAC learning is obviously in NP

I if I claim a solution, you can easily check it

In fact, a similar claim can be made for all learning algorithms

In other words, learning is easy if

P = NP

For some people this is a reason to believe that

I P 6= NP

I think that such arguments are silly

PAC Learning Revisited

The examples k-DNF and Un tell us that we should be more
restrictive. Leslie Valiant (one of the inventors of PAC learning for
which he got the 2010 ACM Turing award) requires:
I that the mapping mH : (0, 1)2 → N is polynomial

I more precisely poly(1/ε, 1/δ, n, |H|)
I as well as that the learning algorithm A runs in polynomial

time.
I more precisely poly(1/ε, 1/δ, n, |H|)

Recall that the n in poly(1/ε, 1/δ, n, |H|) is the dimensionality of
our data. So, e.g., Un is not PAC learnable in the sense of Valiant
and k-DNF probably isn’t either

For the moment, we will not require these conditions,

I we will return to the first one later in the course

Loosening Up

Up until now, we have assumed that

I H contains a hypothesis that is consistent with the examples

Loosely speaking (a bit too loose):

I we have assumed that H contains the true hypothesis

This is in practice not very often a realistic assumption

I would human behaviour really be governed by a polynomial?

That is, it is reasonable to assume that LD(h) > 0 for all h ∈ H

A reasonable question is then:

I how much worse does our estimate of the loss get by using a
sample?

I i.e., how big is |LD(h)− LD(h)| for a finite H?

According to Hoeffding

Hoeffdings inequality tells that:

For any ε > 0, for any D an i.i.d. sample of size m, and
for any hypothesis h : X → {0, 1}:

PD∼Dm (|LD(h)− LD(h)| ≥ ε) ≤ 2e−2mε
2

A little algebra then tells us that:

For a given hypothesis h : X → {0, 1} and for any δ > 0
we now with probability ate least 1− δ:

LD(h) ≤ LD(h) +

√
log 2

δ

2m

Now, all we have to do is go from a single hypothesis to H

Learning, the Finite, Inconsistent, Case

For a finite hypothesis set H, an i.i.d. sample of size m, and any
δ > 0, we know with probability at least 1− δ that:

∀h ∈ H : LD(h) ≤ LD(h) +

√
log |H|+ log 2

δ

2m

Proof:

P (∃h ∈ H : |LD(h)− LD(h)| > ε)

= P ((|LD(h1)− LD(h1)| > ε) ∨ · · · ∨ (|LD(hk)− LD(hk)| > ε))

≤
∑
h∈H

P (|LD(h)− LD(h)| > ε)

≤ 2|H|e−2mε2

Solving δ = 2|H|e−2mε2 finishes the proof.

At What Cost?
In the consistent case, our bound is in terms of

I log |H|, log 1
δ , and 1

m

In the inconsistent case

I it is in the square root of such terms

More in particular this means that

I we need the square of the number of examples in the
inconsistent case vs the consistent case for the same accuracy

In other words
I assuming the true hypothesis is in H gives you a square root

advantage
I your algorithm will finish far quicker

I if you give up this assumption, you need a far bigger sample
I your algorithm will become considerably slower

Does this mean that one should simply assume consistency?

I No, of course not, one should only make realistic assumptions
when modelling data

Loosening Up Further

There are two further assumptions in our definition of PAC
learning that could do with relaxation:
I we assume that our data labelling is governed by a function

I not very realistic, it doesn’t allow for noise or errors

I it is completely tailored to one learning task
I concept learning, i.e., binary classification

We loosen the first by agnostic PAC learning and the second by
allowing arbitrary loss-functions.

Classification Reconsidered
As noted on the previous slide, assuming that the the data is
labelled by a function is not very realistic

I losing this assumption means that we go back to a probability
distribution on X × Y , i.e.,

D = D|X × D|Y |X = X × Y

For the (usual) two-class classification problem we thus have:

X × {0, 1} ∼ D

In this setting the best label prediction is

fD =

{
1 if P(y = 1 | x) ≥ 1

2
0 otherwise

which is known as the Bayes optimal prediction. Since we do not
know D we cannot hope to do as good as this predictor. What we
can hope is that we do not do much worse.

Agnostic PAC Learning
A hypothesis class H is agnostic PAC learnable if there exists a
function mH : (0, 1)2 → N and a learning algorithm A with the
following property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over X × Y

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) + ε

In other words, A yields a result which is probably close to the best
possible result.

Note that if the realizability assumption holds, agnostic PAC
learning reduces to (the previous definition of) PAC learning; after
all, that assumption tells us that minh′∈H LD(h′) = 0

Loss Functions

Until know we focussed on one definition of loss

I our aim was to minimize the number of errors

While this may seem reasonable for a two-class classification it
isn’t always

I suppose that a simple knock on the head saves your life if you
suffer from X

I clearly misclassifying you as not suffering from X is much
worse than the other way around

The general setting is: we have a stochastic variable Z with
distribution D and a set of hypothesis H. A loss function l is a
function

l : Z ×H → R+

The loss of a hypothesis h ∈ H is then defined by

LD(h) = Ez∼Dl(z , h)

PAC Learning, The General Case

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function l : Z ×H → R+ if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over Z

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) + ε

Note that this general formulation is due to Vapnik and
Chervonenkis (1971, much earlier than Valiant). Vapnik is the
founder of statistical learning theory based on structural risk
minimization rather than empirical risk minimization

Concluding Remarks

Now we know what PAC learning is

I it is basically a framework that tells you when you can expect
reasonable results from a learning algorithm

I that is, it tells you when you can learn

So, the big question is:

which hypothesis classes are PAC learnable?

Next time we will prove that finite hypothesis classes are also PAC
learnable in this more general setting

I the realizability assumption is not necessary for finite classes

Moreover, we will make a start with a precise characterization of
all PAC learnable hypothesis classes

I by introducing the VC dimension of a class of hypotheses.

