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Does Size Matter?



Volume

In the previous lecture we characterised Big Data by the three V’s

I Volume, Velocity, and Variety

As we already discussed, Volume and Velocity have a lot in
common. What we did not discuss is

I why is Volume a problem at all?

We will look at three aspects of this question:

I computational complexity (you are probably not surprised)

I the curse of dimensionality

I significance



A Small Network

The number of students enrolled in one of the department’s
programmes is in the order of 1500

I too big to know everyone

I but not dauntingly so

To support communication among the students and the staff

I one could build a simple CS-social network

From which we could directly compute fun facts and statistics like

I list all friends you have (O(n))

I compute the average number of friends (O(n2))

I determine the friendliest student (O(n2))

and so on and so forth; all easily done on a bog standard computer



Facebook
Purely by coincidence, another social network has

I in the order of 1.5 billion (1.5× 109) active users

Suppose that Facebook simply uses our (not very smart)
implementation for the fun facts of the previous slide.
I If it takes us a millisecond to compute all your friends, it will

take Facebook
I one million milliseconds = 1000 seconds ≈ 15 minutes

I If it takes us a millisecond to determine the friendliest
student, it will take Facebook
I one million × one million milliseconds ≈ 1 million × 15

minutes ≈ 10,000 days ≈ 25 years

A billion is really a big number: even quadratic problems are a
problem.

Preferably, algorithms should be O(n log n), or O(n), or even
better: sublinear. O(n3) is simply out of the question



The Curse of Dimensionality

While it may sound like the title of a comic book

I Tintin and the curse of dimensionality

it is actually the name of a serious problem for high dimensional
data:

I high dimensional spaces are rather empty

And Big Data is often (very) high dimensional, e.g.,

I humans have in the order of 20,000 genes

I in novels one encounters 5000 - 10,000 distinct words

hence, it is important to be aware of this problem

But first: what does it mean that high dimensional space is empty?



d-Cubes

A little calculus shows that the volume of a d-dimensional cube Cd

of width r is given by

V (Cd) =

∫
· · ·
∫
Cd

1 dx1 . . . dxd = rd

If we take a slightly smaller d-cube λCd with width λr . we
obviously have

V (λCd) = λd × rd = λdV (Cd)

Since for any λ ∈ [0, 1) and for any r ∈ R we have that

lim
d→∞

V (λCd)

V (Cd)
= lim

d→∞

λdV (Cd)

V (Cd)
= lim

d→∞
λd = 0

we see that the higher d , the more of volume of Cd is concentrated
in its outer skin of Cd : that is were the most points are.



d-Balls

Any first year calculus course teaches you that the volume of a d
dimensional sphere Sd with radius r is given by

V (Sd) =

∫
· · ·
∫
Sd

1 dx1 . . . dxd =
π

d
2

Γ(d2 + 1)
rd

So again, for the d-ball λSd we have

V (λSd) =
π

d
2

Γ(d2 + 1)
λd rd = λdV (Sd)

And, again, for any λ ∈ [0, 1) and for any r ∈ R we have that

lim
d→∞

V (λSd)

V (Sd)
= lim

d→∞

λdV (Sd)

V (Sd)
= lim

d→∞
λd = 0

Again, the volume is in an ever thinner outer layer.



d-Anything

This observation doesn’t only hold for cubes and sphere. For, if
you think about, it is obvious that for any (bounded) body Bd in
Rd we have that

V (λBd) = λdV (Bd)

So, for all sorts and shapes we have that

the higher the dimension, the more of the volume is in an
(ever thinner) outer layer

In other words

In high dimensional spaces, points are far apart



Yet Another Illustration

Another way to see this is to consider a d-cube of width 2r and its
inscribed d-ball with radius r :

lim
d→∞

(
π

d
2

Γ( d
2

+1)
rd
)

(2r)d
= lim

d→∞

π
d
2

Γ(d2 + 1)2d
= 0

If we have a data point and look at the other points within a given
distance

we’ll find fewer and fewer the higher d is.

That is, again we see that

in high dimensional spaces, points are far apart

In fact, under mild assumptions1 all points are equally far apart!
That is, you are searching for the data point nearest to your query
point: and the all are equally qualified.

1When is ”Nearest Neighbor” Meaningful, Beyer et al, ICDT’99



So, Why is this Bad? Similarity

The assumption underlying many techniques is that

I similar people behave similarly

For example,

I if you are similar to (a lot of) people who repayed their loan,
you will probably repay

I if (many) people similar to you liked Harry Potter books,
you’ll probably like Harry Potter books

It is a reasonable assumption

I would we be able to learn if it doesn’t hold at all?

and it works pretty well in practice. But what if

I no one resembles you very much?

I or everyone resembles you equally much?

in such cases it isn’t a very useful assumption



Why is it Bad? Lack of Data

Remember, we try to learn the data distribution. If we have d
dimensions/attributes/features... and each can take on v different
values, then we have

vd

different entries in our contingency table. To give a reasonable
probability estimate, you’ll need a few observations for each cell.
However

I vd is quickly a vast number, overwhelming the number of
Facebook users easily.

After all,
230 > 109

and 30 is not really high dimensional, is it? And 240 is way bigger
than 109

So, we talk about Big Data, but it seems we have a lack of data!



Are We Doomed?

The curse of dimensionality seems to make the analysis of Big
Data impossible:

I we have far too few data points

I and the data points we have do not resemble each other very
much

However, life is not that bad:

data is often not as high-dimensional as it seems

After all, we expect structure

I and structure is a great dimensionality reducer

One should, however, be aware of the problem and techniques such
as feature selection and regularization are very important in
practice.



Significance

The first two consequences of ”Big” we discussed

I computational complexity and

I the curse of dimensionality

are obviously negative: ”Big” makes our life a lot harder.

For the third, significance, this may seem different

I ”Big” makes everything significant

However, that is not as nice as you might think. Before we discuss
the downsides, let us first discuss

I statistics and their differences

I what we mean by significance

I and the influence of ”Big” on this



Statistic

A statistic is simply a, or even the, property of the population we
are interested in. Often this is an aggregate such as the mean
weight.

If we would have access to the whole population – if we knew the
distribution D – we would talk about a parameter rather than a
statistic. We, however, have only a sample – D – from which we
compute the statistic to estimate the parameter.

And, the natural question is:

how good is our estimate?

Slightly more formal, how big is

‖β − β̂‖?



Sampling Distribution

The problem of using a sample to estimate a parameter is that we
may be unlucky

I to estimate the average height of Dutch men, we happen to
pick a Basketball team

The statistic itself has a distribution over all possible samples

I each sample yields its own estimate

This distribution is known as the sampling distribution

The question how good our estimate is depends on the sampling
distribution, There are well-known bounds

I without assumptions on the data distribution

I but also for given distributions (obviously tighter)

Before we discuss such bounds, we first recall the definitions of
Expectation and Variance



Expectation

For a random variable X , the expectation is given by:

E(X ) =
∑

Ω

x × P(X = x)

More general, for a function f : Ω→ R we have

E(f (X )) =
∑

Ω

f (x)× P(X = x)

Expectation is a linear operation:

1. E(X + Y ) = E(X ) + E(Y )

2. E(cX ) = cE(X )



Expectation of a Sample
Let Xi be independent identically distributed (i.i.d) random
variables

I e.g., the Xi are independent samples of the random variable X

Consider the new random variable

1

m

m∑
i=1

Xi

Then

E

(
1

m

m∑
i=1

Xi

)
=

1

m
E

(
m∑
i=1

Xi

)

=
1

m

m∑
i=1

E(Xi )

=
m

m
E(X ) = E(X )



Conditional Expectations

Like conditional probabilities there are conditional expectations.
Let F ⊆ Ω be an event, then

E(X | F ) =
∑

Ω

x × P(X = x | F )

If a set of events {F1, . . . ,Fn} is partition of Ω, i.e.,

I ∀i , j ∈ {1, . . . , n} : i 6= j ⇒ Fi ∩ Fj = ∅
I
⋃

i∈{1,...,n} Fi = Ω

then
E(X ) =

∑
i

P(Fi )E(X | Fi )

that is, the unconditional expectation is the weighted average of
the conditional expectations



Variance

The variance of a random variable is defined by

σ2(X ) = Var(X ) = E((X − E(X ))2)

The standard deviation is the square root of the variance

σ(X ) =
√

Var(X ) =
√

E((X − E(X ))2)

Some simple, but useful, properties of the variance are:

1. Var(X ) ≥ 0

2. for a, b ∈ R, Var(aX + b) = a2Var(X )

3. Var(X ) = E(X 2)− E(X )2

4. Var(X ) ≤ E(X 2)



Variance of a Sample

Let Xi be independent identically distributed (i.i.d) random
variables

I e.g., the Xi are independent samples of the random variable X

Consider again the random variable

1

m

m∑
i=1

Xi

Then

Var

(
1

m

m∑
i=1

Xi

)
=

1

m2
Var

(
m∑
i=1

Xi

)

=
m

m2
Var(X ) =

Var(X )

m

The larger the number of samples, the smaller the variance



Covariance

If we have two random variables X and Y , their covariance is
defined by

Cov(X ,Y ) = E((X − E(X ))(Y − E(Y )))

or, equivalently, by

Cov(X ,Y ) = E(XY )− E(X )E(Y )

Which immediately tells us that if X and Y are independent, then
their covariance Cov(X ,Y ) = 0. Note that the reverse is not true.

Moreover,

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )



Correlation
Although we will not use it today, it would feel odd to recall
covariance but not its normalised version known as correlation. If
both Var(X ) and Var(Y ) are finite, their correlation is given by:

Corr(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

From this definition it is easy to verify that

−1 ≤ Corr(X ,Y ) ≤ 1

I If there is a linear relation between X and Y , i.e., Y = aX ,
then |Corr(X ,Y )| = 1

I If X and Y are independent then Corr(X ,Y ) = 0

Note that again Corr(X ,Y ) = 0 does not imply independence

I in fact Y may be completely determined by X

For that reason, mutual information may be a better estimate of
the relationship between X and Y .



Markov’s Inequality

With Expectation and Variance knowledge refreshed, let us return
to the quality of our estimates. The first question is:

What is the probability that the value of a random variable
X is far from its expectation?

This question is answered by Markov’s inequality:

For a non-negative random variable X : Ω→ R, i.e., X (e) ≥ 0,
and positive real number a:

P(X ≥ a) ≤ E(X )

a

Clearly, this isn’t a very strong bound, e.g.,

I the probability that X ≥ E(X ) is bounded by 1

I the probability that X ≥ aE(X ) is bounded by 1
a

but it does hold for all possible distributions!



Proof

Let Y = {e ∈ Ω | X (e) ≥ a}, then

E(X ) =
∑

Ω

X (e)P(e)

=
∑
Y

X (e)P(e) +
∑
Ω\Y

X (e)P(e)

≥
∑
Y

X (e)P(e) (∀s : X (e)P(e) ≥ 0)

≥
∑
Y

aP(e) (∀e ∈ Y : X (e) ≥ a)

= a
∑
Y

P(e) = aP(Y )

That is, E(X ) ≥ aP(X ≥ a) and we are done.



Chebyshev’s Inequality

Markov’s inequality doesn’t refer to the variance. His advisor
Chebyshev has an inequality that does:

Let X : Ω→ R be a random variable and let a > 0 be a real
number then:

P(|X − E(X )| ≥ a) ≤ Var(X )

a2

The proof is easy, use the random variable (X − E(X ))2 and plug
it into Markov’s inequality:

P(|X − E(X )| ≥ a) = P((X − E(X ))2 ≥ a2)

≤ E((X − E(X ))2)

a2
=

Var(X )

a2



Chebyshev on a Sample

Let Xi be independent identically distributed (i.i.d) random
variables

I e.g., the Xi are independent samples of the random variable X

such that Var(Xi ) < 1 and denote E(Xi ) = µ Then for any
δ ∈ (0, 1) we have that

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

1

δm

)
≥ 1− δ

That is, with sample size of 100, we are already for 99% sure that
our sample average is within a distance of 1 of the distribution’s
mean.
More in general, the difference is bounded by the square root of
the sample size.



Proof

Consider the random variable:

1

m

m∑
i=1

Xi

and recall that

I E
(

1
m

∑m
i=1 Xi

)
= E(X ) = µ

I Var
(

1
m

∑m
i=1 Xi

)
= Var(X )

m

Plug it into Chebyshev’s inequality and we get:

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ a

)
≤ Var(X )

ma2
≤ 1

ma2

Set δ = 1
ma2 , i.e., a =

√
1
δm and we are done.



Chernoff’s Bounds

If we know more about the Xi we can derives tighter bounds.

Let X =
∑n

i=1 Xi where P(Xi ) = pi ,P(Xi = 0) = 1− pi and the Xi

are independent. Let µ = E(X ) =
∑n

1 pi , then

1. ∀δ > 0 : P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δ
µ

2. 0 < δ < 1 : P(X ≤ (1− δ)µ) ≤ e−
δ2

2
µ

3. Hence, 0 < δ < 1 : P(|X − µ|) ≥ δµ) ≤ 2e−
µδ2

3

Note we are not going to prove these bounds. Next, note that if all
the pi are the same we talk about Bernoulli trials, otherwise it is
known as Poisson trials.



Example: Coin Tosses

Let the Xi represent tosses of a fair coin with pi = 0.5 Denote by
Sn the number of heads in n tosses, i.e., Sn =

∑n
1 Xi and

E(Sn) = n
2 . Then.

Chebyshev:
P(|Sn/n − 1/2| ≥ ε) ≤ 1

4nε2 . If we choose ε = 1/4, we get:

P(|Sn/n − 1/2| ≥ 1/4) ≤ 4/n

Chernoff:
P(|Sn − n/2| ≥ δn/2) ≤ 2e−nδ

2/6. Choose δ = 1/2 and we get

P(|Sn/n − 1/2| ≥ 1/4) ≤ 2e−n/24

That is, Chernoff is massively smaller that Chebyshev: knowing the
distribution gives you a much tighter bound



Hoeffding’s Inequality

The concentration measure that we will use over and over again is
by Hoeffding.

Let Z1, . . . ,Zm be a sequence of i.i.d. random variables and let
Z̄ = 1

m

∑m
i=1 Zi . Furthermore, Let E(Z̄ ) = µ and assume that

P[a ≤ Zi ≤ b] = 1, for every i . Then, for any ε > 0, we have

P

[∣∣∣∣∣ 1

m

m∑
i=1

Zi − µ

∣∣∣∣∣ > ε

]
≤ 2e

−
(

2mε2

(b−a)2

)

We will not prove it right now, but later in this course we will prove
a slightly stronger result (from which Hoeffding easily follows)



So, What?

We introduced a number of concentration measures and you might
be thinking:

so what?

The pragmatic reason is that we will use (some of these) later in
the course. The more important reason is that all these measures
tell us the same thing:

the larger the sample, the closer our statistic is probably
to the true parameter

While this is intuitively obvious,

I these bounds tell you how close you can expect to be

I and how fast this scales with size

In fact, in a Big Data world, they tell us

I we can expect that all our estimates will be pretty accurate



Blessing and Curse

Clearly, this is good news

I or, is it?

Well, the answer is yes and no

Yes obviously it is good that we have an accurate view of
the world through our Big Data lens.

No because it will make even tiny differences appear
significant

To understand the latter we need to dive into statistical tests. But
it is already useful to consider the following (bogus) fact

I young men from Utrecht are (on average) significantly larger
than young men from Houten with a difference of 0.1 mm

is this useful or not? Is it the type of knowledge you hope Big
Data will bring us?



Statistical Testing

Suppose that we have taken a sample from the young men in
Utrecht we measured them, and perhaps even computed their
average height. Then we meet a new young man, can we say
something about

I how likely he is to live in Utrecht given his height?

Or we have sampled young men from both Utrecht and Houten
and computed the average height for both samples, Can we say

I whether or not both populations have the same average
height or not?

Or, many similar questions

This is the realm of statistical testing and it depends very much on
the sampling distribution we already met.



Question 1

We can turn our measurements of the heights of our sample of
young Utrecht men into a nice histogram

I if the height of our new acquaintance is somewhere smack in
the middle of this histogram, we have no reason to believe
that he is not living in Utrecht

I if he is, however, far taller than anyone in our histogram, we
would not be surprised to learn that he actually comes from
Brobdignag.

The crucial number people look at is

P(X ≥ lnew )

also known as a p value The important point (for now) is that

I you look at a histogram and decide from there whether or not
something is likely or not.



Question 2

When we sample from a population to estimate a parameter by
computing a statistic

I we know that this statistic is governed by a sampling
distribution

That is, if we have two different samples, the statistic will be
different for the two samples.

Now we have two samples and, thus, two statistics and we wonder
whether these two samples come from

I one and the same population (there is no difference between
Utrecht and Houten)

I or from two different populations (young men from Utrecht
are (on average) taller (or smaller) then young men from
Houten

How do we decide between these options?



Given the Sampling Distribution

Assume that you know the sampling distribution of, say, the height
of young men from Utrecht, that is you have

I a histogram of all average heights of all possible samples

and you notice that the average height of the sample of young men
from Houten is smaller than 99% of the average height of all
possible samples of young men from Utrecht

I than it seems reasonably safe to conclude that young men
from Houten seem (on average) smaller than young men from
Utrecht

In fact, you could say

I that 99% of Utrecht samples would have a larger average
height

I and hence you are 99% sure that the two populations are
different.



Using Both Sampling Distributions

If we have both sampling distribution histograms, life is even better

I you can estimate a p value for the Houten sample to be from
the Utrecht sampling distribution

I and vice versa

If you are sure that your sample is either from Houten or from
Utrecht

I which is very much true in our example

The Bayes optimal decision is to chose for the population with the
largest probability

What do the two p values you estimated tell you about this choice?



How to get this Distribution

Our discussion on the preceding slides assumed that we have
access to the sampling distribution. In general we only have one
sample and no easy (affordable) way to get many more

I so it seems that we cannot use these ideas in practice

Fortunately, that isn’t true. There are two ways out
I if we have reasons to believe that a statistic, like the height,

follows a known distribution – like a Gaussian a.k.a. Normal
distribution – we can simply compute the p value
I this is the assumption that underlies much of the statistical

testing theory

I in all other cases, we can pull ourselves out of the problems by
our bootstraps
I yes, named after one of the tales of the (in)famous Baron

(von) Münchhausen



The Bootstrap

To go from one sample to many we use resampling.

I given a data set D
I create a bootstrap sample D ′

I sample a random element from D
I exactly |D| times (with replacement)

I and create many such equally sized samples

If we compute our statistic on each of these bootstrap samples

I we get a distribution that approximates the sampling
distribution.



Why Does the Bootstrap Work?

The intuition is not that difficult
I If you have a very, very large sample.

I sampling from that sample will be very similar to sampling
from the distribution

I For smaller samples (data sets)
I note that each “object” in your sample “represents” multiple

objects from the distribution
I by sampling with replacement you simulate the possibility that

you would sample more objects with the same characteristics
from the distribution

The proof that it works is elegant

I but uses some advanced maths for which unfortunately do not
have time



Large Means Narrow

The concentration measures we discussed today tell us that

large samples have a narrow sampling distribution

That is,

I almost all data is close to the mean

Since p values are concerned with the probability that you are “this
far” from the mean

I almost everything will have a small p value

That is,

the smallest difference will be statistically significant

Which is not the same as significant in the sense of (practically)
useful.



Spurious Correlations

There is another reason why this is bad:

Big Data means many spurious correlations

In fact, using, e.g.,

I Ramsey Theory, or

I Ergodic Theory, or

I Algorithmic Information Theory

one can actually prove that there will be correlations in big data,
even if it is completely random!
We will just look at an experiment of Jianqing Fan et al

(Challenges of Big Data analysis). Generate d independent N(0, 1)
samples – correlations are expected to be 0 – and look at

I the largest correlation of an Xj with X1 (left) and

I the maximal correlation of a weighted linear sum of 4
variables (regression) and X1 (right)



Spurious Correlations, The Picture
11/14/2016 F2.large.jpg (1280×646)
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Moreover, Multiple Testing

There is a another testing problem, when we have Big Data

I we will often check very many hypotheses

And if you test 20 random(!) hypotheses with a p value of 0.05
I you will on average have 1 significant result

I while being completely random

If you do many tests, you have correct your p values to be (more)
sure of seeing real effects. The simplest one is the

I Bonferonni correction

The rule is

I if you test m hypotheses for a significance of α

I you claim success for those whose p value is ≤ α/m
Note that Bonferroni is a rather conservative test

I significant results may be discarded as not significant

There are alternatives like the Holm procedure



Conclusions

Don’t get me wrong

I Big Data is good

It allows us to learn many things that were previously

I unattainable or (at least) hard

However, Big Data comes with its own problems, due to

I complexity, emptiness, and significance

Hence, we have to be careful

I in what we want to learn and how

Fortunately, as we will see in this course

I sampling is a good way to alleviate some of our problems


