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Recall: VC dimension

The previous time we introduced the VC dimension of a hypothesis
class H as:

The VC dimension of a set of hypotheses H is the size of the
largest set C ⊆ X such that C is shattered by H. If H can shatter
arbitrarily sized sets, its VC dimension is infinite.

Where a finite set is shattered by H if

|HC | = 2|C |

We now study the VC dimension of some finite classes, more in
particular: classes of boolean functions.



Finite Hypothesis Classes

If a finite hypothesis class H shatters a finite set C then

|H| ≥ |HC | = 2|C |

This immediately implies that

VC (H) ≤ log (|H|)

Clearly, the VC dimension can be smaller

I consider threshold functions that can take thresholds in
{1, . . . k}

I |H| = k , while VC (H) = 1

In other words,

I the difference between VC (H) and log (|H|) can be arbitrarily
large

I but log (|H|) is never the smallest



Monotone Monomials

Recall the class Cn of boolean expressions over n literals. A smaller
class C+

n (sometimes denoted by M+
n ) consists of the monotone

(positive) monomials

I no negations, just conjunctions of the variables

Clearly, a variable is either in such an expression or not. Hence,

|C+
n | = 2n

Hence, by the previous page:

VC
(
C+
n

)
≤ log (2n) = n

But, as we noted on the previous page, it could be smaller, a lot
smaller.

I however, it isn’t.

To prove that we are going to create a set of n elements that is
shattered by C+

n .



VC (C+
n ) = n

Let S consist of all 0/1-vectors of length n that have exactly

I n − 1 1’s

I and 1 0.

Denote by xi that element of S that has 0 for the i-th coordinate.

I if j = i : πj(xi ) = 0

I if j 6= i : πj(xi ) = 1

Let R ⊆ S be any subset of S . Define hR ∈ C+
n as

I the conjunction of all variables uj such that xj 6∈ R

Then we have:

hR(x) =

{
1 if x ∈ R
0 if x ∈ S \ R

That is, we have a classifier for any R ⊆ S : S is shattered. Hence,

VC
(
C+
n

)
= n



How About Cn?

It is easy to see that

I VC (C1) = 2

the monomials

I x and ¬x will do that for you.

Moreover, since C+
n ⊂ Cn : VC (C+

n ) ≤ VC (Cn)

I any set that can be shattered by C+
n can be shattered by Cn

So, it may appear that by allowing negations we increase the VC
dimension, because we now have that

n ≤ VC (Cn) ≤ log (|Cn|) = log(3n) = n log(3)

But, we don’t

I except for the case n = 1

No set of size n + 1 can be shattered by Cn if n ≥ 2



VC (Cn) = n
Let S = {s1, . . . , sn+1} be a set of n + 1, 0/1 vectors of length n,
that is shattered by Cn

I define Si = S \ {s i}
Because S is shattered by Cn there exists a mi ∈ Cn such that

I Si = S ∩mi , thus, ∀i , j : mi (s
j) = 0↔ i = j (0 = false)

But this means that:

I each s i contains a component s ih(i)
I each mi contains a literal lk(i)
I such that lk(i) is false on s ih(i), i.e., lk(i)(s

i
h(i)) = 0

Given that there are only n variables

I at least 2 of these literals lk(1), . . . , lk(i+1)

I must refer to the same variable, say lk(1) and lk(2)
I either lk(1) = lk(2), then lk(1)(s

1
h(1)) = lk(1)(s

2
h(2)) = 0, i.e,

m1(s1) = m1(s2) = 0. Contradiction

I or lk(1) = ¬lk(2), then either lk(1) or lk(2) is false on s3. Either
m1(s3) = 0 or m2(s3) = 0. Again a contradiction



D
(+)
n by Duality

Denote by

I D+
n the set of all disjunctions over at most n variables, again

no negations

I Dn the set of disjunctions over at most n literals

Note that for φ ∈ Cn and x ∈ {0, 1}n we have

φ(x)↔ ¬φ(¬x)

That is we have a duality between Cn and Dn and similarly
between C+

n and D+
n

By this duality we immediately have:

I VC (Dn) = n and

I VC (D+
n ) = n

In the end, it is just consistently switching

I 1’s to 0’s and vice versa



Monotone Formulas

We have seen that both

I C+
n , conjunctions of variables, has VC dimension n

I and D+
n , disjunctions of variables, has VC dimension n

The natural follow up question is

I what happens if we allow both conjunctions and disjunctions

I but no negations

This is the class of monotone boolean formulas,

I sometimes denoted by Mn

I note, without a +; perhaps because allowing negations as well
yields the class of all boolean functions
I which we will discuss later

The problem is thus: determine VC (Mn)



Sperner’s Theorem

To compute the VC dimension of Mn we need a result from
combinatorics known as Sperner’s Theorem.

Let X be a set of n elements

I a chain of subsets of X is a family of subsets Ai such that
∅ ⊆ A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊆ X

I an antichain is a family of subsets F such that for any two
elements A,B ∈ F :

A 6⊂ B ∧ B 6⊂ A

Sperner: if F is an antichain of X , then

|F | ≤
(

n

bn/2c

)
Note, an antichain is also known as a Sperner family of subsets.



Maximal Chains

Without loss of generality we assume that X = {1, . . . , n}. A
maximal chain in X obviously has length n + 1

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X

Such a maximal chain puts a total order on the elements of X

I the smallest element is the single element of A1

I the one-but-smallest is the new element in A2

I and so on and so on

Similarly, each total order on X defines a chain

I A1 consists of the smallest element

I A2 consists of the two smallest elements

I and so on and so on

That is, the total number of maximal chains equals the number of
permutations: n!



Maximal Chains and Antichains

Let A ⊆ X , with |A| = k. A maximal chain that contains A

I i.e., A = Ak in that chain

consists of

I A maximal chain for the set A
I followed by a chain for X \ A

I each set in the latter chained is extended by the union with A,
of course

This means that there are k!(n− k)! maximal chains containing A.

Note that if F is an antichain, than any chain can contain at most
one element of F

I If A and B are in a chain, then either A ⊂ B or B ⊂ A

I If A and B are in F , then both A 6⊂ B and B 6⊂ A



Proving Sperner

Recall that F is an antichain. The number of maximal chains that
contain an element of F (and thus exactly 1) is

I
∑

A∈F |A|!(n − |A|)! =
∑

A∈F n! |A|!(n−|A|)!n! = n!
∑

A∈F
1

( n
|A|)

Because there are in total n! maximal chains, we have

I
∑

A∈F
1

( n
|A|)
≤ 1

For binomial coefficients, the middle ones are the largest, hence

I
∑

A∈F
1

( n
bn/2c)

≤
∑

A∈F
1

( n
|A|)
≤ 1

Since

I
∑

A∈F
1

( n
bn/2c)

= |F |
( n
bn/2c)

We have that

|F | ≤
(

n

bn/2c

)



Back to Monotone Formula’s

Let S be the set of all assignments to {x1, . . . , xn} such that
exactly

I bn/2c variables are mapped to 1 (true)

Clearly, |S | =
( n
bn/2c

)
I this is the definition of

(a
b

)
Now choose some 0/1 labelling on S

I i.e., choose an arbitrary function g : S → {0, 1}
I we need to show that Mn contains that function

Define T (from true) by

T = {A ∈ S | g(A) = 1}

We need to construct a monotone formula f such that

f (A) = 1↔ A ∈ T ↔ g(A) = 1



Two Special Cases and f

g maps al variables to 0 (false)

I iff S = ∅
Clearly, the function false ∈ Mn. Hence we can assume S 6= ∅

If n = 1, we have only 1 variable which is either mapped to 1 or to
0

I a function that is obviously in M1

Hence we may assume that n > 1

Let f be the monotone function

f (z1, . . . xn) =
∨
A∈T

∧
i :A(xi )=1

xi

Given the assumptions made above, the disjunction isn’t empty
and neither is the conjunction



VC (Mn) ≥
(

n
bn/2c

)
Let B ∈ T , then the monomial∧

i :B(xi )=1

xi

is mapped to 1 by B and, thus, by f

For B ∈ S \ T , note that each monomial∧
i :A(xi )=1

xi

in f assigns 1 to exactly bn/2c variables and 0 to the rest. Since
B ∈ S \ T
I it assigns 0 to at least one of these bn/2c variables

Which means that f assigns 0 to B,

In other words, Mn shatters S which has
( n
bn/2c

)
elements. Hence

VC (Mn) ≥
( n
bn/2c

)
.



VC (Mn) ≤
(

n
bn/2c

)
Let S be a set of assignments such that |S | >

( n
bn/2c

)
. For each

A ∈ S define:
VA = {i | A(xi ) = 1}

Because of the size of S, Sperner’s theorem tells us the VA’a
cannot be an antichain. Hence, there are A1,A2 ∈ S such that

A1(xi ) = 1→ A2(xi ) = 1

Since the functions in Mn are monotone, this means:

∀f ∈ Mn : f (A1) = 1→ f (A2) = 1

In other words a labelling that maps A1 to 1 and A2 to 0 cannot
be constructed in Mn. In other words: VC (Mn) ≤

( n
bn/2c

)
Hence

VC (Mn) =

(
n

bn/2c

)



Adding Negations

In the case of Cn and Dn we saw that

I adding negation did not increase the VC dimension

So, it is reasonable to expect that

I the VC dimension of all boolean functions is the same as that
of Mn

This is, however,

not true!

The VC dimension of that set of hypotheses is strictly bigger.

Computing the exact dimension is pretty hard

I in fact, I am not aware of an exact expression

Bounding the dimension is easier

I for k-DNF we can compute a Θ bound

For the general case, we need some extra machinery. But first we
look at k-DNF



k-DNF

Recall that k-DNF consists of disjunctions

I each component (disjunct, consisting of conjunctions) is the
conjunction of at most k literals.

Computing the VC dimension exactly isn’t easy, giving a bound is:

For n, k ∈ N, let Dn,k be the set of k-DNF functions (expressions)
over {0, 1}n (i.e., in n variables). Then VC (Dn,k) = Θ(nk)

Recall:

I g(n) = O(f (n)) if there exist c , n0 such that
∀n ≥ n0 : g(n) ≤ cf (n) (i.e., upper bound)

I g(n) = Ω(f (n)) if there exist c , n0 such that
∀n ≥ n0 : g(n) ≥ cf (n) (i.e., lower bound)

I g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n))



VC (Dn,k) = O(nk)

The number of monomials of degree at most k (not identical false
or empty) is:

k∑
i=1

(
n

i

)
2i = O(nk) for fixed k

(2i , since the literals you choose are either a variable or its
negation).

Each k-DNF formula is the disjunction of a set of such terms

|Dn,k | = 2O(nk )

Which means:
VC (Dn,k) = O(nk)



VC (Dn,k) = Ω(nk)

Let S ⊆ {0, 1}n consist of those vectors

I that have exactly k entries equal to 1

Let R ⊆ S

I for each y = (y1, . . . , yn) ∈ R

I form the term ty as the conjunction of the literals ui such that
yi = 1

I ty has exactly k literals and

I ∀z ∈ S : ty (z) = 1↔ z = y

Hence, ∨
y∈R

ty is a classifier for R

That is, S is shattered by Dn,k . Since |S | =
(n
k

)
= Ω(nk) (for fixed

k). We have:
VC (Dn,k) = Ω(nk)



An Observation

From he results we have reached – perhaps even more from the
proofs of these results – one sees that

I the richer the model class, the higher the VC dimension.

This is, of course, completely logical as we have by definition that

H1 ⊆ H2 → VC (H1) ≤ VC (H2)

This observation, however, hints at a way to find good models:

I start with a very simple model class and pick the best
hypothesis

I if that is good, you are done. If not take a slightly richer class

This line of thought gives rise to structural risk minimization

I rather than empirical risk minimization

which we’ll later in this course



The Growth Function

Exact bounds for larger classes of boolean functions are not
known. We do, however, have a more general result which is based
on the growth function.

The VC dimension only looks at the largest set that H can shatter.
The growth function τH : N→ N looks much broader to the
classifications H contains:

τH(m) = max
C⊂X :|C |=m

|HC |

That is,

τH(m) = max
C⊂X :|C |=m

|{f (c1), . . . , f (cm)}f ∈H|

each f ∈ H produces a 0/1 vector of length m and τH tells you

I how many different vectors H can produce maximally



Growth Above VC

Clearly, if m ≤ d = VC (H) then τH(m) = 2m

I if there is a d sized set that H can shatter, the for each
smaller integer there is also a set that H can shatter

I restrict (actually project) the shattering to the lower
dimensional space.

It is more instructive what happens if m > d . The fact that H
cannot shatter a set of size m

I doesn’t mean that it is completely useless for sets of that size

It might, e.g., classify almost always almost correctly

I or it might do a horrible job for any m sized set.

Sauer’s Lemma tells us what to expect above d .

I and for Sauer we need Pajor



Pajor’s Lemma
Let H be any hypothesis class with VC (H) = d <∞. For any
C = {c1, . . . , cm}

|HC | ≤ |{B ⊆ C | H shatters B}|

To prove this by induction, first note that for m = 1, either both
sides are 1 or both are 2

I the empty set is shattered by all hypothesis classes.

Now assume that the inequality holds for all k < m

I Let C = {c1, c2, . . . , cm} and

I let C ′ = {c2, . . . , cm}
Define the two sets

Y0 = {(y2, . . . , ym) | (0, y2, . . . , ym) ∈ HC ∨ (1, y2, . . . , ym) ∈ HC}
Y1 = {(y2, . . . , ym) | (0, y2, . . . , ym) ∈ HC ∧ (1, y2, . . . , ym) ∈ HC}

Note that |HC | = |Y0|+ |Y1|, because Y1 contains those vectors
of HC that generate a vector in Y0 twice rather than once.



Proof Part 1

Since Y0 = HC ′ we have by the induction assumption that

|Y0| = |HC ′ | ≤ |{B ⊆ C ′ | H shatters B}|
= |{B ⊆ C | c1 6∈ B ∧H shatters B}|

Next, define H′ to contain pairs of hypotheses that agree on C ′

but disagree on c1:

H′ = {h ∈ H | ∃h′ ∈ H : (1− h′(c1), h2(c2), . . . , hm(cm))

= (h(c1), h(c2), . . . , hm(cm))}

Note that

I if H′ shatters B ⊆ C ′ it also shatters B ∪ {c1} and vice versa

I Y1 = H′C ′

So, by induction we can compute |Y1|



Proof Part 2

Because |C ′| < m our induction assumption yields

|Y1| = |H′C ′ | ≤ |{B ⊆ C ′ | H′ shatters B}|
= |{B ⊆ C ′ | H′ shatters B ∪ {c1}}|
= |{B ⊆ C | c1 ∈ B ∧H′ shatters B}|
≤ |{B ⊆ C | c1 ∈ B ∧H shatters B}|

Bringing all intermediate results together gives us:

|HC | = |Y0|+ |Y1|
≤ |{B ⊆ C | c1 6∈ B ∧H shatters B}|

+ |{B ⊆ C | c1 ∈ B ∧H shatters B}|
= |{B ⊆ C | H shatters B}|

Which was to be proven.



Sauer’s Lemma
Let H be any hypothesis class with VC (H) = d <∞.

I ∀m : τH(m) ≤
∑d

i=0

(m
i

)
I if m ≥ d : τH(m) < (em/d)d

Proof: Since VC (H) = d , H shatters no set with more than d
elements. Thus

|{B ⊆ C | H shatters B}| ≤
d∑

i=0

(
m

i

)

d∑
i=0

(
m

i

)
=

d∑
i=0

(
m

i

)(m
d

)i ( d

m

)i

≤
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)i

≤
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i

=
(m
d

)d (
1 +

d

m

)m

<
(em

d

)d
For last inequality use x > 0→ (1 + x/m)m < ex



A Simple Consequence

Let H be a finite hypothesis set with at least two hypothesis,
defined on a finite domain X

I unfortunately, 1 hypothesis isn’t going to work because:

Two hypothesis h1, h2 ∈ H are different if

I ∃x ∈ X : h1(x) 6= h2(x)

That is, h1 and h2 are different if they are different classifications
on the complete domain X

I there are, by definition, τH(|X |) such classifications.

That is:
τH(|X |) = |H|

By Sauer’s lemma we have |H| <
(
e|X |
d

)d
. Which means that

VC (H) ≥ log |H|
n + log e



Back to Boolean Functions

If VC (H) ≥ 3 the inequality of the previous slide can be improved

to VC (H) ≥ log |H|
n .

Hence, for any large enough class Bn of boolean functions on
{0, 1}n we have that

log |B|
n

≤ VC (Bn) ≤ log |B|

Clearly, these bounds are much weaker than the ones we had for
Mn

I but, then again, we talk about (almost) arbitrary sets here

Until now we studied classes of functions from {0, 1}n to {0, 1}.
An obvious generalization is to study sets of functions

I from Rn to {0, 1}.
We look at one such class, polynomials on R



Polynomials as Classifiers

Recall how we saw lines and hyperplanes as classifiers

I simply by distinguishing the half spaces above and below the
line/hyper plane

For polynomials we can do the same. First we define the set of
polynomials of degree at most n by

Pn =
n∑

i=0

aix
i

for ai ∈ R. Next, for any p ∈ Pn define the function
p+ : R→ {0, 1} by

p+(x) =

{
1 if f (x) > 0
0 if f (x) ≤ 0

The set of all these classifiers is known as pos(Pn) which we
denote by P>0

n . The question now is: determine VC (P>0
n )?



The Intuition
The fundamental theorem of algebra tells us that over the complex
numbers, a polynomial of degree n can be written as

β

n∏
i=1

(x − αi ) αi , β ∈ C

In other words, the graph of a real valued degree n polynomial

I crosses the x-axis at most n times

Each such crossing

I switches the classification from 1 to 0 or vice versa

Hence we can shatter at most n + 1 points in R

Each labelling of n + 1 points on the x-axis shows a number of
adjacent change pairs (1, 0) or (0, 1)

I construct your polynomial such that the roots are between the
two points of a change pair

This will give you a separating polynomial



From Intuition to Proof

Making this intuition precise using the language of the graphs of
polynomials involves lots of infuriating bookkeeping details

I wiggly lines are hard to keep under control

To make life easier

I for those who know some linear algebra

we map (embed) our data into a higher dimensional space

I and stretch the wiggly line in a linear structure: a hyperplane

I for the cognoscenti, we are using the ”kernel trick”, well
known from SVMs, with a polynomial kernel

The mapping we use is:

φ : z → (1, z , z2, . . . , zn)

mappingc ∈ R to the vector (1, c , c2, . . . , cn)T ∈ Rn+1



Using φ

A polynomial p is given by

p =
n∑

i=0

aix
i

We can rewrite this as a dot product by

p =
n∑

i=0

aix
i = (a0, a1, . . . an) · (1, x , x2, . . . , xn)

The second expression should remind you of a hyperplane, perhaps
all the more when evaluated on a particular instance

p(c) = (a0, a1, . . . an) · (1, c , c2, . . . , cn)

= (a0, a1, . . . an) · φ(c) = φ(p)(φ(c))

where φ(p) denotes the function on Rn+1



Polynomials, Hyperplanes, and Thresholds

More in particular, if we turn from Pn to P>0
n

I i.e., we turn from functions to classifiers

We see that

I p(c) > 0 on R translates to φ(p)(φ(c)) > 0 on Rn+1

Now, the expression: φ(p) denotes both

I a threshold function on Rn+1

I and a hyperplane on Rn

That is, we have a 1-1 correspondence between

I polynomial classifiers and

I threshold/hyperplane classifiers

This correspondence helps us to prove our results ”linearly”.



VC (P>0
n ) ≤ n + 1

Let S ⊆ Rn be a set, that is shattered by P>0
n . That is, for every

S+ ⊆ S there exists a p+ ∈ P>0
n such that

I p+(s) = 1 if s ∈ S+

I p+(s) = 0 if s ∈ S \ S+

In other words, there is a p ∈ Pn such that

I
∑n

i=0 ai s
i > 0 if s ∈ S+

I
∑n

i=0 ai s
i ≤ 0 if s ∈ S \ S+

Written in the language of dot products this says that there is a
vector a = (a1, . . . , an) and a constant a0 such that

I (a1, . . . , an) · (s, s2, . . . , sn) + a0 > 0 if s ∈ S+

I (a1, . . . , an) · (s, s2, . . . , sn) + a0 ≤ 0 if s ∈ S \ S+

Since z → (z , z2, . . . , zn) simply maps R→ Rn, we have a
separating hyperplane on Rn. Hence, |S | ≤ n + 1



Independent Vectors are Shattered

To prove that VC (P>0
n ) ≥ n + 1, we first prove that a set

{x1, . . . , xn} ⊂ Rn of independent vectors is shattered by threshold
functions on Rn.

Let A be the n × n matrix with the xi vectors as columns. This is
an invertible matrix

I otherwise the xi would not be independent

Let v be any of the 2n -1/+1 vectors that denote the labellings of
the xi
I then, the matrix equation Aw = v has a unique solution

I w = A−1v

The vector w gives you the threshold function that shatters the xi
for labelling v .

Hence, if we can prove that there exists a set {x0, . . . , xn} ⊂ R
that φ maps to a set of independent vectors in Rn+1 we are done.



Pn is a Vector Space

For that we need:

Let f , g ∈ Pn and λ ∈ R. Then clearly

I f + g =
∑n

i=0(ai + bi )x
i ∈ Pn and

I λf =
∑n

i=0(λai )x
i ∈ Pn

In other words, Pn is a vector space over R

Moreover, Pn is a n + 1-dimensional vector space with base

{1, x , . . . , xn}

For, clearly, these functions are linearly independent[
∀x ∈ R : λ0 + λ1x + λ2x

2 + · · ·+ λnx
n = 0

]
⇔ [∀i : λi = 0]

and every element of Pn can (by definition) be written as a linear
combination of these functions



n + 1 Independent Vectors

To see that φ creates n + 1 independent vectors we argue from
contradiction.

Assume that for every X = {x0, . . . , xn} ⊂ R we have that the set
of vectors φ(X ) = {φ(x0), . . . φ(xn)} is dependent

I then the vector subspace spanned by {φ(x) | x ∈ R} of Rn+1

has at most dimension n

I that is, it is contained in some hyperplane

I this means that there are λi , not all equal to 0, such that

∀x ∈ R :
n∑

i=0

λi (φ(x)) =
n∑

i=0

λix
i = 0

But that contradicts that {1, x , . . . , xn} is a base.



VC (P>0
n ) ≥ n + 1

We have:

I there exists a X = {x0, . . . , xn} ⊂ R
I such that φ(X ) = {φ(x0), . . . φ(xn)} is independent

I hence, φ(X ) is shattered by threshold functions

I hence, X is shattered by the corresponding polynomials

In other words, VC (P>0
n ) ≥ n + 1. We already had that

VC (P>0
n ) ≤ n + 1, hence we have

VC (P>0
n ) = n + 1

For the more general case, having more variables x1, . . . , xm see
exercise 6.12 in the book



A Simple Consequence

The fact that VC (P>0
n ) = n + 1 implies that the set of all

polynomials

P =
∞⋃
n=1

Pn

has VC (P) =∞
I if VC (P) would be finite, say k we have a contradiction with

VC (Pk) = k + 1

Hence, we cannot simply learn the best fitting polynomial using
the ERM rule

I recall that sets with infinite VC dimension are not PAC
learnable

For that one needs a more subtle approach

I Structural Risk Minimization

Which we mentioned before and is discussed later in this course.


