
Boosting

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

Universiteit Utrecht

Relax

The previous time we relaxed the definition of PAC learning by
giving up the requirement of uniformity

I this lead to non-uniform learning with the Structural Risk
Minimization rule

I and the result that this can be done when the hypothesis class
is the countable union of PAC learnable hypothesis classes

This time we loosen another constraint, viz.,

I the strong learning requirement
I and study the effect of this relaxation

I can we learn a larger class of hypothesis classes by relaxing this
constraint?

I to which the answer is: no. As we will see at the end of
today’s lecture

Before we do this, first recall the definition of PAC learning

PAC Learnability

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function l : Z ×H → R+ if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over Z

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) + ε

Strong Learnability

PAC learnable is a strong requirement in that we require that

I for every ε > 0 we get

I LD(h) ≤ minh′∈H LD(h′) + ε

That is, we require that

I we can can arbitrarily close to optimal

This is pretty strong and may be

I practically unattainable

Recall that we discussed how k-DNF is (probably) hard

I unless RP = NP

This means that it is not realistic to assume that we can get

I arbitrarily close to optimal in practice

So, why not make our learning requirement weaker?

I perhaps this will allow us to learn a wider class of hypothesis
classes in practice.

Weak Learning

If we want to relax the constraint of optimal result approximation

I the obvious question is how to relax it

In the familiar two class case
I coin tossing will give you a 50% score

I for each individual distribution it can be wildly different, of
course

I but since for each +1 minded distribution there is the mirror
image −1 preferring distribution

I so, on average over all distributions we’ll score 50/50

It seems eminently reasonable to require that

I our learning algorithm better than completely random guessing

I even if it is just a bit better

Such a learning algorithm is known as

I a weak learner

Weak PAC Learnable
A hypothesis class H is weak PAC learnable with respect to a set
Z and a loss function l : Z ×H → R+ if there exists a function
mH : (0, 1)→ N and a learning algorithm A with the following
property:

I for some γ > 0

I for every δ ∈ (0, 1)

I for every distribution D over Z

I when running A on m ≥ mH(δ) i.i.d. samples generated by D
I A returns a hypothesis h ∈ H such that with probability at

least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) +

(
1

2
− γ
)

Or more colloquially:

P
(
err(h) >

1

2
− γ
)
≤ δ

Slightly More Precise

With agnostic PAC learning we already realized that H does not
need to contain the true model. Still we were able to develop the
theory

I without referencing this true model

Now, even more than before it is important to realize this. Hence,
we could rework the definition of Weak PAC Learnable to
emphasize this point, i.e., making the definition even more precise
I however, both for

I consistency with the previous lectures
I lowering the probability of confusing you

I we refrain from doing so

When necessary we will point to this true model explicitly.

Weak Learner Examples

Weak learners tend to be very simple, such as
I half (hyper)spaces, e.g.,

I xi > ci when the data lives in Rn

I note that this simply means that we use an axis-parallel
hyperplane to distinguish the two classes

I if the data is not completely random one should be able to find
a hyperplane that does better than random

I more general are so-called decision stumps
I one level decision/classification trees
I that is a condition on a single attribute deciding between the

two classes
I again, if the data is not completely random one should be able

to find one such condition that outperforms random

Note that in both cases it is in general

I unlikely that these classifiers would be very strong in any
practical application

Intuition Sucks

Since in weak learning we are already satisfied with 51% accuracy
rather than, say, 99%

I your intuition might be that it is easier to learn weakly

I not only in an algorithmic sense
I but also in the formal sense that there are hypothesis classes

that can be learned weakly but not strongly
I true models that we can approximate weakly but not strongly

And this latter intuition is

completely false

Boosting is a technique that turns weak classifiers into strong
classifiers.

Weak and strong learning are equivalent.

Intuition by Committee

The intuition behind boosting is simple

I don’t use one weak learner

I use many and let them vote on the result

The idea is simple,

I learn a weak learner

I note on which parts of the data is performs well

I and on which parts of the data it performs bad

I learn a new weak learner on the part where the previous one
preforms badly

If one axis parallel hyperplane doesn’t separate the classes
I a collection of such hyperplanes might

I creating high dimensional “shoe boxes”
I that circumscribe positive or negative areas

Choosing Data

Training the same (weak) classifier on the same data

I obviously gives you the same model over and over again

In other words we should give our learning algorithm

I slightly different data every time

I focussing on parts we do bad and less on parts were we are
good

How we do that?

I By sampling from D = {(x1, y1), . . . , (xm, ym)}
I using a distribution that is adapted to misclassified data

points every time we learn a new classifier

Note that this is related to but different from

I the bootstrap we discussed earlier

there are techniques that do rely on the bootstrap and its
properties.

AdaBoost
D1((xi , yi)) := 1

m
For t = 1 to T

I sample a data set according to Dt

I get a weak hypothesis ht : X → {−1, 1}, minimizing

εt = P(xi ,yi)∼Dt
[ht(xi) 6= yi] =

1

2
− γt

I αt := 1
2 ln

(
1−εt
εt

)
I for i = 1 to m

Dt+1((xi , yi)) =
Dt((xi , yi))

Zt
×
{

e−αt if ht(xi) = yi
eαt if ht(xi) 6= yi

=
Dt((xi , yi))e−αtyiht(xi)

Zt

Output: H(x) = sign
(∑T

t=1 αtht(x)
)

Some Notes

I Zt is simply a normalizing term, ensuring that Dt+1 is a
probability distribution
I
∑

i Dt+1((xi , yi)) = 1

I if ht(xi) = yi we lower the probability of (xi , yi)

I if ht(xi) 6= yi we raise the probability of (xi , yi)
I usually we assume the weak learning hypothesis

I ∃γ : ∀t : γt ≥ γ > 0
I that is εt ≤ 1

2 − γ for all t
I with a finite number of rounds this is not a problem
I limit situations require a proof for H, it holds for all reasonable

weak learners

I The most important remark
I note that we construct a new hypothesis class!
I we create strong learners from weak learners
I they approximate the same true function
I making the true function PAC learnable

How Good is AdaBoost?

So, we now have procedure to construct a new hypothesis from a
given class of hypotheses

H(x) = sign

(
T∑
t=1

αtht(x)

)

Natural questions are:

I is H any better than the hi?

I if it is better, how fast does it get better/converge?

That is, the natural question is

what is the (empirical) loss of H?

To answer this question we have to analyse AdaBoost

I we do that in a few steps

I before formulating and proving the general theorem

Unravelling DT+1

Denote: F (x) =
∑T

t=1 αtht(x), i.e., H(x) = sign(F (x)). Then

DT+1((xi , yi)) = D1((xi , yi))× e−α1yih1(xi)

Z1
× · · · × e−αT yihT (xi)

ZT

=
D1((xi , yi))e−yi

∑T
t=1 αtht(x)∏T

t=1 Zt

=
D1((xi , yi))e−yiF (xi)∏T

t=1 Zt

=
e−yiF (xi)

m
∏T

t=1 Zt

A Note on Errors

Denote by 1A the indicator function on the set A, i.e.,

I 1A(x) = 1 if x ∈ A

I 1A(x) = 0 if x 6∈ A

More general for a condition φ, 1φ = 1 iff φ is true

Now note that

I if H(x) 6= y one of the two is +1, the other is -1

I H(x) = −1 iff F (x) ≤ 0

I hence yF (x) ≤ 0

I and so e−yF (x) ≥ 1

Which means that

1{H(xi)6=yi} ≤ e−yF (x)

Bounding the Training Error

For the error of H on the original data set, i.e., D1 we have

P(xi ,yi)∼D1
[H(xi) 6= yi] =

1

m

m∑
i=1

1{H(xi)6=yi}

≤ 1

m

m∑
i=1

e−yiF (xi)

=
1

m

m∑
i=1

DT+1((xi , yi))m
T∏
t=1

Zt

=
m∑
i=1

DT+1((xi , yi))
T∏
t=1

Zt

=
T∏
t=1

Zt DT+1 is a distribution

Computing Zt

Zt =
m∑
i=1

Dt((xi , yi))e−αtyiht(xi)

=
∑

i :yi=ht(xi)

Dt((xi , yi))e−αt +
∑

i :yi 6=ht(xi)

Dt((xi , yi))eαt

= e−αt (1− εt) + eαt εt

= e−αt

(
1

2
+ γt

)
+ eαt

(
1

2
− γt

)
=
√

1− 4γ2
t

Note that our choice for αt minimizes

I e−αt (1− εt) + eαt εt
I and thus Zt

I and thus the empirical error.

AdaBoost is Good

From this series of partial results, we conclude:

P(xi ,yi)∼D1
[H(xi) 6= yi] ≤

T∏
t=1

√
1− 4γ2

t ≤ e−2
∑T

t=1 γ
2
t

And if the weak learning assumption holds, we have:

P(xi ,yi)∼D1
[H(xi) 6= yi] ≤

(√
1− 4γ2

)T
≤ e−2γ2T

In other words, the error decreases exponentially

I at least for the error on the training set

The next question is, of course,

I what about the true error?

Towards a New Hypothesis Class
AdaBoost creates a new hypothesis class

I H is our base class

and the AdaBoost computes a weighted majority class

H(x) = sign

(
T∑
t=1

αtht(x)

)

We can rewrite this as

H(x) = σ(h1(x), . . . , hT (x))

where σ : RT → {−1, 1} is a linear threshold function of the form

σ(~x) = sign(~w · ~x)

for some ~w ∈ RT , like we encountered before. Denote the space of
all such classifiers by ΣT and recall that VC (ΣT) = T as we have
also seen before.

The New Hypothesis Class

From this brief discussion we see that from a base class H
AdaBoost creates a new class of hypotheses:

CT (H) = {x → σ(h1(x), . . . , hT (x)) | σ ∈ ΣT , hi ∈ H}

That is, to bound the true loss of AdaBoost

I we do it in terms of CT (H)

I rather than in terms of H directly

Moreover, note that since ΣT is infinite. so is CT (H)

I whether or not H is finite or infinite

For the bounds, however, it still matters whether H is finite or
infinite

The Finite Case

Let D = {x1, . . . , xm} with m ≥ T ≥ 1 Now consider a fixed
sequence of base hypotheses

I h1, . . . , hT ∈ H
Then we map D to a new sample D ′ ⊂ RT by

x → (h1(x), . . . , hT (x))

Since VC (ΣT) = T we have by Sauer’s Lemma∣∣τΣT
(|D ′|)

∣∣ ≤ (em
T

)T
Now the number choices for h1, . . . , hT is |H|T , hence∣∣τCT (H)(|D|)

∣∣ ≤ ∣∣τCT (H)(m)
∣∣ ≤ (em

T

)T
|H|T

Bounding the Loss

After the proof of the Fundamental Theorem we discussed how the
loss can be bounded using the growth function τH. Using this
bound with the result on the previous slide, we have that

The true loss of the combined classifier with probability at least
1− δ for a D of size m ≥ T is bounded by

LD(H) ≤ LD(H) +

√
32 [ln(em|H|/T) + ln(8/δ)]

m

And, if H is consistent with D (zero loss on the training set)

LD(H) ≤ 2T log(em|H|/T) + 2 log(2/δ)

m

Convergence in Terms of m
If we take

T =

⌈
ln(m)

2γ2

⌉
rounds, then under the weak learning assumption the training error
of H is bounded by

e−2γ2T <
1

m

Since |D| = m, this means that LD(H) = 0 and we have

LD(H) = O

(
1

m

[
ln(m)(ln(m) + ln |H|)

γ2
+ ln

1

δ

])
That is, in terms of the sample size m this bound converges to 0 as

O

(
(ln(m))2

m

)
and can thus be made smaller than any ε > 0
I moreover, it is polynomial in the parameters 1/γ, 1/ε, 1/δ and

log |H|

Convergence in Terms of T
From our bounds, we have that

LD(H) ≤ LD(H) +

√
32 [ln(em|H|/T) + ln(8/δ)]

m

≤ e−2γ2T + O

(√
T ln(m|H|/T) + ln(1/δ)

m

)

This is a function in T that

I has a (unique) global minimum for some T > 0

More precisely

I this function first decreases towards this global minimum

I and from then on increases

Too many rounds lead to overfitting, it seems best to run
Adaboost until the error on the training set is 0

I although in practice running it a bit longer sometimes
improves the result

The Infinite Case

Let VC (H) = d <∞, and D = {x1, . . . , xm} with m ≥ max{d ,T}
Choose H′ ⊂ H such that

∀h ∈ H∃h′ ∈ H′ : ∀xi h(xi) = h′(xi)

Since D is finite, so is H′, in fact, by Sauer’s Lemma

|H′| = |τH(|D|)| ≤
(em

d

)d
Similar to the finite case, we thus have:∣∣τCT (H)(|D|)

∣∣ ≤ (em
T

)T ∣∣H′∣∣T
≤
(em
T

)T (em
d

)dT

Bounding the Loss
Similar to the finite case, we get

Let AdaBoost run T steps on a sample D of size m with base
classifiers from H with VC (H) = d <∞. If m ≥ max{d ,T}, then
with probability of at least 1− δ, the combined classifier H satisfies

LD(H) ≤ LD(H) +

√
32[T ln(em/T) + d ln(em/d) + ln(8/δ)

m

And if LD(H) = 0, then

LD(H) ≤ 2T (log(2em/T) + d log(2em/d) + 2 log(2/δ)

m

And under the weak learning assumption, when T =
⌈

ln(m)
2γ2

⌉
LD(H) = O

(
1

m

[
ln(m)

γ2

(
ln(m) + d ln

(m
d

))
+ ln

(
1

δ

)])

How About m?

In the finite case, we saw that error in terms of the sample size

I decreased as O
(

(ln(m))2

m

)
and our error bound is polynomial in all the relevant parameters

I 1/γ, 1/ε, 1/δ and log |H|
That is, we see PAC Learning!

In the infinite case we have seen polynomial behaviour in the
relevant parameters

I but we don’t have a polynomial for the sample size

Unfortunately, that is a bit harder than for the finite case

I actually one can show that AdaBoost only looks at a fraction
of the complete training set

For that reason, we will not discuss that analysis.

Weak vs Strong Learning

Clearly, strong learnability implies weak learnability

I your strong learner satisfies all the requirements of a weak
learner

So, if the true model is strong learnable, it is also weak learnable.

Adaboost shows that this is also true the other way around

I we did not discuss all details, but still

If we have a weak learner for a true hypothesis

I Adaboost constructs a strong learner for it from a set of weak
learners

That is,

weak learnable and strong learnable are equivalent!

Recapitulating

From our analysis of the problem of classification

I making no assumption on the distribution D
We essentially “derived” the notion of

I Probably Approximately Correct Learning

And we learned that a hypothesis set is PAC learnable

I exactly when its VC dimension is finite

PAC learning has two constraints for which relaxing might increase
the class of learnable hypotheses

I uniform learnability

I strong learnability

In both cases we have seen that even if we relax

I we remain essentially in the realm of PAC learning

for distribution free learning, PAC learning is an eminently
reasonable approach

