
Frequent Itemset Mining

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

Universiteit Utrecht

Battling Size

The previous time we saw that Big Data

I has a size problem

And we ended by noting that

I sampling may help us to battle that problem

From now on, our one goal is

I to show how sampling helps in

Frequent Itsemset Mining

Why this context?

I Frequent pattern mining is an important topic in unsupervised
data mining with many applications

I Moreover, there are good theoretical results
I and the theory is based on sampling for classification
I which is a basic problem in machine learning

Posh Food Ltd
.
You own an upmarket supermarket chain, selling mindbogglingly
expensive food and drinks to customers with more money than
sense
I and you wonder how you can wring even more money out of

your customers

You think it might be a good idea to suggest items that go well
with what they already plan to buy.
I e.g., that a bottle of Krug Clos d’Ambonnay goes very well

with the Iranian Almas Beluga Caviar they just selected.

But, unfortunately, you are not as rich as your clientèle, so you
actually don’t know
I so, you decide to look for patterns in your data
I sets of items – also known as itemsets – that your customers

regularly buy together.

You decide to mine your data for all frequent itemsets
I all sets of items that have been bought more then θ times in

your chain.

Your First Idea

You collect all transactions over the past year in your chain

I there turn out to be millions of them, a fact that makes you
happy.

Since you only sell expensive stuff

I nothing below a thousand or so; you do sell potatoes, but only
”La Bonnotte”

you only have a few thousand different items for sale.

Since, you want to know which sets of items sell well,

I you decide to list simply all sets of items

I and check whether or not they were sold together θ times or
more.

And this is a terrible idea!

I as you discover when you break off the computation after a
week long run

Why is it Naive?
A set with n elements has 2n subsets

I 21000 ≈ 10301

The universe is about 14× 109 years old

I and a year has about 31 million seconds

A modern CPU runs at about 5Ghz = 5× 109 Hz

I which means that the universe is about
14× 109 × 31× 106 × 5× 109 = 2, 2× 1025 clockticks old

So, if your database fits into the CPU cache

I and you can check one itemset per clocktick

I and you can parallelise the computation perfectly

You would need

I 10301/(2, 2× 1025) ≈ 5× 10275 computers that have been
running in parallel since the big bang to finish about now!

The number of elementary particles in the observable universe is,
according to Wikipedia, about 1097

I excluding dark matter

A New Idea

Feeling disappointed, you idly query your database.

I how many customers bought your favourite combination?

I Wagyu beef with that beautiful white Italian truffle
accompanied by a bottle of Romanée-Conti Grand Cru

And to your surprise you find 0! You search for a reason

I plenty people buy Wagyu or white truffle or Romanée-Conti –
actually, they belong to your top sold items

I quite a few people buy Wagyu and Romanée-Conti and the
same holds for Wagyu and white truffle

I but no-one buys white truffle and Romanée-Conti
I those Philistines prefer a Chateau Pétrus with their truffle!

I on second thoughts: not a bad idea

Clearly you cannot buy Wagyu and white truffle and
Romanée-Conti more often

I than you buy white truffle and Romanée-Conti!

A Priori

With this idea in mind, you implement the A Priori algorithm

I simple levelwise search

I you only check sets of n elements for which all subsets of
n − 1 elements are frequent

After you finished your implementation

I you throw your data at it

I and a minute or so later you have all your frequent itemsets.

In principle, all subsets could be frequent

I and A Priori would be as useless as the naive idea

But, fortunately, people do not buy that many different items in
one transaction

I whatever you seem to observe on your weekly shopping run

Transaction Databases

After this informal introduction, it is time to become more formal
I we have a set of items I = {i1, . . . , in}

I representing, e.g., the items for sale in your store

I a transaction t is simply a subset of I, i.e., t ⊆ I
I or, more precisely, a pair (tid , t) in which tid ∈ N is the

(unique) tuple id and t is a transaction in the sense above

I Note that there is no count of how many copies of ij the
customer bought, just a record of the fact whether or not you
bought ij
I you can easily represent that in the same scheme if you want

I A database D is a set of transactions
I all with a unique tid, of course
I if you don’t want to bother with tid’s, D is simply a bag of

transactions

Frequent Itemsets

Let D be a transaction database over I
I an itemset I is a set of items (duh), I ⊆ I
I itemset I occurs in transaction (tid , t) if I ⊆ t

I the support of an itemset in D is the number of transaction it
occurs in

suppD(I) = |{(tid , t) ∈ D | I ⊆ t}|

I note that sometimes the relative form of support is used, i.e.,

suppD(I) =
|{(tid , t) ∈ D | I ⊆ t}|

|D|

I An itemset I is called frequent if its support is equal or larger
than some user defined minimal threshold θ

I is frequent in D ⇔ suppD(I) ≥ θ

Frequent Itemset Mining

The problem of frequent itemset mining is given by

Given a transaction database D over a set of items I,
find all itemsets that are frequent in D given the minimal
support threshold θ.

The original motivation for frequent itemset mining comes from
association rule mining

I an association rule is given by a pair of disjoint itemsets X
and Y (X ∩ Y = ∅), it is denoted by

X → Y

I where P(XY) ≥ θ1, is the (relative) support of the rule
I i.e., the relative suppD(X ∪ Y) = suppD(XY) ≥ θ1

I and P(Y |X) ≥ θ2 is the confidence of the rule

I i.e., suppD (XY)
suppD (X) ≥ θ2

Association Rules
The motivation of association rule mining is simply the observation
that
I people that buy X also tend to buy Y

I for suitable thresholds θ1, θ2

I which may be valuable information for sales and discounts

But then you might think

I correlation is no causation

I all you see is correlation

And you are completely right

I but why would the supermarket manager care?

I if he sees that ice cream and swimming gear are positively
correlated

I he knows that if sales of the one goes up, so will (likely) the
sales of the other

I whether or not there is a causal relation or both are caused by
an external factor like nice weather.

Discovering Association Rules
Given that there are two thresholds, discovering association rules is
usually a two step procedure

I first discover all frequent itemsets wrt θ1
I for each such frequent itemset I consider all partitions of I to

check whether or not that partition satisfies the second
condition
I actually one should be a bit careful so that you don’t consider

partitions that cannot satisfy the second requirement
I which is very similar to the considerations in discovering the

frequent itemsets

The upshot is that the difficult part is

I discovering the frequent itemsets

Hence, most of the algorithmic effort has been put

I in exactly that task

Later on it transpired that frequent itemsets

I or, more general, frequent patterns

have a more general use, we will come back to that, briefly, later

Discovering Frequent Itemsets
Obviously, simply checking all possible itemsets to see whether or
not they are frequent is not doable

I 2|I| − 1 is rather big, even for small stores

Fortunately, there is the A Priori property

I1 ⊆ I2 ⇒ suppD(I1) ≥ suppD(I2)

Proof

{(tid , t) ∈ D | I2 ⊆ t} = {(tid , t) ∈ D | I1 ⊆ I2 ⊆ t}
⊆ {(tid , t) ∈ D | I1 ⊆ t}

since I1 ⊆ I2 ⊆ t is a stronger requirement than I1 ⊆ t. So, we have

suppD(I2) = |{(tid , t) ∈ D | I2 ⊆ t}|
≤ |{(tid , t) ∈ D | I1 ⊆ t}| = suppD(I1)

If I1 is not frequent in D, neither is I2

Levelwise Search

Hence, we know that:

if Y ⊆ X and suppD(X) ≥ t1, then suppD(Y) ≥ t1.
and conversely,
if Y ⊆ X and suppD(Y) < t1, then suppD(X) < t1.

In other words, we can search levelwise for the frequent sets. The
level is the number of items in the set:

A set X is a candidate frequent set iff all its subsets
are frequent.

Denote by C (k) the sets of k items that are potentially frequent
(the candidate sets) and by F (k) the frequent sets of k items.

Apriori Pseudocode

Algorithm 1 Apriori(θ, I, D)

1: C (1)← I
2: k ← 1
3: while C (k) 6= ∅ do
4: F (k)← ∅
5: for all X ∈ C (k) do
6: if suppD(X) ≥ θ then
7: F (k)← F (k) ∪ {X}
8: end if
9: end for

10: C (k + 1)← ∅
11: for all X ∈ F (k) do
12: for all Y ∈ F (k) that share k − 1 items with X do
13: if All Z ⊂ X ∪ Y of k items are frequent then
14: C (k + 1)← C (k + 1) ∪ {X ∪ Y }
15: end if
16: end for
17: end for
18: k ← k + 1
19: end while

Example: the data

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Minimum support = 2

Example: Level 1

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

A 6 Yes
B 7 Yes
C 6 Yes
D 2 Yes
E 2 Yes

Example: Level 2

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

AB 4 Yes
AC 4 Yes
AD 1 No
AE 2 Yes
BC 4 Yes
BD 2 Yes
BE 2 Yes
CD 0 No
CE 1 No
DE 0 No

Example: Level 3

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

ABC 2 Yes
ABE 2 Yes

Level 3: For example, ABD and BCD are not level 3 candidates.
Level 4: There are no level 4 candidates.

Order, order

Lines 10-11 of the algorithm leads to multiple generations of the
set X ∪ Y .

For example, the candidate ABC is generated 3 times

1. by combining AB with AC

2. by combining AB with BC

3. by combining AC with BC

Order, order

The solution is to place an order on the items.

for all X ∈ F (k) do
for all Y ∈ F (k) that share the first k − 1 items with X do
if All Z ⊂ X ∪ Y of k items are frequent then
C (k + 1)← C (k + 1) ∪ {X ∪ Y }

end if
end for

end for

Now the candidate ABC is generated just once, by combining AB
with AC.

The order itself is arbitrary, as long as it is applied consistently.

The search space

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E

Item sets counted by Apriori

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E

The Complexity of Apriori

Take a database with just 1 tuple consisting completely of 1’s and
set minimum support to 1. Then, all subsets of I are frequent!
Hence, the worst case complexity of level wise search is O(2|I|) !

However, suppose that D is sparse (by far the most values are 0),
then we expect that the frequent sets have a maximal size m with
m << |I|

If that expectation is met, we have a worst case complexity of:

O

 m∑
j=1

(
|I|
j

) = O(|I|m) << O(2|I|)

More General

Apriori is not only a good idea for itemset mining

I it is applicable in pattern mining in general

I provided that some simple conditions are met

To explain this more general setting

I we briefly discuss partial orders

I lattices and

I Galois connections

Partial Orders

A partially ordered set (X ,�) consists of

I a set X

I and a partial order � on X
I that is, ∀x , y , z ∈ X :

1. x � x
2. x � y ∧ y � x ⇒ x = y
3. x � y ∧ y � z ⇒ x � z

An element x ∈ X is an upperbound of a set S ⊆ X if

∀s ∈ S : s � x

It is the least upperbound, aka join, of S if

∀y ∈ {y ∈ X | ∀s ∈ S : s � y} : x � y

Lowerbounds and greatest lowerbounds, aka meet, are defined
dually

Lattices
A partially ordered set (X ,�) is a lattice if each two elements
subset {x , y} ⊆ X

I has a join, denoted by x ∨ y

I and a meet, denoted by x ∧ y

If for S ,T ⊆ X ,
∨
S ,
∨

T ,
∧
S , and

∧
T exist, then

I
∨

(S ∪ T) = (
∨

S) ∨ (
∨
T)

I
∧

(S ∪ T) = (
∧

S) ∧ (
∧
T)

A lattice is bounded if it has a largest element 1, sometimes
denoted by >, and a smallest element 0, sometimes denoted by ⊥:

I ∀x ∈ X : 0 � x � 1

A lattice is complete

I if all its subsets have a join and a meet

Note that it immediately follows that

I each complete lattice is bounded

I each finite lattice is complete

Properties of Lattices
It is easy to see that for any lattice we have that ∨ and ∧ are

I idempotent x ∨ x = x ∧ x = x

I commutative x ∨ y = y ∨ x and x ∧ y = y ∧ x

I associative x ∨ (y ∨ z) = (x ∨ y) ∨ z and
x ∧ (y ∧ z) = (x ∧ y) ∧ z

Moreover, they obey the absorption laws:

I x ∨ (x ∧ y) = x

I x ∧ (x ∨ y) = x

Note that idempotency of ∨ and ∧ are a direct consequence of the
absorption laws

I in fact, they are a special case

Rather than starting from a partial order � one can define lattices
algebraically

I with two operators ∨ and ∧
I that follow the commutative, associative and absorption laws

given above

Two Examples of Lattices

In our discussion of frequent itemset mining we have already met
two lattices

1. The itemsets, (P(I),⊆)
I where ∪ is the join ∨
I ∩ is the meet ∧
I and the smallest and largest elements are ∅ and I, respectively

2. Subsets of the database (P(D),⊆)
I with the same operators as above
I and ∅ and D as minimal and maximal element

Both are finite and complete and we know that they have
distributive properties:

I x ∨ (y ∧ z) = x ∪ (y ∩ z) = (x ∪ y)∩ (x ∪ z) = (x ∨ y)∧ (x ∨ z)

I x ∧ (y ∨ z) = (a ∧ y) ∨ (x ∧ z)

Both are the nicest type of lattice you can imagine

I as is any subset lattice

Galois Connections

Let (A,≤) and (B,�) be two partially ordered sets. and let
F : A→ B and G : B → A be two functions

I (F ,G) is a monotone Galois connection iff

∀a ∈ A, b ∈ B : F (a) � b ⇔ a ≤ G (b)

I (F ,G) is a anti-monotone (antitone) Galois connection iff

∀a ∈ A, b ∈ B : b � F (a)⇔ a ≤ G (b)

In the monotone case we have for the closure operators
GF : A→ A and FG : B → B that

I a ≤ GF (a) and FG (b) � b

While in the anti-monotone case we have for these closure
operators that

I a ≤ GF (a) and b � FG (b)

A Galois Connection
There is an easy Galois connection between the two lattices
(P(I),⊆) and (P(D),⊆):

I define F : P(I)→ P(D) by

F (I) = {t ∈ D | I ⊆ t}

I define G : P(D)→ P(I) by

G (E) = {i ∈ I | ∀t ∈ E : i ∈ t}

=
⋂
t∈E

t

Now, note that for I ∈ P(I) and E ′ ∈ P(D) we have that

[
E ′ ⊆ F (I)

]
⇔
[
∀t ∈ E ′ : I ⊆ t

]
⇔

[
I ⊆

⋂
t∈E ′

t

]
⇔
[
I ⊆ G (E ′)

]
That is, the connection is anti-monotone

Closed Itemsets
With these F and G , we have the mapping

GF : P(I)→ P(I)

If an itemset I ∈ P(I) is a fixed point of GF

GF (I) = I

then I is called a closed itemset.

It is easy to see that I ∈ P(I) is closed iff

I ∀i ∈ I : i 6∈ I → suppD(I ∪ {i}) < suppD(I)

Call an itemset J ∈ P(I) maximal iff

I J is frequent in D

I ∀K ∈ P(I) : J ⊂ K → K is not frequent

Then we have

I maximal itemsets are closed

A Condensed Representation

Let C be the set of all closed frequent item sets and let J ∈ P(I).
I if ∀I ∈ C : J 6⊂ I then J is not frequent

I there is a maximal K ∈ C such that K ⊂ J and thus J is not
frequent

I if ∃I ∈ C : J ⊂ I , then J is frequent and we know its
frequency
I just look at the frequency of all I ∈ C : J ⊂ I and take the

frequency of those. Since that that itemset is frequent, so is J.

In other words C tells you all there is to know about the set of
frequent itemsets.

I it is a condensed representation of the set of all frequent
itemsets

The Power of Anti-Monotone

The reason that the A Priori principle holds

I and thus that the Apriori algorithm works

is that the Galois connection between P(I) and P(D) is
anti-monotone, because that means that

I I1 ⊆ I2 ⇒ F (I1) ⊇ F (I2)

I and suppD(I) = |F (I)|
In other words, we can use the Apriori Algorithm on any
anti-monotone Galois Connection.

We’ll explain this in more detail on the following few slides
following Manilla and Toivonen, Levelwise Search and Borders of
Theories in Knowledge Discovery, DMKD, 1997.

Theory Mining
Given a language L
I for defining subgroups of the database

I one example is L = P(I)

and a predicate q that

I determines whether or not φ ∈ L describes an interesting
subset of D

I i.e., whether or not q(φ,D) is true or not
I an example of q is suppD(I) ≥ θ

The task is to compute the theory of D with respect to L and q.
That is, to compute

T 〈(L,D, q) = {φ ∈ L | q(φ,D)}

Now, if L is a finite set with a partial order � such that

ψ � φ⇒ [q(φ,D)→ q(ψ,D)]

we have the anti-monotonicity to use Apriori

Queries and Consequences

Since L defines subgroups of the database

I it is essentially a query language

Most query languages naturally have a partial order

I either ”syntactically” D ` φ→ D ` ψ
I or semantically D � φ→ D � ψ

I or both can be used (think of monomials)

Furthermore, note that query languages can be defined for many
different types of data, e.g.,

I graphs

I data streams

I text

For all these types, and many more, we can define pattern
languages

I and compute all frequent patterns using levelwise search.

Complexity: the database perspective

We only looked at the complexity wrt the number of items of our
table. But, that is not the only aspect: what about the role of the
database?

I If we check each itemset separately, we need as many passes
over the database as there are candidate frequent sets.

I If at each level we first generate all candidates and check all
of them in one pass, we need as many passes as the size of
the largest candidate set.

If the database does not fit in main memory, such passes are costly
in terms of I/O.

Can we use sampling? Of course we can!

More on this next time

