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PAC Learnability

We have seen that H is

I PAC learnable if H is finite

I not PAC learnable if VC (H) =∞
Today we will characterize exactly what it takes to be PAC
learnable:

H is PAC learnable if and only if VC (H) is finite

This is known as the fundamental theorem.

Moreover, we will provide bounds

I on sample complexity

I and error

for hypothesis classes of finite VC complexity

I also known as classes of small effective size.



By Bad Samples

We already have seen a few of such proofs

I proving that finite hypothesis sets are PAC learnable

They all have the same main idea

I prove that the probability of getting a ‘bad’ sample is small

Not surprisingly, that is what we’ll do again

But first we’ll discuss (and prove) a technical detail which we’ll
need in our proof

I Jensen’s inequality



Convex Functions

Jensen’s inequality – in as far as we need it – is about expectations
and convex functions. So we first recall what a convex function is.

A function f : Rn → R is convex iff

I for all x1, x2 ∈ Rn and λ ∈ [0, 1]

I we have that

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

When n = 1, i.e., f : R→ R, this means that if we draw the graph
of f and choose two points on that graph, the line that connects
these two points is always above the graph of f .



Convex Examples

With the intuition given it is easy to see that, e.g.,

I x → |x |,
I x → x2 and

I x → ex

are convex functions; with a little high school math, you can, of
course, also prove this

If you draw the graph of x →
√
x or x → log x ,

I you’ll see that if you connect two points by a line, this line is
always under the graph

Functions for which

f (λx1 + (1− λ)x2) ≥ λf (x1) + (1− λ)f (x2)

are known as concave functions



Larger Sums
If we have λ1, . . . , λm ∈ [0, 1] :

∑m
i=1 λi = 1, natural induction

proves that for x1, . . . , xm we have

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λi f (xi )

At least one of the λi > 0, say, λ1. then we have

f

(
n+1∑
i=1

λixi

)
= f

(
λ1x1 +

n+1∑
i=2

λixi

)

= f

(
λ1x1 + (1− λ1)

n+1∑
i=2

λi
1− λ1

xi

)

≤ λ1f (x1) + (1− λ1)f

(
n+1∑
i=2

λi
1− λ1

xi

)

≤ λ1f (x1) + (1− λ1)
n+1∑
i=2

λi
1− λ1

f (xi ) =
n+1∑
i=1

λi f (xi )



Jensen’s Inequality
A special case of the previous result is when all the λi = 1

m then
we have:

f

(
m∑
i=1

xi
m

)
≤

m∑
i=1

f (xi )

m

That is, the value of f at the average of the xi is smaller than the
average of the f (xi ).

The average is an example of an expectation. Jensen’s inequality
tells us that the above inequality holds for the expectation in
general, i.e., for a convex f we have

f (E(X )) ≤ E(f (X ))

We already saw that x → |x | is a convex function.
I the same is true for taking the supremum

This follows from the fact that taking the supremum is a
monotone function:

A ⊂ B → sup(A) ≤ sup(B)



Proof by Uniform Convergence

To prove the fundamental theorem, we prove that classes of small
effective size have the uniform convergence property.

I which is sufficient as we have seen that classes with the
uniform convergence property are agnostically PAC learnable

Recall:
A hypothesis class H has the uniform convergence property wrt
domain Z and loss function l if

I there exists a function mUC
H : (0, 1)2 → N

I such that for all (ε, δ) ∈ (0, 1)2

I and for any probability distribution D on Z

If D is an i.i.d. sample according to D over Z of size
m ≥ mUC

H (ε, δ). Then D is ε-representative with probability of at
least 1− δ.



To Prove Uniform Convergence
Now recall that D is ε-representative wrt Z , H, l and D if

∀h ∈ H : |LD(h)− LD(h)| ≤ ε

Hence, we have devise a bound on |LD(h)− LD(h)| that is for
almost all D ∼ Dm small.
Markov’s inequality (lecture 2) tells us that

P(X ≥ a) ≤ E(X )

a

So, one way to prove uniform convergence is by considering

ED∼Dm |LD(h)− LD(h)|

Or, more precisely since it should be small for all h ∈ H:

ED∼Dm

(
sup
h∈H
|LD(h)− LD(h)|

)
The supremum as H may be infinite and a maximimum doesn’t
have to exist



The First Step

The first step to derive a bound on

ED∼Dm

(
sup
h∈H
|LD(h)− LD(h)|

)
is to recall that LD(h) is itself defined as the expectation of the
loss on a sample, i.e.,

LD(h) = ED′∼Dm (LD′(h))

So, we want to derive a bound on

ED∼Dm

(
sup
h∈H
|ED′∼Dm(LD(h)− LD′)|

)
We can manipulate this expression further using Jensen’s inequality



By Jensen

By Jensen’s inequality we firstly have:

|ED′∼Dm(LD(h)− LD′(h))| ≤ ED′∼Dm |LD(h)− LD′(h)|

And secondly we have:

sup
h∈H

(ED′∼Dm |LD(h)− LD′(h)|) ≤ ED′∼Dm

(
sup
h∈H
|LD(h)− LD′(h)|

)
Plugging in then gives us:

sup
h∈H

(|ED′∼Dm(LD(h)− LD′(h))|) ≤ ED′∼Dm

(
sup
h∈H
|LD(h)− LD′(h)|

)
Using this in the result of the first step gives us the second step



Second Step

Combining the result of the first step with the result on the
previous page, we have:

ED∼Dm

(
sup
h∈H
|LD(h)− LD(h)|

)
≤ ED,D′∼Dm

(
sup
h∈H
|LD(h)− LD′(h)|

)
By definition, the right hand side of this inequality can be
rewritten to:

ED,D′∼Dm

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

(l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

with zi ∈ D and z ′i ∈ D ′ and both D and D ′ are i.i.d samples of
size m sampled according to the distribution D



An Observation
Both D and D ′ are i.i.d samples of size m
I it could be that the D and D ′ we draw today
I are the D ′ and D we drew yesterday

that is
I a zi of today was a z ′i yesterday
I an a z ′i of today was a zi yesterday

If we have this – admittedly highly improbable – coincidence
I a term (l(h, zi )− l(h, z ′i )) of today
I was −(l(h, zi )− l(h, z ′i )) yesterday because of the switch
I and the expectation doesn’t change!

This is true whether we switch 1, 2, or all elements of D and D ′.
That is, for every σ ∈ {−1, 1}m:

ED,D′∼Dm

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

(l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

= ED,D′∼Dm

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))



Observing Further

Since this equality holds for any σ ∈ {−1, 1}m, it also holds if we
sample a vector from {−1, 1}m. So, also if we sample each
−1/+ 1 entry in the vector at random under the uniform
distribution, denoted by U±. That is,

ED,D′∼Dm

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

(l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

= Eσ∼Um
pm
ED,D′∼Dm

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

And since E is a linear operation, this equals

ED,D′∼DmEσ∼Um
±

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

σI (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))



From Infinite to Finite
In computing the inner expectation of

ED,D′∼DmEσ∼Um
±

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

both D and D ′ are fixed, they vary for the outer expectation
computation

I just like nested loops

So, if we denote C = D ∪ D ′, then we do not range over the
(possibly) infinite set H, but just over the finite set HC . That is

Eσ∼Um
±

(
sup
h∈H

(
1

m

∣∣∣∣∣
m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))

= Eσ∼Um
±

(
max
h∈HC

(
1

m

∣∣∣∣∣
m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

∣∣∣∣∣
))



Step 3
For h ∈ HC define the random variable θh by

θh =
1

m

m∑
i=1

σi (l(h, zi )− l(h, z ′i ))

Now note that
I E(θh) = 0
I θh is the average of independent variables, taking values in

[−1, 1]

Hence, we can apply Hoeffding’s inequality. Hence, ∀ρ > 0

P(|θh| > ρ) ≤ 2e−2mρ
2

Applying the union bound we have:

P(
∨

h∈HC

|θh| > ρ) ≤ 2|HC |e−2mρ
2

Which is equivalent to:

P( max
h∈HC

|θh| > ρ) ≤ 2|HC |e−2mρ
2



A Useful Lemma

We now have a bound on P(maxh∈HC
|θh| > ρ)

I but we need a bound on E(maxh∈HC
|θh|)

To make this step, there is a useful lemma.

Let X be a random variable and x ∈ R If

I there exists an a > 0 and b > e such that

I ∀t ≥ 0 : P(|X − x | > t) ≤ 2be−
t2

a2

then
E(|X − x |) ≤ a(4 +

√
log(b))

Which can be proven by straightforward calculus (see Lemma A4
in the book).

Substituting ρ for t, 1/
√

2m for a, and |HC | for b, we get a bound
on the expectation



Step 4
The lemma on the previous page gives us that

P( max
h∈HC

|θh| > ρ) ≤ 2|HC |e−2mρ
2

implies that

E( max
h∈HC

|θh|) ≤
4 +

√
log(|HC |)√
2m

Now C has maximal 2m distinct elements

I and τH(k) is the maximal size of |HC | for a set C with k
elements

we have:

E( max
h∈HC

|θh|) ≤
4 +

√
log(τH(2m))√

2m

Working our way back through this (long) computation we have:

ED∼Dm

(
sup
h∈H
|LD(h)− LD(h)|

)
≤

4 +
√

log(τH(2m))√
2m



Step 5

Since suph∈H |LD(h)− LD(h)| is obviously a non-negative random
variable, we can now apply Markov’s inequality to get:

Let H be a hypothesis class. Then for any distribution D and for
every δ ∈ (0, 1) with a probability of at least 1− δ over the choice
of D ∼ Dm we have for all h ∈ H:

|LD(h)− LD(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m

To prove uniform convergence, we now have to show

I that there exists an m depending on ε and δ

I such that the right hand side is less than ε



Uniform Convergence

If m > d = VC (H) we have by Sauer: τH(2m) ≤ (2em/d)d .
Hence,

|LD(h)− LD(h)| ≤
4 +

√
d log(2em/d)

δ
√

2m

For large enough m,
√

d log(2em/d) ≥ 4, so

|LD(h)− LD(h)| ≤ 1

δ

√
2d log(2em/d)

m

Some tedious algebra shows that this implies that

|LD(h)− LD(h)| ≤ ε if

m ≥ 4
2d

(δε)2
log

(
2d

(δε)2

)
+

4d log(2e/d)

(δε)2

That is, for H with finite VC dimension we have uniform
convergence.



The Fundamental Theorem

Let H be a hypothesis class of functions from a domain X to
{0, 1} with 0/1 loss. Then the following statements are equivalent

1. H has the uniform convergence property

2. Any ERM rule is a successful agnostic PAC learner for H
3. H is agnostic PAC learnable

4. H is PAC learnable

5. Any ERM rule is a successful PAC learner for H
6. H has a finite VC dimension

Our calculation leading up to this theorem – its proof, actually –
gives us a bound on the sample complexity. This bound is not as
good as possible. I’ll give you better bounds, without proof (it
depends on yet another interesting concept: ε-nets).



The Fundamental Theorem: the Bounds

Let H be a hypothesis class of functions from a domain X to
{0, 1} with 0/1 loss. Then

1. H has the uniform convergence property with sample
complexity

mUC
H = O

(
d + log(1/δ)

ε2

)
2. H is agnostic PAC learnable with sample complexity

mH = O

(
d + log(1/δ)

ε2

)
3. H is PAC learnable with sample complexity

mH = O

(
d log(1/ε) + log(1/δ)

ε

)



Polynomial Sample Complexity

When Valiant introduced PAC learning he required that

I the sample complexity should be polynomial in 1
δ and 1

ε .

The bounds on the sample complexity we just discussed show that
this requirement is not necessary

I PAC learnability implies a polynomial sample complexity
(under the conditions of the theorem)

Hence there is no reason to stipulate this requirement

Valiant’s other requirement

I the existence of a polynomial learning algorithm

of course still makes perfect sense. Non-polynomial algorithms on
polynomially sized samples are still not practical.



Bounds in Terms of Growth

Analogously to the proof of the Fundamental Theorem, one can
prove:

For any hypothesis space H (finite or infinite), for any D of size m
and for any ε > 0

P (∃h ∈ H : LD(h) > LD(h) + ε) ≤ 8τH(m)e−mε
2/32

So, with probability at least 1− δ

∀h ∈ H : LD(h) ≤ LD(h) +

√
32(ln(τH(m) + ln(8/δ))

m



For Consistent Hypotheses Only

If we restrict ourselves to hypothesis that are consistent with D
only

I they make 0 errors on D

I that is LD(h) = 0

we get slightly tighter bounds.

In terms of growth, with probability at least 1− δ

LD(h) ≤ 2 log(τH(2m)) + 2 log(2/δ)

m

In terms of the VC dimension d , with m ≥ d ≥ 1 with probability
at least 1− δ

LD(h) ≤ 2 log(2em/d) + 2 log(2/δ)

m



Starting From Big Data

Our journey towards this Fundamental Theorem started with the
analysis of Big Data. Next to serious problems such as

I the curse of dimensionality
I and the fact that Big Data makes every difference statistically

significant
I however small and pragmatically insignificant it may be

we identified the, perhaps largest, problem as

Big Data is too big to process

Superlinear algorithms

I are quite soon infeasible on very large data sets

Hence, the quest we set out for

I can we sample D to make (superlinear) learning feasible?



Frequent Itemsets

To make the Big Data problem more concrete we introduced a
typical data mining problem

Frequent Itemset Mining

and we noted that the A Priori algorithm

I which can be used to mine all frequent itemsets efficiently

actually applies to a far larger class of problems

Frequent Pattern Mining

Given that frequent itemset mining requires multiple scans over the
database

I which can be very expensive for very large databases

the natural question was

I can we sample for frequent itemset mining?



Sampling for Frequent Itemset Mining

We discussed a paper by Toivonen, in which he showed that with a
sample of size

I n ≥ 1
ε2

(
|I|+ ln

(
2
δ

))
I our estimate of the frequency of an itemset is with probability

of at least 1− δ off by at most ε

The problem with this approach is that we

I may have false negatives: itemsets that are frequent on the
database but not on the sample

We can mitigate that problem by

I lowering the threshold by
√

1
2n ln 1

µ

I checking whether or not the border of our (estimated) set of
frequent itemsets contains such false negatives

This gives us indirect control over the probability of false negatives

I can we get direct control?



From Itemsets to Classification

We saw that an itemset Z , or better its associated indicator
function, acts as a classifier on D:

1Z (t) =

{
1 if Z ⊆ t
0 otherwise

This observation allows us to go from

I unsupervised learning – what itemset mining is

I to supervised learning – what classification is

The advantage that supervised learning problems have over
unsupervised ones

I is that they have objective quality measures,

I e.g., higher accuracy = better model

Exploiting such measures might give us a better grip on sampling



From Classification

We started this quest with the analysis of a simple classification
problem (finite hypothesis class and the realizability assumption).
From this analysis, we proved:

Let H be a finite hypothesis space. Let δ ∈ (0, 1), let ε > 0 and let
m ∈ N such that

m ≥ log (|H|/δ)

ε

Then, for any labelling function f and distribution D for which the
realizability assumption holds, with probability of at least 1− δ
over the choice of an i.i.d. sample D of size m we have that for
every ERM hypothesis hD :

LD,f (hD) ≤ ε



To PAC learning

Then we turned this result upside down and made it into the
definition of

I Probably Approximately Correct learning

Learning problems that give almost always reasonably good results

I with (polynomial) sized data sets

And that last point is very important in the Big Data context

I as was discussed in the first two lectures

At first we limited ourselves to the realizable case

I colloquially: the hypothesis set contains the true hypothesis

and an immediate consequence of our previous theorem was

I finite hypothesis classes are PAC learnable



In Full Generality
Then we loosened the requirements

I firstly the realizability assumption

I secondly allowing for arbitrary loss functions

To arrive at the general definition of PAC Learning:

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function l : Z ×H → R+ if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over Z

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) + ε



Desirable, but Attainable?
Clearly, PAC learnability is a desirable property
I you have the guarantee that you almost always get results

that are almost as good as it gets.

But, then the question is
I are there hypothesis sets that have this property?

We first showed that hypothesis sets that have the uniform
convergence property
I on almost all (large enough) data sets your estimate of the

loss of a hypothesis is close to the true loss

are PAC learnable (in the general sense). And, with that result we
proved that
I finite hypothesis sets are PAC learnable

Finite can be very large
I and you can always approximate your favourite infinite classes

with a finite one

But, then your choice of a finite class has a direct influence on the
result you achieve.



Infinite Classes

So, it would be nice if we could PAC learn infinitely large
hypothesis classes. But then came our first negative result

I the No Free Lunch theorem says: there are infinitely large
hypotheses classes you can not PAC learn

I you would need infinite data samples
I even larger than Big Data!

We then first showed that
I the infinite set of thresholds functions can be PAC learned in

the general sense
I we had already seen that this class could not be learned in the

more restricted realizable case
I so, that in itself is already a relief

We then compared the proof of the No Free Lunch theorem

I with the threshold classifiers

And, from that comparison we came up with

I with the VC dimension



VC Dimension

The VC dimension of a hypothesis class H is the size of the largest
(finite) set of data points that H shatters, that is, it is the size of
the largest C ⊂ X such that

|HC | = 2|C |

The proof of the No Free Lunch theorem showed that if the size of
our sample D is such that

m ≤ 2VC (H)

then it is may be hard to find a good h ∈ H

In other words, a finite VC dimension tells us
I that we can distinguish between the different hypotheses

relatively quickly
I from a modestly sized sample



Growth
This ability of the VC dimension is further illustrated by the growth
function, defined by

τH(m) = max
C⊂X :|C |=m

|{f (c1), . . . , f (cm)}f ∈H|

For m ≤ d = VC (H), we have τH(m) = 2m.

More in general, we have by Sauer’s Lemma that if
d = VC (H) ≤ ∞:

I ∀m : τH(m) ≤
∑d

i=0

(m
i

)
I if m ≥ d : τH(m) < (em/d)d

The growth function starts of as an exponential function, but from
d on forwards it is a polynomial function.

Hence, the expectation

I perhaps I should say hope

that infinite hypothesis classes with a finite VD dimension will be
PAC learnable



The Fundamental Theorem

The Fundamental Theorem tells us that our expectation was
correct

I Hypothesis classes are PAC learnable iff they have a finite VC
dimension

I moreover the sample size you need is polynomial in the
parameters that matter
I in d , 1/δ (in fact log(1/δ)) and 1/ε

In other words, we appear to have ended our quest

as long as we use hypothesis classes with a finite VC dimen-
sion we can conquer the problem of Big Data by sampling

So
the question is now:

I can we use PAC learning to derive sample bounds for frequent
itemset mining?

We’ll study that next, but it is not the end of the story



There is More

The concept of PAC learning requires

I a sample size that holds for all h ∈ H at the same time

I and that we can get arbitrarily close to the truth

What if we relax those requirements

I would that allow us to battle Big Data with a larger class of
hypotheses sets?

The answer,

I somewhat surprisingly

is: not really.

This does not have direct ramifications for our frequent itemset
mining problem

I but it tells us that PAC learning is a reasonable way to battle
the problem of induction


