
Non Uniform Learnability

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

Universiteit Utrecht

Relaxing

We have seen that PAC learning is possible exactly when the VC
dimension is finite

I other hypotheses classes can not be learned with the
guarantees that PAC learning offers

But, what if we are willing to relax the guarantees that PAC offers?

I can we then learn a wider class of hypotheses?

We end by looking at two possibilities

I today: forgetting about uniformity

I next time: no longer insisting on strong classifiers

The remarkable result in both cases is the approximation of the
looser framework by/to PAC learning

I non-uniform is approximated by PAC learning

I weak learners can approximate strong learners.

PAC Learning isn’t a bad idea

The Only Other Rational Possibility

The two alternatives to PAC learning we discuss are not all there
is. There is one more constraint that we could relax:

I the requirement that the learning works whatever the
distribution D is

That is, we could pursue a theory that works for specific
distributions

I that theory, however, already exists

It is known as the field of

Statistics

While there are many interesting problems in the intersection of
computer science and statistics

I that area is too large and diverse to fit the scope of this course

SRM

PAC Learnability

Before we relax our requirements, it is probably good to recall the
(general) definition of PAC learnability:

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function l : Z ×H → R+ if there exists a function
mH : (0, 1)2 → N and a learning algorithm A with the following
property:

I for every ε, δ ∈ (0, 1)

I for every distribution D over Z

I when running A on m ≥ mH(ε, δ) i.i.d. samples generated by
D

I A returns a hypothesis h ∈ H such that with probability at
least 1− δ

LD(h) ≤ min
h′∈H

LD(h′) + ε

The Sample Complexity

In this definition, the sample complexity mH(ε, δ)

I depends only on ε and δ

I it does not depend on a particular h ∈ H
I the bound is uniform for all hypotheses

This appears like a reasonable requirement to relax

I as one can imagine that more complex hypothesis require
more data than simpler ones even if they are in the same
hypothesis class.

In fact, we have already seen examples of this

I for Cn ⊂ Mn and mCn < mMn

So if we happen to be learning a function from Cn, but considered
Mn as our hypothesis class

I one could say that we are using too many examples.

In non-uniform learning this constraint is relaxed, the size of the
sample is allowed to depend on h.

A Direct Consequence

When PAC learning, we want to find a good hypothesis, one that
is with high probability approximately correct

I one with LD(h) ≤ minh′∈H LD(h′) + ε

Clearly, when learning non-uniformly we no longer can require this
to hold. After all, if each h ∈ H has its own (minimal) sample size

I computing minh′∈H LD(h′) might require an infinitely large
sample!

I think, e.g., of the set of all possible polynomials
I if there is no bound on the degree, there can be no bound on

how much data we need to estimate the best fitting polynomial
I after all, we have already seen that the higher the degree, the

more data we need

Clearly we still want a quality guarantee. What we can do is

I is to require that the learning is as good as possible given a
certain sample (size)

Competitive

What does it mean that the learning is as good as possible?

I it means the hypothesis we learn is with high probability close
to the best one

I i.e., the hypothesis we find is competitive with the rest

Two hypotheses are equally good if we expect a similar loss for
both of them. Formalizing this we say that hypothesis h1 is (ε, δ)
competitive with hypothesis h2 if with probability at least (1− δ)

LD(h1) ≤ LD(h2) + ε

A good learner should find a hypothesis that is competitive with all
other hypotheses in H

Note that this is very much true in the (uniform) PAC learning
setting, i.e., PAC learning will be a special case of non-uniform
learning.

Non-Uniformly Learnable

Based on this idea, we formalize non-uniformly learnable as follows:

A hypothesis class H is non-uniformly learnable if there exists a
learning algorithm A and a function mNUL

H : (0, 1)2 ×H → N such
that

I for every ε, δ ∈ (0, 1)

I for every h ∈ H
I when running A on m ≥ mNUL

H (ε, δ, h) i.i.d. samples

I then for every distribution D over Z

I it holds that for with probability at least 1− δ over the choice
of D ∼ Dm

LD(A(D)) ≤ LD(h) + ε

Given a data set, A will, with high probability, deliver a competitive
hypothesis; that is, competitive with those hypotheses whose
sample complexity is less than |D|.

Characterizing Non-Uniform Learnability

There is a surprising link between uniform and non-uniform
learning:

A hypothesis class H of binary classifiers is non-uniformly learnable
iff it is the countable union of agnostic PAC learnable hypothesis
classes.

The proof of this theorem relies on another theorem:

Let H be a hypothesis class that can be written as a countable
union H = ∪n∈NHn, where for all n, VC (Hn) <∞, then H is
non-uniformly learnable.

Note that the second theorem is the equivalent of the if part of the
first. The proof of the second theorem will be discussed (a bit)
later.

Proving Only If
Let H be non-uniformly learnable. That means that we have a
function mNUL

H : (0, 1)2 ×H → N to compute sample sizes.

I for a given ε0, δ0 define for every n ∈ N

Hn = {h ∈ H | mNUL
H (ε0, δ0, h) ≤ n}

I clearly, for every ε0 and δ0 we have that

H = ∪n∈NHn

I Moreover, for every h ∈ Hn we know that with probability of
at least 1− δ0 over D ∼ Dn we have LD(A(D)) ≤ LD(h) + ε0.

I since this holds uniformly for all h ∈ Hn

I we have that Hn is agnostic PAC learnable

Note that we carve up H differently for every (ε, δ) pair, but that
is fine. Any choice writes H as the countable union of agnostic
PAC learnable classes - H does not become magically agnostic
PAC learnable

Approach to Prove If

The proof of the opposite direction

I the countable union gives you non-uniform learnability

requires more work.

The main idea is, of course, to compute an error bound
I how much bigger than LD can LD be

I knowing that H is the countable union...

This bound suggests a new learning rule

I from expected risk minimization to structural risk
minimization

A learning rule

I that can do non-uniform learning

Background Knowledge

The new framework for learning we are building up rests on two
assumptions:

I that H = ∪n∈NHn

I and a weight function w : N→ [0, 1]

Both can be seen as a form of background knowledge

I the choice of H itself is already background knowledge,
putting structure to it even more so

I all the more since w allows us to specify where in H we
expect it to be likely to find the model (w(n) high, chance of
Hn high)

We will see that the better your background knowledge is, the
fewer data points you need.

Uniform Convergence
To build up this new framework, the (equivalent) formulation of
PAC learnability that is most convenient is that of uniform
convergence. To simplify your life, we repeat the definition:

A hypothesis class H has the uniform convergence property wrt
domain Z and loss function l if

I there exists a function mUC
H : (0, 1)2 → N

I such that for all (ε, δ) ∈ (0, 1)2

I and for any probability distribution D on Z

If D is an i.i.d. sample according to D over Z of size
m ≥ mUC

H (ε, δ). Then D is ε-representative with probability of at
least 1− δ.

Where ε-representative means

∀h ∈ H : |LD(h)− LD(h)| ≤ ε

The εn Function

We assume that H = ∪n∈NHn

I and that each Hn has the uniform convergence property

Now define the function εn : N× (0, 1)→ (0, 1) by

εn(m, δ) = min{ε ∈ (0, 1) | mUC
Hn

(ε, δ) ≤ m}

That is, given a fixed sample size, we are interested in the smallest
possible gap between empirical and true risk. To see this,
substitute εn(m, δ) in the definition of uniform convergence, then
we get:

For every m and δ with probability of at least 1− δ over the choice
of D ∼ Dm we have

∀h ∈ Hn : |LD(h)− LD(h)| ≤ εn(m, δ)

This is the bound we want to extend to all of H

The Weight Function
For that we use the weight function w : N→ [0, 1]. Not any such
function will do, it should be a convergent sequence, more precisely
we require that

∞∑
i=1

w(n) ≤ 1

In a finite case, this is easy to achieve

I if you have no idea which Hn is best you can simply choose a
uniform distribution

In the countable infinite case you can not do that

I the sum would diverge

And even if you have a justified believe that the lower n is, the
likelier that Hn contains the right hypothesis, it is not easy to
choose between

w(n) =
6

πn2
and w(n) = 2−n

well see a rational approach after the break.

Bounding Non-Uniform Loss

Let w : N→ [0, 1] be a function such that
∑∞

i=1 w(n) ≤ 1. Let H
be a hypothesis class that can be written as ∪n∈NHn where each
each Hn has the uniform convergence property. Let εn(m, δ) be as
defined before, i.e., min{ε ∈ (0, 1) | mUC

Hn
(ε, δ) ≤ m}. Then

I for every δ ∈ (0, 1) and every distribution D
I with probability of at least 1− δ over the choice of D ∼ Dm

∀n ∈ N ∀h ∈ Hn : |LD(h)− LD(h)| ≤ εn(m,w(n)δ)

Therefore, every δ ∈ (0, 1) and every distribution D with
probability of at least 1− δ

∀h ∈ H : LD(h) ≤ LD(h) + min
n∈N

h∈Hn

εn(m,w(n)δ)

The bound we were looking for

Proof

Define for n ∈ N, δn = w(n)δ. Then we know that if we fix n

I we have with probability at least 1− δn over the choice of
D ∼ Dm

∀h ∈ Hn : |LD(h)− LD(h)| ≤ εn(m, δn)

Applying the union bound over n = 1, 2, . . . then gives us that

I with probability at least

1−
∑
n∈N

δn = 1− δ
∑
n∈N

w(n) ≥ 1− δ

I that

∀n ∈ N ∀h ∈ Hn : |LD(h)− LD(h)| ≤ εn(m, δn)

and the proof is done.

Structural Risk Minimization
The error you estimate for a h ∈ H depends on the Hn, h is a
member of. If it is a member of multiple, one should, of course, go
for the smallest n:

n(h) = min{n | h ∈ Hn}

Then we have

LD(h) ≤ LD(h) + εn(h)(m,w(n(h))δ)

The Structural Risk Minimization Learning Rule is to output

h ∈ argmin
h∈H

[
LD(h) + εn(h)(m,w(n(h))δ)

]
So, not just minimal empirical risk, but a balance between

I the empirical risk LD(h)

I and the ”class-risk” εn(h)(m,w(n(h))δ)

SRM Learning Works
Let H be a hypothesis class that can be written as ∪n∈NHn where
each each Hn has the uniform convergence property with sample
complexity mUC

Hn
. Let w(n) = 6

n2π2 . Then

I H is non-uniformly learnable using the SRM rule with sample
complexity

mNUL
H (ε, δ, h) ≤ mUC

Hn(h)

(
ε/2,

6δ

(πn(h))2

)
Note that

I this theorem does hold far more general than for this specific
weight function only

I the choice for the weight function directly influences the
complexity and that makes it hard to write a general form

Moreover note

I this result also finishes the proof that non-uniformly learnable
equates with a countable union of of classes with a finite VC
dimension.

Proof

First of all, note that
∑

n∈N w(n) = 1. Next, let A be the SRM
learning algorithm with respect to w(n) And for all h ∈ H, ε, and
δ, let m ≥ mUC

Hn(h)
(ε,w(n(h))δ).

I then, with probability at least 1− δ for the choice of D ∼ Dm

I for all h′ ∈ H

LD(h′) ≤ LD(h′) + εn(h′)(m,w(n(h′))δ)

This holds in particular for hypothesis A(D). By the definition of
SRM we get:

LD(A(D)) ≤ min
h′

[
LD(h′) + εn(h′)(m,w(n(h′))δ)

]
≤ LD(h) + εn(h)(m,w(n(h))δ)

Proof continued
So, we have that LD(A(D)) ≤ LD(h) + εn(h)(m,w(n(h))δ).

I by definition we have that m ≥ mUC
Hn(h)

(ε/2,w(n(h))δ) implies

that εn(h)(m,w(n(h))δ) ≤ ε/2.

I moreover, because the Hn have the universal convergence
property , we now with probability at least 1− δ:

LD(h) ≤ LD(h) + ε/2

That is:

LD(A(D)) ≤ LD(h) + εn(h)(m,w(n(h))δ)

≤ LD(h) + ε/2 + ε/2

≤ LD(h) + ε

For the sample complexity, note that

mUC
Hn(h)

(ε/2,w(n(h))δ) = mUC
Hn(h)

(
ε/2,

6δ

(πn(h))2

)

Learning Uniformly
An often used approach to learn non-uniformly is to posit a tower
of hypothesis classes

H1 ⊂ H2 ⊂ H3 ⊂ · · ·

The we start by selecting the best model from H1, then from
H1 ∪H2 = H2 and so on

I note that at each step the choice for the function w(n) is
extremely simple

while keeping an eye on

LD(h) + εn(h)(m,w(n(h))δ)

And choose the model where the risk is minimal

You can do that, for example.

I to learn a polynomial classifier when you don’t know what the
optimal degree would be

Note that the degree cannot exceed |D| anyway.

The Most Famous Example

The most famous use of Structural Risk Minimization is without a
doubt

Support Vector Machines

In fact, exaggerating a bit, one could almost say

I that SRM was invented just to do that

It is an exaggeration as in its the simplest form (equivalent to
perceptrons and hyperplane classification)

I SVM’s were invented by Vapnik and Chervonenkis a decade
before they invented SRM

Only later, in collaboration with many other smart people

I Vapnik developed SVM’s in their full glory

A full treatment of SVM’s is beyond our scope, we do look at the
simplest case, however.

Linear SVM’s

As usual we have a data set D over X × Y where

I X = Rn for some n ∈ N
I Y = {−1,+1}

And as usual we want to learn a classifier from X to Y. In the
simplest case, we assume

I that the two classes are linearly separable

That is, there is at least one hyperplane that is a perfect classifier
for the given data.

If one hyperplane separates,

I many will

So, the question is: which one should we choose?

I the answer is: the one that maximizes the margin.

The Picture

(thank you wikipedia)

Why Maximizing the Margin?

So, the theory tells us that we should maximize the margin

I given by 2
||w||

I i.e., finding the solution with minimal ||w||
While this may make intuitive sense

I minimizing the weights is akin to making sure that as many
weights as possible are set to 0

I the famous Lasso penalty term some of you know

This is not a very satisfactory explanation. It turns out there is a
far nicer explanation

I Vapnik proved that in this case, maximal margin corresponds
to minimal VC dimension

Hence, everything we have learned tells us: maximize that margin

Vapnik on Margins

Consider hyperplanes h(~x) = sign(~w · ~x + b) as hypothesis class for
Rn. Let all examples xi in a ball with radius R and assume that for
all xi it holds that

abs(~w · ~xi + b) ≥ 1

Then this set of hyperplanes has a VC dimension d that is
bounded by

d ≤ min

{⌊
R2

δ2

⌋
, n

}
in which δ is the margin.

More Structure

In the second lecture we discussed the curse of dimensionality

I while we haven’t discussed it yet in our ERM/SRM
framework, it clearly should play a role

We can battle it here in our search for a separating hyperplane

I by taking progressively larger sets of features for the
hyperplane construction

That is, e.g.,

I you start with x1, then x1 and x2 and so on

I variables/features/attributes you don’t use have their weight
effectively set to 0 (the Lasso again!)

SRM then tells you which hyperplane, and thus which feature set,
to choose.

The Cost of SRM

Since non-uniform learning equals learning from

I the countable union of hypothesis classes with a finite VC
dimension

And the chosen model h obviously is in some Hn

I i.e., ∃n ∈ N : A(D) ∈ Hn

One could wonder what the cost is for using all of H
I rather than just Hn

A rather straight forward calculation shows that

mNUL
H (ε, δ, h)−mUC

Hn
(ε/2, δ) = O

(
log(2n)

ε2

)
That is, the cost increases with the log of the index

I which makes intuitive sense

MDL

The Weight Function, Again
The one conceptually weak point of SRM is that we need a weight
function w : N→ [0, 1] for which∑

n∈N
w(n) ≤ 1

Clearly, in any practical case using a finite union of hypothesis
classes is sufficient

I if only because we have a finite data set D to start with

I even Big Data is finite

In the infinite case we can start with a convergent series, such as,∑
n∈N

1

n2
=
π2

6
or
∑
n∈N

1

2n
= 1

and take the elements of the sequence as the weight

I and you can even swap some elements around if you think
that w(3) should be bigger than w(2)

How to Choose?
So, there are infinitely many possibilities to choose from

I all of them more or less showing the same qualitative effect
that larger n’s get smaller weights

I but quantitatively different, i.e., the actual weights are
different

And we have seen that the error term

I and thus the necessary sample size to achieve some desired
maximal error

depend on the actual weights.

That is a conceptually weak point,

I we have to make a choice,

I one that has a direct effect on our results

and there doesn’t seem to be a way to choose

I relying on expert knowledge seems a weak excuse here

Fortunately, there is an objective way to assign weights.

Countable Hypothesis Classes

We are going to assume that H is a countable set of hypotheses.
The first observation is that this is not really a limiting assumption

I we are dealing with machine learning: the model should be
learned by a computer

I hence, a computer should be able to represent it
I such a representation is ultimately a finite bit string

I if there would be no finite representation, how could one ever
say that the computer has learned the model?

I and there are only countable many such bit strings

One could equivalently argue that

I a hypothesis class should be (recursively) enumerable

I how can we evaluate a model we cannot reach?

In other words, all hypothesis classes we can consider are countable

Countable Class is Countable Union
If H is countable, we have the countable union

H = ∪h∈H{h} = ∪n∈N{hn}

Clearly, each set {hn} is finite and for finite H we know that they
are UC with

mUC
H (ε, δ) =

⌈
log(2|H|/δ)

2ε2

⌉
So, we have

mUC
{hn}(ε, δ) =

⌈
log(2/δ)

2ε2

⌉
This means that εn, defined by

εn(m, δ) = min{ε ∈ (0, 1) | mUC
Hn

(ε, δ) ≤ m}

becomes

εn(m, δ) = min{ε ∈ (0, 1) |
⌈

log(2/δ)

2ε2

⌉
≤ m} =

√
log(2/δ)

2m

SRM for Singleton Classes

Substituting
√

log(2/δ)
2m for εn is the SRM rule gives us:

argmin
hn∈H

[
LD(hn) + εn(hn)(m,w(n(hn))δ)

]
= argmin

hn∈H

[
LD(hn) +

√
log(2/w(n)δ)

2m

]

= argmin
hn∈H

[
LD(hn) +

√
− log(w(n)) + log(2/δ)

2m

]

Given that for each n, Hn is simply a singleton class. we can view
w equivalently as a function H → [0, 1], giving us the SRM rule

argmin
h∈H

[
LD(h) +

√
− log(w(h)) + log(2/δ)

2m

]

What is the Weight of a Hypothesis?
The swap from w(n) to w(h) may seem not very useful, but
actually it is

I we are going to attach a weight to h based on its description

We already noted that h has to be represented somehow

I and that that ultimately can be seen as some bit string

We are going to do this argument a bit more careful:
I each h ∈ H has to be described somehow

I whether by natural language
I as a mathematical formula
I a programming language, like C or Python, or ...
I the latter choice is safe against paradoxes

I This description is always a string over some alphabet

I Coding theory then tells us how to turn that into a word in a
prefix code

I which by Kraft’s inequality gives us a probability and, thus, a
weight!

Coding Theory

We want to store or transmit sequences of elements of a finite set
A = {a1, . . . , an} by binary strings

I A is known as the alphabet, if we describe our hypotheses in
natural language, A would simply be our own well-known
alphabet

A code is a function

I C : A→ {0, 1}∗

I mapping each symbol in the alphabet to its code word

Coding is easily extended to strings of symbols to sequences by
concatenation:

I C : A∗ → {0, 1}∗

I by C (xy) = C (x)C (y)

Note, we require a code (C : A→ {0, 1}∗) to be invertible

I otherwise you cannot decode, i.e., recover what the original
sequence was

Codes and Trees

A code C defines a binary tree in which each code word C (ai)
denotes a path from the root of the tree to a leaf

I say 0 is branch to the left, 1 is branch to the right

I i.e., you label the edges with 0 and 1

I and the the symbols from your alphabet A in the node where
their path ens

This tree makes it easy to decode a binary string

I at least when we know when a code word ends and the next
one begins

I we could achieve this by a special symbol
I a comma, added to our 0/1 alphabet or a reserved word

I but we can also simply stipulate that no code word is the
prefix of another code word
I all alphabet symbols are in a leaf node

This is known as a prefix code

Decoding Prefix Codes

If we have a prefix code C

I decoding a string C (x) with x ∈ A∗

is easy:

I start at the root

I if the first bit is 0 go to the left, otherwise go right

I continue until you hit a leaf: output the symbol in that leaf
node and return to the root

Lossless coding/decoding is an important requirement

I in Algorithmic Information Theory

which is perhaps the most interesting topic, but not part of this
course.

Kraft’s Inequality

For prefix codes there is an important inequality for the lengths of
the code words |C (a)|, i.e., the number of bits used:∑

a∈A
2−|C(a)| ≤ 1

This inequality provides a link between probability distributions and
coding, both in our finite setting and more general in the countable
case. For a ∈ A, its probability is given by

P(a) =
2−|C(a)|∑
a∈A 2−|C(a)|

This relationship also holds in the other direction:

I but first we prove Kraft

Proving Kraft

If our code does not correspond to a complete binary tree

I a tree that splits in two at every internal node

I equivalently all leaves of the tree correspond to a symbol in A.

we can always extend it so that it is complete

I adding some bogus symbols to our alphabet

Using Induction:

I Kraft holds for the two leaf tree: both probabilities are 1/2

I let w be a path with length w splitting the node gives us two
paths w1 and w2 such that 2−|w1| + 2−|w2| = 2−|w |

In other words, for prefix codes corresponding with complete binary
trees equality holds

I in all other cases we get an inequality since we remove the
probabilities that correspond to the bogus symbols

Codes and Probabilities
We already saw that prefix code words for an alphabet A define a
probability distribution on A by

P(a) =
2−|C(a)|∑
a∈A 2−|C(a)|

This relation also holds in the other direction
I for every probability distribution on A
I there is a corresponding prefix code for A

To prove this we first show that if we have a set of integers

{n1, . . . , nk}

such that
k∑

i=1

2−ni ≤ 1

Then there is an alphabet A = {a1, . . . , ak} such that
I there is a prefix encoding C for A
I such that C (ai) = ni

Constructing the Code

Assume that the ni are ordered by

n1 ≤ n2 ≤ · · · ≤ nk

Take the fully balanced binary tree of depth nk .

I take the left most path 000..00 till length n1, choose a symbol
for that node

I and cut the rest of the tree below that node

For the other ni we de the same

I i.e., take the left-most path that does not end in a labelled
leaf node and repeat.

Note that this gives us a relation between all (finite) probability
distributions and codes by choosing the integers

n(a) =

⌈
log

(
1

P(a)

)⌉

Shannon Fano Coding

This simple lemma gives us the promised translation

I from probability distributions on A to coding A

by choosing the integers

n(a) =

⌈
log

(
1

P(a)

)⌉
This is known as a Shannon Fano coding of A. It is optimal in the
following sense:

Let C be a prefix code for A, with |C (ai)| = ni and P a probability
distribution on A with P(ai) = pi . Then

1. EP(l) =
∑

pini ≥
∑

pi log 1/pi
def
= H(P)

2. EP(l) = H(P)⇔ ∀i : pi = 2−ni

this is known as Shannon’s noise free coding theorem

Proof

We have:

∑
pi log 1/pi −

∑
pini =

∑
pi log 1/pi −

∑
pi log 2ni

=
∑

pi log 1/pi +
∑

pi log 2−ni

=
∑

pi log
2−ni

pi

= log e
∑

pi ln
2−ni

pi

≤ log e

(∑
pi

2−ni

pi
− 1

)
because ln x ≤ x − 1

= log e
(∑

2−ni − 1
)
≤ 0

Note that all our results also hold for countable A.

Back to Weights

We now have that if we describe our hypotheses

I that is, we encode them with some prefix code C

then Kaft’s inequality gives us weights. More specifically, if we
denote |C (h)| simply by |h| we can use the weights

w(h) =
1

2|h|

Using this, we have

Let H be a countable hypothesis class and be C : H → {0, 1}∗ be
a prefix code for H. Then, for every sample size m, every
confidence parameter δ and every probability distribution D, with
probability at least 1− δ over the choice of D ∼ Dm we have that

LD(h) ≤ LD(h) +

√
|h|+ log(2/δ)

2m

Minimum Description Length

This result suggest the Minimum Description Length Rule:

h ∈ argmin
h∈H

[
LD(h) +

√
|h|+ log(2/δ)

2m

]

Note that this is related to the Minimum Description Length
principle

I where we choose the model that compresses the data best

But, it is not the same

If you wonder

I how about the choice for C?

Doesn’t the language you choose matter?

I it does and it does not, but that is too much of a detour

