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What We’ll Do Today

We discuss
I the regular content: Riondato and Upfal on sampling

I the reason why we discussed PAC learning

I as well as the essay

Helpful material for your essay is also – and importantly – on the
website: cs.uu.nl/docs/vakken/mdb

Please, read this and use it.



The Papers

Today we discuss:

Efficient Discovery of Association Rules and Frequent Itemsets
through Sampling with Tight Performance Guarantees

I Proc ECML PKDD 2012, LNCS 7523

I ACM Transactions on Knowledge Discovery from Data, Vol 8,
No 4, 2014

Note, we restrict ourselves to frequent itemset parts only

I the association rules parts are also interesting, but beyond our
scope



The Problem

Let D be a transaction database over I (which we assume fixed
throughout the lecture). Denote by F (D, θ) the set of frequent
itemsets and their support, i.e.,

I (I , suppD(I )) ∈ F (D, θ)⇔ suppD(I ) ≥ θ.

We want to compute a (small) sample S ⊂ D such that

I F (S , θ′) ≈ F (D, θ)

More formally, we want that our sample to yield an (ε, δ)
approximation:

For (ε, δ) ∈ (0, 1)2, an (ε, δ) approximation of F (D, θ) is a set
C = {(I , s(I )) | I ⊆ I, s(I ) ∈ (0, 1]} such that with probability at
least 1− δ:

1. (I , suppD(I )) ∈ F (D, θ)→ (I , s(I )) ∈ C

2. (I , s(I )) ∈ C → suppD(I ) ≥ θ − ε
3. (I , s(I )) ∈ C → |suppD(I )− s(I )| ≤ ε/2



Now in Natural Language

C is an (ε, δ) approximation of F (D, θ) if with probability at least
1− δ:

I C contains all frequent itemsets

I the non-frequent itemsets in C are almost frequent

I our estimate of the frequency of the itemsets in C is
approximately correct.

This means that (with high probability)

I C may contain false positives

I but no false negatives

I and there is limited loss of accuracy

Which means that we can compute F (D, θ)

I with one scan over D using C .



In Terms of Samples

In the terminology of samples we can rephrase our goal now as

Find a sample S such that

P (∃I ⊆ I : |suppD(I )− suppS(I )| > ε/2) < δ

Because if this holds for S , then

I F (S , θ − ε/2) is an (ε, δ) approximations of F (D, θ)

For the simple reasons that

1. with probability at least 1− δ : F (D, θ) ⊂ F (S , θ − ε/2)

2. I ∈ F (S , θ − ε/2)→
[with prob at least 1− δ : suppD(I ) ≥ suppS(I )− ε/2 ≥ θ − ε]

3. I ∈ F (S , θ − ε/2)→
[with prob at least 1− δ : |suppD(I )− suppS(I )| ≤ ε/2]



Classifiers and Hypothesis Sets

A classifier is a simply a function

f : X → {0, 1}

A set of hypotheses H
I is simply a set of classifiers, i.e., set set of such functions

There is a 1-1 relation between classifiers and subsets of X :

I each subset A of X has an indicator function 1A:

1A(x) =

{
1 if x ∈ A
0 otherwise

I which is a classifier on X

In other words, we can see H
I as a set of subsets of X



Range Space

This is formalised as a range space

A range space (X ,R) consists of

I a finite or infinite set of points X

I a finite of infinite family R of subsets of X , called ranges

For any A ⊂ X , the projection of R on A is given by

ΠR(A) = {r ∩ A | r ∈ R}

So, in this terminology, we have that

I a subset A ⊂ X is shattered by R if ΠR(A) = P(A)



ε-Approximations
ε representative samples translate to ε- approximations:

Let (X ,R) be a range space and let A ⊂ X be a finite subset. For
ε ∈ (0, 1), a B ⊂ A is an ε-approximation for A if

∀r ∈ R :

∣∣∣∣ |A ∩ r |
|A|

− |B ∩ r |
|B|

∣∣∣∣ ≤ ε
without proof (it should look and feel familiar):

There is a constant c (≤ 0.5 experimentally) such that if (X ,R) is
a range space of VC dimension at most υ, A ⊂ X a finite subset,
(ε, δ) ∈ (0, 1)2, then a random B ⊂ A of cardinality

m ≥ min

{
|A|, c

ε2

(
υ + log

1

δ

)}
is an ε-approximation for A with probability at least 1− δ



A Range Space for Transaction Data

To use this bound, we should first formulate our hypothesis set,
i.e., our range space:

Let D be a transaction database over I. The associated range
space S = (X ,R) is defined by

1. X = D, the set of transactions

2. R = {TD(I ) | I ⊆ I, I 6= ∅}, where TD(I ) = {t ∈ D | I ⊆ t}
I the range of I , TD(I ), is the set of transactions that support I
I i.e., its support set.

Note that R contains exactly the support sets of the closed
itemsets

I the support set of a non-closed itemset is the support set of a
closed itemset as well.

Now all we have to do is to determine the VC dimension of this
range space.

I as more often, we’ll settle for a (tight) upper bound.



A First Result

Let D be a dataset with associated range space S = (X ,R). Then
VC (S) ≥ υ ∈ N if there exists an A ⊂ X with |A| = υ such that

∀B ⊂ A : ∃IB ⊂ I : TA(IB) = B

⇐: For all B ⊂ A, TD(IB) ∩ A = B, that means that B ∈ ΠR(A)
for all B. That means that ΠR(A) = P(A). A is shattered and,
thus, VC (S) ≥ υ.

⇒: If VC (S) ≥ υ then there is an A ⊆ D with |A| = υ such that
ΠR(A) = P(A). Hence, for every B ⊆ A, there is an itemset IB
such that TD(IB) ∩ A = B. Since TA(IB) ⊆ TD(IB), this means
that TA(IB) ∩ A ⊆ B. Now note that

I TA(IB) ⊆ A and

I by construction B ⊆ TA(IB)

and thus TA(IB) = B



An Immediate Consequence

Let D be a dataset with associated range space S = (X ,R). Then
VC (S) is the largest υ ∈ N such that there is an A ⊆ D with
|A| = υ such that

∀B ⊂ A : ∃IB ⊂ I : TA(IB) = B

Example
D = {{a, b, c , d}, {a, b}, {a, c}, {d}} and A = {{a, b}, {a, c}}
I I{{a,b}} = {{a, b}}
I I{{a,c}} = {{a, c}}
I I{{a}} = A

I I∅ = {{d}}
Larger subsets of D cannot be shattered and hence its VC
dimension is 2.



Nice, But

It is good to have a simple characterisation of the VC dimension.
But since it puts a requirement on:

I ∀B ⊂ A

it is potentially very costly to compute

I in fact, it is known to be O(|R||X |log |R|)

Fortunately, our corollary (the immediate consequence) suggests an
alternative

I we need a set of υ transactions

I if all of them are at least υ long

we have enough freedom to make the condition hold

I for technical reasons we first assume that the transactions are
independent, i.e., they form an antichain.



The d-index

Let D be a data set. The d-index of D is the largest integer d such
that

I D contains at least d transactions of length at least d

I that form an antichain

Theorem
Let D be a dataset with d-index d . Then the range space
S = (X ,R) associated with D has VC dimension of at most d

This upper bound is tight

I there are datasets for which the VC dimension equals their
d-index



Proof Sketch

Let l > d and assume that T ⊂ D with |T | = l can be shattered

I note that this means that T is an antichain: if t1 ⊆ t2 all
ranges containing t2 also contain t1: we cannot shatter

For any t ∈ T , there are 2l−1 subsets of T that contain t. So, t
occurs in 2l−1 ranges TA.
t only occurs in TA if A ⊂ t. Which means that T occurs in
2|t| − 1 ranges.
From the definition of d we know that T must contain a t∗ such
that |t∗| < l

I otherwise the d-index would be l

This means that 2|t
∗| − 1 < 2l−1, so t∗ cannot appear in 2l−1

ranges.
This is a contradiction. So, the assumed T cannot exist. Hence,
the largest set that is shattered has at most size d .



From d-Index to d-Bound

The d-index of D is still a bit hard to compute

I because of the antichain requirement

So, lets us forget about that requirement.

Let D be a dataset, its d-bound of D is the largest integer d such
that

I D contains at least d different transactions of length at least d

Theorem
Let D be a dataset with d-bound d . Then the range space
S = (X ,R) associated with D has VC dimension of at most d

This is obvious as d-bound ≥ d-index

I a subset witnessing the d-index satisfies the conditions for the
d-bound (but not vice versa)



Computing The d-Bound

Computing the d-bound is easy

I do a scan of the dataset
I maintaining

I the l longest (different) transactions
I that are at least l long
I breaking ties arbitrarily

See the journal version for the full details

I and the proof!



The Sample Size (finally)

Combining all the results we have seen so far, we have:

Let D be a dataset, let d be the d-bound of D, and let
(ε, δ) ∈ (0, 1)2. Let S be a random sample of D with size

|S | ≥ min

{
|D|, 4c

ε2

(
d + log

1

δ

)}
Then F (S , θ − ε/2) is an ε approximation of F (D, θ) with
probability at least 1− δ.

Such a sample we can easily compute from D in a single scan.
Hence we need two scans of D to compute a ε approximation of
the set of all frequent itemsets.



Your Essay

The essay you have to submit consists of

1. an explanation of the results we achieved today: 5 - 6 pages

You have to submit by April 11, 9AM

You submit by email, to me.
I subject of email contains: [ESSAY BIG DATA], your name

and your student number
I automatic processing then ensures that I will see and grade

your essay

I provide the same information at the start of your essay
I to ensure that I know who I should assign the grade to.

I Using your name and student number in the name of the file
you submit is a nice gesture.

Retake: submit by July 8, 12 midnight



Writing an Essay

Most of you did not submit essays before. The most important
guideline is:

I Be coherent: define the concepts (terms) you use and use
them coherently

I define before you use

On writing:

I Use a spell checker and check whether or not a word or an
expression you use means what you think it means.

I You have to explain non-trivial material. Long sentences are
more confusing, so keep your sentences short

I Paragraphs have 1 message only, multiple messages means
multiple paragraphs.

I Sections are a top-level division of your argument, use this to
guide your reader.



Page Limits

The page limits are strict

I violations will cost you dearly

The reason is twofold

I If you cannot explain in the allotted number of pages, you
probably do not understand

I unlimited number of pages would make marking impossible

You are free

I to choose your favourite text processor: troff, word, latex, ...

I given that you need graphs, tables, math, latex might be a
wise choice

I we provide you a .cls file

I if you use another text processor, please emulate this style



Content

Very briefly one could say that all you have to do is:

I recursively explain today’s lecture

and a bit more ...

There are detailed instructions,

I available as a pdf file

I but also as a latex file, which you can use as a template

Since your grade depends on how well your essay answers the
questions raised by this document

I it seems wise to use the template as an outline of your essay!


