Sampling for Frequent ltemset Mining

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences
Universiteit Utrecht

Why Sampling?
To check the frequency of an itemset
» we have to make a scan over the database
If in our big data context
» the database is too large to fit in main memory
» whatever smart representation we can come up with

such scans are time-consuming

» disks — including SSD'’s — are orders of magnitude slower than
memory

» which is orders of magnitude slower than cache
In other words

» mining on a sample will be orders of magnitude faster

In this lecture we discuss

» Hannu Toivonen, Sampling Large Databases for Association
Rules, VLDB 96

Mining from a Sample

If we mine a sample for item sets, we will make mistakes:
» we will find sets that do not hold on the complete data set
> we will miss sets that do hold on the complete data set

Clearly, the probability of such errors depend on the size of the
sample.

Can we say something about this probability and its relation to the
size?

Of course we can, using Hoeffding bounds.

Binomial Distribution and Hoeffding Bounds

An experiment with two possible outcomes is called a Bernoulli
experiment. Let's say that the probability of success is p and the
probability of failureis g =1 — p.

If X is the random variable that denotes the number of successes
in n trials of the experiment, then X has a binomial distribution:

P(x = m) = (1)om1 - p)

In n experiments, we expect pn successes, How likely is it that the
measured number m is (many) more or less? One way to answer
this question is via the Hoeffding bounds:

P(|pn — m| > en) < 2e=2¢n
Or (divide by n)

—2¢2
P(lp— 2| > €) < 2e2"

Sampling with replacement

Let

» p denote the support of Z on the database.

» n denote the sample size.

» m denote the number of transactions in the sample that
contain all items in Z.

m

Hence p = 7 is our sample-based estimate of the support of Z.

The probability that the difference between the true support p and
the estimated support p is bigger than € is bounded by

P(lp—p| >€) < 262"

The Sample Size and the Error

If we want to have:
P(lp—pl >€) <9

(estimate is probably () approximately (€) correct).

Then, we have to choose n such that:
5> 2ef2e2n

Which means that:

Example

To get a feeling for the required sample sizes, consider the
following table:

€) n
0.01 |o0.01 27000
0.01 | 0.001 38000
0.01 | 0.0001 50000
0.001 | 0.01 2700000
0.001 | 0.001 | 3800000
0.001 | 0.0001 | 5000000

From One to All
So, what we now have is that for one itemset / and a sample S:
P (|suppp(l) — supps(1)| > ¢) < 27 15I¢

Since there are a priori 212! frequent itemsets, the union bound
gives us

P (\/ |suppp (1) — supps(1)| > 6) < 2|I\2ef|5|e2
I

So, to have this probability less then § we need

S| > elz (1| +1n(2) + In (;))

Which can be a pretty big number, given that |Z| can be rather
large

Two Types of Errors

As we already noted

» there will be itemsets that are frequent on the sample but not
on the database

P just as there will be itemsets that are not frequent on the
sample but that are frequent on the database

Clearly, the first type of errors is easily corrected

» just do one scan over the database with all the frequent
itemsets you discovered

The second type of error is far worse.

So, the question is

P> can we mitigate that problem?

Lowering the Threshold
If we want to have a low probability (say,) that we miss item sets
on the sample, we can mine with a lower threshold t’. How much
lower should we set it for a given sample size?

Plp—p>e) < e 20
Thus, if we want P(p < t') < p, we have:

€

/ /
P(p<t)=P(p—p>p—1t)
< e—2(p—t’)2n =4
Which means that
1 1
t'=p—4/—In=
P 2n " I

In other words, we should lower the threshold by % In%

Mining Using a Sample

The main idea is now:

» Draw (with replacement) a sample of sufficient size

» Compute the set FS of all frequent sets on this sample, using
the lowered threshold.

» Check the support of the elements of FS on the complete
database

This means that we have to scan the complete database only once.

Although, taking the random sample may require a complete
database scan also!

Did we miss any results?

There is still a possibility that we miss frequent sets. Can we check
whether we are missing results in the same database scan?
If {A} and {B} are frequent sets, we have to check the frequency
of {A, B} in the next level of level-wise search.
This gives rise to the idea of the border of a set of frequent sets:
Definition
Let S C P(R) be closed with respect to set inclusion.
The border Bd(S) consists of the minimal itemsets X C R
which are not in S.

Example: Let R = {A,B,C}. Then

Bd({{A}, {B}, {C},{A, B}, {A, C}}) = {{B, C}}

The set of frequent itemsets is obviously closed with respect to set
inclusion.

On the Border

Theorem Let FS be the set of all frequent sets on the sample
(with or without the lowered threshold). If there are frequent sets
on the database that are not in FS, then at least one of the sets in
Bd(FS) is frequent.

Proof Every set not in FS is a superset of one of the border
elements of FS. So if some set not in FS is frequent, then by the A
Priori property, one of the border elements must be frequent as
well.

So, if we check not only FS for frequency, but FS U Bd(FS) and
warn when an element of Bd(FS) turns out to be frequent, we
know that we might have missed frequent sets.

Finding Frequent ltemsets

Algorithm 1 Sampling-Border Algorithm

1:

e
= O

© e N TR N

FS « set of frequent itemsets on the sample
PF < FS U Bd(FS) {Perform first scan of database}
F© « {I:1 € PF and I frequent on D}
NF < PF \ F(® {Create candidates for second scan}
if FO N Bd(FS) # () then

repeat

F() « FG=Dy (Bd(FU—1) \ NF)

until no change to F(/)
end if{Perform second scan}
Fe FOU{I:1eFD\FO and I frequent on D}

: return F

Discussion

As we already noted

» the sample size grows linearly with |Z| and, thus, can become
rather large

moreover, step 1 of the algorithm is obviously efficient
» but from then on we can be out of luck
» F() could grow into the rest of the lattice

» which means we run the naive algorithm!

So, the question is
» could we derive tighter bounds on the sample size,

» and, at the same time, can we have direct control on the
probability that we miss frequent itemsets?

Lowering the threshold gives us indirect control
> why?

A Crucial Observation

In computing the sample size

P> p was the probability that a random transaction supports
itemset Z

That is, we were using an itemset as an

indicator function

Fort € D :

1 ifZCt
1z(t) = { 0 otherwise
Slightly abusing notation, we will simply write Z rather than 1,

» that is we will use Z both as an itemset and as its own
indicator function

Indicators are Classifiers

So, given a transaction database D and an itemset Z, we have
Z:D—{0,1}

For those of you who already followed a course on

» Data Mining, Machine Learning, Statistical Learning,
Analytics, ...

or simply keep up with the news. This must look eerily familiar:
the observation tells us that Z is a classifier

This means that if there would be a theory about sample sizes for

classification problems

P> we might be able to use that theory to estimate sample sizes
for frequent itemset mining

And it happens that there is such a theory:
Probably Approximately Correct learning

Classification

Learning Revisited

We already discussed that the ultimate goal is to

learn D from D

Moreover, we noted that for this course we are mostly interested in
learning

a marginal distribution of D from D

More in particular, let
D=XxY~D=D|xXxDlyx=&xY
Then the marginal distribution we are mostly interested in is:
P(Y=y|X=x)

where Y = Dly x (and thus Y) is a finite set

Classification
The rewrite of D to X' x) was on purpose
> X are variables that are easy to observe or known beforehand
») are variables that are hard(er) to observe or only known
later
In such a case, one would like to
» predict Y from X
» that is, given an X ~ X with an observed value of x
1. give the marginal distribution P(Y =y | X = x)
2. or give the most likely y given that X = x
3. or any other prediction of the Y value given that X = x

Given that (Y) is finite, this type of prediction is commonly known
as classification. Bayesians prefer (1), while most others prefer (2).

While I'm a Bayesian as far as my statistical beliefs are concerned
P it is the only coherent, thus rational, approach to statistical
inference

we will focus, almost always, on (2)

Classification, continued

Answering the question which y is the most probable is easy if you
know the marginal distribution P(Y =y | X = x)

P simply select that y that has maximal probability

P this is the Bayes optimal solution
If that is the only thing we want,

» learning the complete (marginal) distribution seems overkill
After all,

P> the exact probability values are unimportant

» only the ranking the highest one right matters
For that reason, classification is often studied as the problem of

» learning a (computable) function h: X — Y

» such that h(x) = argmaxP(Y =y | X = x)

y

> fromD=XxY

Why? Simpler Means Simpler, probably

Learning a computable function h: X —) should be simpler than
learning the marginal probability distribution. For,

» P(Y =y | X = x) contains more information than
» argmaxP(Y =y | X = x)
y

» in the sense that you can use the former to compute the
latter, but not vice versa

That is, an algorithm that computes the marginal distribution is
easily extended in an algorithm that computes the function h.
P> Hence, it is reasonable that expect that computing the
classification function has lower complexity than computing
the marginal distribution

» in terms of the amount of data needed
» in terms of computational resources

Note that a reasonable expectation is not necessarily always true

Loss Functions
Say our algorithm learns function h from D, the obvious question
is:

» how good is h?

Intuitively this is easy
» the assumption is that there is a true function f : X — Y
P> so we simply compare h with f
» the more often they agree, the better h is.

This comparison is known as a loss function

So, intuitively, the loss is

Le(h) = [{x | h(x) # f(x)}|

or, if you want, the average of this (over all possible x values).
The intuition is good, mathematically, it stinks however.

Cleaning Up Mathematically

The reason this intuitive definition fails is
» the domain we are dealing with may very well be infinite

» i.e., we need measure theory to make clear what the size of the
set is

» the intuitive definition counts

» a failure for an x that appears once every eon
» as bad as one that occurs every second

clearly, that doesn’'t make sense

Fortunately, both problems disappear if we turn to probabilities:
Lp ¢(h) = Px~p[h(x) # f(x)]

That is, the loss of using h rather than f is
the probability that we make a mistake

Cleaning Up, Realistically

While this is a nice loss function, probably the best one possible,
there is a small problem
» it depends on both D and f, and we know neither!
» in fact, that is what we want to learn
» as holy grail and as simpler goal respectively

All we have is D, our (finite!) sample

Hence, we have to make do with the training error, aka empirical
error, aka empirical risk:

[{(xi,yi) € D | h(xi) # yi}|

Finding a function that minimizes this is loss is known as Empirical
Risk Minimization (ERM).

Learning Classifiers Isn't Easy

ERM may seem to make learning an easy problem

» simply search for a hypothesis that minimizes the risk

Unfortunately it isn't that simple, we briefly discuss two ways we
can go wrong

» overfitting

P a too rich hypothesis class

Overfitting

Let D C D (i.e., the values we find in our sample) be such that:
» VY(x,y) € D:y =1 while
» V(x,y) e D\D:y=0

A function that minimizes the empirical risk is given by
h(x)=1

Depending on the respective sizes of D\ D and D, the true loss
can be arbitrarily big

> we will miss-classify every new example!

This is what is known as overfitting.
P the example may look a bit contrived, but the problem is real
» an aspect of the problem of induction

The solution we will mostly take is: restricting the hypothesis class

The Online Game

The goal is to learn a simple threshold, i.e., our set of hypotheses
is given by

H = {hy | 0 € R}, where hy(x) = sign(x — 0)

fort=1,2,...
» our learner is presented with example x; € X
P the learner predicts y;
P he is shown the true y;
» if y; # y; the cost is 1
The goal is to make as few mistakes as possible.

(we are now following some slides from Shai Shalev-Shwartz)

Learning Thresholds
The goal is to learn a simple threshold, i.e., our set of hypotheses
is given by
H = {hg | 0 € R}, where hy(x) = sign(x — 0)

The three rational learners are

0r = min{xy | t <tAF(H) =1}

0! = max{xy | ' < tAF(t) =—1}

o _ Or 40!

f 2
but you can pick any learner you want.

Your adversarial teacher knows 6 and he knows your current
estimate 0;, so he will choose

A

0+ 0;
2
and your learner will be wrong every time

Xt4+1 =

Too Rich

You may be shocked that we cannot even learn such a simple
example

P the reason is that it isn’t simple at all
» the hypothesis class is far too rich (expressive)
Recall that
» there are only countably infinite computable numbers

» while there are uncountable many real numbers
» strictly and far more

You adversarial teacher can force you to try to learn an
uncomputable number

» which is obviously impossible

» for, how would you be able to learn a number that has not
even a finite representation?

Our Approach

Note that if we restrict ourselves to integer thresholds

» for the moment both for the hypotheses and the true
classification function

it is suddenly an easy to learn task.

» can you think of an algorithm?

The approach we take is that we
> first discuss the simple finite case
» to understand why learning always works in finite cases

» and then generalize to infinite cases having certain desirable
properties
» ending up by showing that these properties are not only
sufficient but also to a large extent necessary
And somewhere along this route, we'll apply our newly found
knowledge to frequent itemset mining

