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Preface

This reader1 is meant for the course Computational Argumentation, which gives an
introduction to the computational study of argumentation in AI, a currently popular
subfield of symbolic AI. The course, which was previously named Commonsense Rea-
soning and Argumentation, especially focuses on formal models of argumentation and
their application in areas like commonsense reasoning, legal reasoning and multi-agent
interaction. The computational study of argumentation concerns two aspects: reasoning
and dialogue. Argumentation as a form of reasoning makes explicit the reasons for the
conclusions that are drawn and how conflicts between reasons are resolved. Systems for
argumentation-based inference were orginally developed in the field of nonmonotonic
logic, which formalises qualitative reasoning with incomplete, uncertain or inconsis-
tent information. Argument-based systems have been very successful as nonmonotonic
logics, since they are based on very natural concepts, such as argument, counterargu-
ment, rebuttal and defeat. In the course Computational Argumentation the following
formalisms are discussed:

• Default logic (a still influential early nonmonotonic logic).

• The theory of abstract argumentation frameworks (the generally accepted formal
foundation of the field) and its extension to bipolar argumentation frameworks.

• The theory of structured argumentation frameworks, with a special focus on the
ASPIC+ approach.

• Formal accounts of change operations on argumentation frameworks.

• Formal models of legal case-based reasoning

Argumentation as a form of dialogue concerns the rational resolution of conflicts of
opinion by verbal means. Intelligent agents may disagree, for instance, about the pros
and cons of alternative proposals, or about the factual basis of such proposals. Dialogue
systems for argumentation formally define protocols for argumentation dialogues and
thus enable a formal study of the dynamics of argumentative agent interaction, includ-
ing issues of strategic choice. In this course two examples of such dialogues systems
will be discussed.

Upon successful completion of the course Computational Argumentation the stu-
dent:

1Thanks are due to the students of earlier years and in particular to Bas van Gijzel, Marc van Zee,
Elisa Friscione, Daphne Odekerken and Heleen Kaemingk, for their corrections to previous versions of
this reader.
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8 Preface

• knows the essence of formal models for argumentation as reasoning and as dia-
logue;

• is able to apply these formalisms to formal examples;

• has insight into the metatheoretic properties of the studied formalisms and can
verify simple metatheoretic properties;

• is aware of the main formal relations between different models of argumentation,
and can formally verify simple relations;

• is able to evaluate the suitability of the studied formalisms for modelling realistic
forms of argumentation;

• is able to model realistic reasoning problems in an implemented argumentation
reasoner.

For explaining default logic a paper will be used that is available online (Anto-
niou (1999)). Another early nonmonotonic logic, circumscription, is introduced in
this reader in Chapter 1, written especially for this reader (circumscription will not
be discussed in 2024). The largest part of this reader is devoted to argumentation. An
abstract approach to argumentation is discussed in Chapters 4 and 5, based on and ex-
tending Prakken and Vreeswijk (2002) and Vreeswijk and Prakken (2000). A logical
framework for structured argumentation is discussed in Chapter 6, based on Modgil
and Prakken (2014, 2018). Recent work on preferences, support relations and gradual
argument acceptability are discussed in Chapter 7, which combines parts of Prakken
(2012, 2020) and Prakken (2021b). Dynamic aspects of argumentation are discussed in
Chapter 8, partly based on Modgil and Prakken (2012) and Prakken (2023). Dialogue
systems for agent interaction with argumentation are the topic of Chapter 9, based on
Prakken (2006). Finally, legal applications of argumentation formalisms are discussed
in Chapter 10, which mixes texts written especially for this course with parts of Prakken
and Sartor (2015); Prakken (2021a) and Prakken (2015).

Exercises on default logic and circumscription can with their answers be found
in Chapter 2. These exercises and answers are partly taken from earlier collections
developed by Rogier van Eijk and Cees Witteveen. Exercises on argumentation can be
found at the end of the relevant chapters, while their answers are in Chapter 11.

Copyright note: This reader is made available under Creative Commons license CC
BY-NC 4.0, which, briefly, means that you are free to use it for non-commercial pur-
poses as long as you acknowledge the original source, including my name.



Chapter 1

Circumscription

In this chapter we explore a semantic approach to nonmonotonic reasoning based on the
idea of minimal models. Originally, this approach, which is often called minimal-model
semantics or preferential entailment, was meant as a semantics for a nonmonotonic
logic called circumscription. In this section we briefly summarise the circumscription
logic and then present its model-theoretic semantics in detail. To this end, we first recall
the main notions of the model-theoretic semantics of first-order predicate logic (FOL).

Recall that the semantics of a logic defines the notion of logical consequence in
terms of the meaning of its logical language. In particular, a model-theoretic semantics
defines the meaning of a sentence as the way the world looks like if the sentence is
true. For instance, in FOL the sentence Birds can fly is true just in case all objects in
the world that have the property of being a bird, also have the property of being able to
fly. A formula is then a logical consequence of a theory iff the formula has to be true
whenever all formulas of the theory are true.

Of course, it is impossible to display the actual world in a definition. Therefore, a
model-theoretic semantics abstracts the world into a structure which contains only those
features which are relevant for interpreting a logical language and it turns a structure
into a model by interpreting the logical language in terms of these features. For FOL
these features are a set of objects (the domain), and various functions and relations
defined over this set.

Definition 1.0.1 [Structures and models in FOL.]

• A structure is a triple 〈D,F,R〉 such that D (the domain) is a set of objects, F
is a set of functions on D and R a set of relations over D, i.e., a set of subsets of
Dn (where Dn is the set of all n-tuples with elements from D).

• Let 〈D,F,R〉 be a structure. An interpretation function I of a first-order lan-
guage L is a function that to each term t from L assigns an object I(t) ∈ D, to
each function symbol f from L assigns a function I(f) ∈ F and to each n-ary
predicate symbol Pn from L assigns a set of n-tuples of objects I(P ) ⊆ Dn

(I(P ) is also called the extent of P ).

• A model for a language L is a pair S, I where S is a structure and I is an inter-
pretation function for L.

• A model M is a model of a set of formulas T iff all formulas of T are true
in M (where truth is defined with the usual truth definitions). A formula ϕ is
(classically) entailed by a set T of formulas iff ϕ is true in all models of T .

9



10 Circumscription

These definitions must be combined with the usual truth definitions for atomic formulas,
the connectives and the quantifiers. The classical notion of entailment is then monotonic
for the following reason. Given the usual truth definitions, enlarging a theory can only
remove some of the models of the old theory as models of the enlarged one: it can never
create new models. Therefore, everything that is true in all models of the old theory, is
also true in the new one.

1.1 The basic idea: model preference

How can a model-theoretic account of nonmonotonic reasoning be developed? The
crucial observation is that to define nonmonotonic entailment, we cannot look at all
models of the premises. Consider the following example.

Example 1.1.1 The theory T consists of

(1) ∀x((Bird(x) ∧ ¬Ab(x)) ⊃ Canfly(x))
(2) Bird(Tweety)

Formula (1) expresses the default that birds normally fly, and the only thing T tells
us about Tweety is that it is a bird, so we would like to nonmonotonically conclude
from T that Canfly(Tweety)). However, it is easy to verify that this formula is not
classically entailed by T : even though T does not entail ¬Ab(Tweety), this formula
is still consistent with T , so it is possible to construct models of T in which Tweety is
abnormal and cannot fly.

Now the idea of minimal-model semantics is that, in verifying whether a formula is
nonmonotonically entailed by a theory, we restrict our attention to those models of the
theory in which things are as normal as possible. More precisely, we inspect only those
models of the theory in which as few objects as possible are in the extent of the Ab
predicate (hence the term minimal-model semantics). If a formula is true in all these
models, it is nonmonotonically entailed by the theory. This new notion of entailment
is nonmonotonic since, even though enlarging a theory can only remove some of its
models, it may happen that some old models that were not minimal are minimal models
of the new theory.

Let us apply these ideas to our example by looking only at those models of T in
which the extent of the Ab predicate is as small as possible. Clearly, in all those models
the object denoted by Tweety belongs to the extent of the Bird predicate. Furthermore,
all those models satisfy (1). Now since Bird(Tweety) is true in all models of T , (1)
can only be true in a model of T if in that model the object denoted by Tweety either
belongs to the extent of the Canfly predicate, or belongs to the extent of the Ab predicate,
or belongs to both (to verify this, apply the truth definition of the material implication).
Thus the models of our theory split into three classes. Clearly, the abnormality-minimal
class of models is the one in which the object denoted by Tweety does not belong to the
extent of the Ab predicate. But in all those models that object belongs to the extent of
the Canfly predicate, otherwise these models would not satisfy (1). So all abnormality-
minimal models of T satisfy the sentence Canfly(Tweety), and so this sentence is
nonmonotonically entailed by T .

The main task now is to formally define when a model is minimal. The key idea
here is that of minimising, or ‘circumscribing’ the extent of predicates in a model. First,
however, the original circumscription logic will be briefly explained.
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1.2 Syntactic form of circumscription

Circumscription was originally formulated by McCarthy (1980) as a syntactic method.
The idea was to minimise the extent of a predicate P in a first-order theory by adding a
new formula to the theory which (informally) says ‘those objects of which T says that
they have the property are the only objects that have the property P ’. To specify this
formula, the following shorthands are convenient:

P = Q means ∀x[P (x) ≡ Q(x)]

P ≤ Q means ∀x[P (x) ⊃ Q(x)]

P < Q means P ≤ Q but P 6= Q

Let T (P ) be a first-order sentence with predicate constant P . The circumscription of
P in T (P ) is:

T ∗(P ) =Def T (P ) ∧ ¬∃p[T (p) ∧ p < P ]

Here T (p) is the formula resulting from substituting all occurences of P in T with
p. The idea then is to infer nonmonotonic conclusions from T by reasoning classically
with T ∗(P ). In our example (letting T be the conjunction of (1) and (2)) T ∗(Ab)
classically entails ∀x¬Ab(x) so that T ∗(Ab) also entails Canfly(Tweety .

It turns out that (under certain conditions) the classical models of T ∗(P ) coincide
with the minimal models of T , i.e., with those models of T in which the extent of P
is minimal. This correspondence clarifies that, although the reasoning from T ∗(P ) is
classical and therefore monotonic, circumscription still models nonmonotonic reason-
ing, since conclusions of T ∗(P ) may not be conclusions of T ′∗(P ) for a T ′ that extends
T . For example, if the theory T (Ab) of our example is extended with Ab(Tweety) to
T ′(Ab), then T ′∗(Ab) does not classically entail ∀x¬Ab(x) so it neither classically
entails Canfly(Tweety). Semantically this means that there are minimal models of
T ′(Ab) that are non-minimal models of T (Ab).

At this point the reader will wonder how the classical reasoning with circumscrip-
tion formulas takes place. In fact, this is rather complicated and what is worse, in
general this reasoning cannot be done in first-order predicate logic since T ∗(P ) quan-
tifies not only over objects but also over predicates. So in general circumscriptive rea-
soning takes place in second-order logic, which is known to be intractable and even
incomplete. Does this mean that circumscription is useless for practical purposes? For-
tunately, this is not the case, since for several special classes of theories T (P ) the
circumscription T ∗(P ) turns out to be first-order. A particularly useful class is when
the only formulas containing the predicate P are material implications with an atomic
formula Px1, . . . xn in its consequent and no occurrences of P in its antecedent. In
this special case the circumscription formula implies the so-called completion of the
predicate P . The completion of a predicate can be computed as follows.

Definition 1.2.1 [Predicate completion] Let Pxi (where xi = x1, . . . xn) be an atomic
formula and T =

{∀xi(ϕ1 ⊃ Pxi)
.
.
∀xi(ϕn ⊃ Pxi)}

such that P does not occur in ϕ1 . . . ϕn. The completion of P in T is
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∀xi(ϕ1 ∨ . . . ∨ ϕn ≡ Pxi)

To understand this definition, note that T is equivalent with ∀xi(ϕ1 ∨ . . .∨ ϕn ⊃ Pxi)
It turns out that for many practical purposes predicate completion is all that is

needed. Therefore, in this course the full syntactic version of circumscription will
be left untreated. Its model-theoretic version, on the other hand, will be discussed in
detail, for two reasons. Firstly, it gives a semantics to the method of completion and
secondly, the idea of minimal-model semantics is much more widely applicable than
just to circumscription. If the minimality criterion for first-order models is generalised
to any preference relation on models for any classical logic, then the result is the seman-
tics of preferential entailment. To verify whether a conclusion is preferentially entailed
by a theory, we only need to inspect the preferred models of the theory (according to
some given preference criterion) and verify whether the conclusion is true in all of these
preferred models.

1.3 A semantic model preference relation

How can the idea of preferential entailment be applied to the minimisation of pred-
icates? Consider a theory T with a predicate P that is to be minimised. As a first
approximation we can say that a model M of T is P -smaller than a model M ′ of T
iff they have the same domain and if the extent of P in M is a subset of the extent
of P in M ′. However, this definition has to be refined, since we have to allow for the
minimisation of more than one predicate.

Example 1.3.1 Consider the defaults

(1) ∀x((Bird(x) ∧ ¬Ab(x)) ⊃ Canfly(x))
(2) ∀x((Penguin(x) ∧ ¬Ab(x)) ⊃ ¬Canfly(x))

If Tweety is a penguin, we want to say that Tweety is an abnormal bird, but this should
not imply that Tweety also is an abnormal penguin. To avoid this, we need two abnor-
mality predicates Ab1 and Ab2, capturing, respectively, being abnormal with respect to
the birds default and being abnormal with respect to the penguin default.

(1’) ∀x((Bird(x) ∧ ¬Ab1(x)) ⊃ Canfly(x))
(2’) ∀x((Penguin(x) ∧ ¬Ab2(x)) ⊃ ¬Canfly(x))

Accordingly, the model preference relation should be refined follows. Let P be a set of
predicates to be minimised. Then a model M of a theory T is P-smaller than a model
M ′ of T iff they have the same domain and if of every predicate in P the extent in M
is a subset of that in M ′.

In sum, in circumscription each theory comes with a specification which predicates
are to be minimised. Such a specification is called a circumscription policy, and a
theory plus circumscription policy is called a circumscriptive theory.

Definition 1.3.2 Let T be a set of sentences of first-order predicate logic and P a set
of predicates to be minimised. Then P is a circumscription policy, and TP is a circum-
scriptive theory.

We can now give the formal definition of the semantic model preference relation
for circumscription.
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Definition 1.3.3 [Model preference.] Let P be a circumscription policy and M1 and
M2 two models. We write M1 ≤P M2 iff

• M1 and M2 have the same domain; and

• IM1(P ) ⊆ IM2(P ) for every predicate P ∈ P.

In other words, M1 ≤P M2 means that M1 and M2 may differ only in how they
interpret the predicates, and the extent of every predicate from P in M1 is a subset of
its extent in M2.

The predicates in P need not be unary; the definition also applies to relations with
arity higher than 1. In the latter case the extent of a predicate is not a set of objects but a
set of tuples of objects. An example of a default with a twoplace abnormality predicate
is ‘usually, married couples love each other’, which can be formalised as:

∀x∀y((Married(x, y) ∧ ¬Ab(x, y)) ⊃ (Loves(x, y) ∧ Loves(y, x)))

Since the relation ≤P is transitive and reflexive, we can talk about the models that
are minimal relative to this relation. A model M is a ≤P-minimal model of a theory T
iff there is no model M ′ of T such that M ′ <P M .

We can now formally define the nonmonotonic notion of entailment, which we will
call ‘minimal entailment’.

Definition 1.3.4 a sentence ϕ is minimally entailed by a circumscriptive theory TP, or
TP `min ϕ, iff ϕ is true in all ≤P-minimal models of T .

In applications of circumscription it is usually assumed that all objects in a domain
have a unique name. The following example illustrates the need for this assumption.

Example 1.3.5 Consider the single default

(1) ∀x((Bird(x) ∧ ¬Ab(x)) ⊃ HasWings(x ))

And assume that we also know that Bird(Tweety), Bird(Polly) and Ab(Polly). Then
HasWings(Tweety) is not minimally entailed since there are minimal models in which
Tweety = Polly is true so in those models Ab(Tweety) is true.

Usually, the unique-name assumption is combined with the domain-closure assump-
tion, which says that all objects in a domain have a name. If the domain is finite, then
these two assumptions can be expressed as first-order predicate logic sentences. Sup-
pose c1, . . . , cn are all ground terms of the language. Then the domain closure axiom
is

∀x(x = c1 ∨ . . . x = cn)

And the unique names axiom is

c1 6= c2 ∧ . . . c1 6= cn ∧ . . . cn−1 6= cn

The conjunction of these two axioms for a tuple c1, . . . , cn is sometimes denoted as
UNA[c1, . . . , cn].

In our example, these axioms amount to:

∀x(x = Tweety ∨ . . . x = Polly)

Tweety 6= Polly

The latter axiom excludes the undesired minimal models where Tweety = Polly and
Ab(Tweety) are true.
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1.4 Examples

In this section some further examples will be discussed. Let us first look at some ex-
amples (adapted from Lifschitz 1994) where only one predicate P is minimised, i.e.,
P = P (when P is a singleton, the brackets will be omitted). These examples illustrate
that circumscription formalises the idea that only those objects have a certain property
that can be shown to have this property. Accordingly, we are interested whether a given
theory minimally entails the completion of a minimised predicate P , i.e. whether all
minimal models satisfy a formula of the form

∀x(Px ≡ ϕ)

such that ϕ does not contain P .

Example 1.4.1 Let the theory T contain only Pa. Then all minimal models satisfy

∀x(Px ≡ x = a)

This is because in all models of T the extent of P must contain a but need not contain
any other object, so that in all minimal models of T the extent of P only contains a.

Example 1.4.2 Let T now contain only ¬Pa. Then all minimal models satisfy

∀x(Px ≡ ⊥)

which is equivalent to ∀x¬Px.

Example 1.4.3 Next we consider a theory consisting of Pa ∧ Pb. Then all minimal
models satisfy

∀x(Px ≡ (x = a ∨ x = b))

Example 1.4.4 Let T next consist of Pa ∨ Pb. This theory does not minimally entail
a completion of P ; the strongest that is entailed is the following disjunction of two
completions.

∀x(Px ≡ x = a) ∨ ∀x(Px ≡ x = b)

Example 1.4.5 A similar but slightly more complicated example is a theory T consist-
ing of Pa ∨ (Pb ∧ Pc). It is easy to verify that all minimal models of T satisfy

∀x(Px ≡ x = a) ∨ ∀x(Px ≡ (x = b ∨ x = c))

However, this can be strengthened by taking into account that a may be equal to b or
c, in which case the second disjunctive term does not give a minimal P . So T also
minimally entails

∀x(Px ≡ x = a) ∨ (∀x(Px ≡ (x = b ∨ x = c)) ∧ a 6= b ∧ a 6= c)

Example 1.4.6 Finally, we consider a theory T with ∀x(Qx ⊃ Px). Minimising P
transforms the implication into an equivalence. T minimally entails:

∀x(Qx ≡ Px)

If instead Q is allowed to vary, a stronger result is obtained, viz.

∀x(¬Qx ∧ ¬Px)
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Next two classic examples from nonmonotonic logic will be discussed, the ‘Tweety
Triangle’ and the ‘Nixon Diamond’, starting with the Tweety Triangle, which extends
Example 1.1.1 discussed above.

Example 1.4.7 Consider a circumscriptive theory TP where P = {Ab1, Ab2} and T
consists of

(1) ∀x((Bird(x) ∧ ¬Ab1(x)) ⊃ Canfly(x ))
(2) ∀x(Penguin(x ) ⊃ Ab1 (x ))
(3) ∀x((Penguin(x) ∧ ¬Ab2(x)) ⊃ ¬Canfly(x ))
(4) ∀x(Penguin(x ) ⊃ Bird(x ))
(5) Bird(t)

We are interested whether Tweety can fly, i.e., whether this theory minimally entails
Canfly(t). This is the case if Ab1(t) is false in all minimal models. It is easy to
verify that this holds: the example extends Example 1.1.1 with a ‘Penguins cannot fly’
default and the information that all Penguins are birds; however, since it is not given
that Tweety is a penguin, this additional information does not give rise to models where
¬Canfly(t) and so Ab1(t) is true. In conclusion, TP minimally entails that Tweety can
fly.

Let us now extend T with the following information:

(6) Penguin(t)

The presence of both (2) and (6) in T makes that all models of T now satisfy Ab1(t).
This enables minimal models of T that satisfy ¬Canfly(t), so the new information
has invalidated the previous conclusion that Tweety can fly. In fact, since ¬Ab2(t) is
consistent with T , all minimal models of T satisfy this sentence, so they also all satisfy
¬Canfly(t). Hence TP now minimally entails that Tweety cannot fly.

Next we turn to the Nixon Diamond.

Example 1.4.8 Consider a circumscriptive theory TP where P = {Ab1, Ab2} and T
consists of

(1) ∀x((Quaker(x) ∧ ¬Ab1(x)) ⊃ Pacifist(x ))
(2) ∀x((Republican(x) ∧ ¬Ab2(x)) ⊃ ¬Pacifist(x ))
(3) Quaker(n) ∧ Republican(n)

We are interested whether Nixon was a pacifist, i.e. whether TP minimally entails
Pacifist(n) or ¬Pacifist(n). Clearly, no model of T can satisfy both ¬Ab1(n) and
¬Ab2(n), since that would require the model to satisfy both Pacifist(n) and¬Pacifist(n).
Also, models that satisfy both Ab1(n) and Ab2(n) can be made smaller by omitting
I(n) either from the extent of Ab1 or from the extent of Ab2. Doing the first results in
minimal models of T that satisfy ¬Ab1(n) and therefore also satisfy Pacifist(n), while
doing the latter results in minimal models of T that satisfy ¬Ab2(n) and therefore also
satisfy ¬Pacifist(n). In conclusion, nothing of interest about Nixon’s Pacifism is min-
imally entailed by TP.

Finally, a well-known somewhat problematic example will be discussed. It is an
extension of the Tweety Triangle (Example 1.4.7) with default information on when
something is a penguin.

Example 1.4.9 Consider a circumscriptive theory TP where P = {Ab1, Ab2, Ab3}
and T consists of



16 Circumscription

(1) ∀x((Bird(x) ∧ ¬Ab1(x)) ⊃ Canfly(x ))
(2) ∀x(Penguin(x ) ⊃ Ab1 (x ))
(3) ∀x((Penguin(x) ∧ ¬Ab2(x)) ⊃ ¬Canfly(x ))
(4) ∀x((ObservedAsPenguin(x ) ∧ ¬Ab3 (x )) ⊃ Penguin(x ))
(5) ∀x(Penguin(x ) ⊃ Bird(x ))
(6) ObservedAsPenguin(t)

Intuitively, we would expect that, as in Example 1.4.7, this theory also minimally entails
¬Canfly(t). All that has changed is replacing the fact that Tweety is a penguin with a
default ‘Normally, if something is observed as a penguin, it is a penguin’ and the fact
that Tweety is observed as a penguin. And the information does not seem to give rise
to an exception to this default.

However, perhaps surprisingly, the conclusion that Tweety cannot fly is not mini-
mally entailed. The point is that T |= Ab1(t)∨Ab3(t), which not only allows a minimal
model satisfying ¬Ab3(t) and Ab1(t) but also one satisfying ¬Ab1(t) and Ab3(t).

Examples of this kind have been much discussed in the literature. Some have argued
that, to obtain the intuitive outcome, the model preference relation must be refined.
Others have blamed the material implication for the problems, and have proposed the
use of a conditional operator that does not satisfy contraposition, such as default-logic’s
domain-specific inference rules.

1.5 Prioritised circumscription

As with default logic, prioritised variants have also been developed of circumscription.
With circumscription the idea is that some predicates are minimised with higher priority
than other predicates. In this section only a brief sketch of this idea will be given; for
the details the reader is referred to Baker and Ginsberg (1989).

Model-theoretically, the idea leads to a refinement of the model preference rela-
tion. Suppose, for instance, that in Example 1.4.8 the Republican default is regarded as
stronger than the Quaker default. This can be captured by minimising Ab2 with higher
priority than Ab1. Then a model in which ¬Ab2(n) holds at the expense of Ab1(n)
is preferred over a model in which ¬Ab1(n) holds at the expense of Ab1(n), so that
the conclusion ¬Pacifist(n) is defeasibly entailed by the prioritised circumscriptive
theory.



Chapter 2

Exercises on default logic,
circumscription and the Event
Calculus

2.1 Exercises on default logic

All exercises below which ask to determine extensions should, unless indicated other-
wise, be answered by giving a process tree.

EXERCISE 2.1.1 Try to think of exceptions to the following rules, and to the eventual
exceptions.

1. If a kept object is released, it will fall.

2. Tomatoes are red.

3. One ought to stop in front of a red light.

4. Presidents of the USA are male.

5. A bachelor is unmarried.

EXERCISE 2.1.2 Show that the default theory with W = ∅ and the following set of
defaults:

D =

{
: p

¬q ,
: q

¬r ,
: r

¬s

}
has only one extension.

EXERCISE 2.1.3 Determine the extensions of the default theory given by:

W = {p ⊃ (¬q ∧ ¬r)}

D =

{
: p

p
,
: q

q
,
: r

r

}
EXERCISE 2.1.4 Show that the default theory with W = {p} and the set of defaults
below:

D =

{
p : r

q
,
p : s

¬q

}
has no extension.

17
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EXERCISE 2.1.5 Determine the extensions of the following default theories.

1. The default theory (W1, D1) with

W1 = {d, a ⊃ ¬b, d ⊃ ¬c}

D1 =

{
d : a

a
,
¬c : b

b
,
b : e

e
,
b ∧ d : ¬e
¬e

}
2. The default theory (W2, D2) with

W2 = {a, d, e ⊃ ¬c}

D2 =

{
a : b ∧ c

b
,
d : ¬b
¬b ,

: d ∧ e
e

,
: ¬e
¬e

}
3. The default theory (W3, D3) with

W3 = {a, (b ∨ e) ⊃ ¬d}

D3 =

{
a : b

b
,
a : c

c
,
c : ¬b
¬b ,

¬b : e

e
,
: d

d

}
EXERCISE 2.1.6

1. Determine the extensions of the default theory given by:

W1 = {p}

D1 =
{p : q,¬q

r

}
2. Answer the same question for the following default theory:

W2 = {p}

D2 =
{p : q ∧ ¬q

r

}
Compare your answer to that of 1.

EXERCISE 2.1.7 Answer Exercise 2.1.5(1,3) for Prioritised Default logic, given the
following partial default orderings:

• (1) b∧d:¬e
¬e < b:e

e

• (3) c:¬b¬b < a:b
b ,

:d
d <

a:c
c

EXERCISE 2.1.8 Translate the defeasible rules and their exceptions from your an-
swer to Exercise 2.1.1 into defaults.

EXERCISE 2.1.9 Consider the following default rules from the legal domain.

- Drivers ought not to drive next to each other
- Cyclists are allowed to drive next to each other
- In case of danger for obstruction, cyclists ought not to drive

next to each other

Assume further as a hard fact that cyclists are drivers.
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1. Translate this information into a propositional default theory which has a unique
extension for each consistent W that includes these hard facts, and such that in
case of conflicting defaults the most specific one is applied.

2. Answer the same question for Prioritised Default Logic.

EXERCISE 2.1.10 Consider the following empirical default rules.

- Birds normally can fly
- Penguins normally cannot fly

Assume further as hard facts that penguins are birds and that genetically modified pen-
guins are abnormal penguins.

1. Translate this information with the help of general exception clauses (for in-
stance, abnormality predicates) into a default theory (W,D) which has a unique
extension for each consistent W that includes these hard facts, and such that in
case of conflicting defaults the most specific one is applied.

2. Answer the same question for Prioritised Default Logic, using priorities instead
of general exception clauses.

EXERCISE 2.1.11 We define two consequence relations for default theories, one for
skeptical reasoning (|∼s) and one for credulous reasoning (|∼c):

• (W,D) |∼s ϕ =df all extensions of (W,D) contain ϕ.

• (W,D) |∼c ϕ =df some extension of (W,D) contains ϕ.

Determine the skeptical consequences of the default theories of Exercise 2.1.5.

EXERCISE 2.1.12 A default theory (W,D) is called finite if D is finite. Can it be
determined whether a default theory with

D =

{
Px : Qx

Rx

}
is finite? If so, is it finite? If not, which information is lacking?

EXERCISE 2.1.13 Consider a default theory ∆ = (D,W ) with the following set of
defaults:

D = {> : P (f(c))

P (f(c))
,
> : P (f(f(c))

P (f(f(c)))
, . . . }

and

W = {∀x c 6= f(x),∀x∀y((f(x) = f(y)) ⊃ x = y),∀x∀y((P (x)∧P (y)) ⊃ x = y)}

Show that this default theory has infinitely many extensions.
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2.2 Exercises on circumscription

EXERCISE 2.2.1 Specify all models with one object for the theory of Example 1.1.1,
and verify the line of reasoning in this example. Illustrate by extending the theory that
the new entailment notion is nonmonotonic.

EXERCISE 2.2.2 In this exercise you should apply Definition 1.3.3. Consider a first-
order language with object constants a and b, a unary predicate symbol P , a binary
predicate symbol R and no other terms and predicate symbols.

1. Give all≤P -minimal models with two distinct objects d1 and d2 such that I(a) =
d1 and I(b) = d2, for the following formulas:

(a) ¬Pa
(b) Pa ∨Raa
(c) Pa ∨ ¬Pb
(d) ∃xPx
(e) ∀x∀y(Px ⊃ Rxy)

(f) ∀x∀y(Rxy ⊃ Px)

(g) Rab ∧ ∀x∀y(Rxy ⊃ Px)

(h) ∀x∀y(¬Px ⊃ Rxy)

2. Give for each of the formulas under 1 one or more formulas that are true in all
≤P -minimal models of the formula, but not in all its models.

EXERCISE 2.2.3

1. Consider a circumscriptive theory TP such that T = {Pa,Rb}. Is ¬Pb mini-
mally entailed by TP ?

2. Formulate the unique-names and domain-closure axioms for TP .

3. Consider T ′P which is formed from TP by adding the unique-names and domain
closure axioms. Is ¬Pb minimally entailed by T ′P ?

EXERCISE 2.2.4 Consider the circumscriptive theory TAb where T =

∀x((Bird(x) ∧ ¬Ab(x)) ⊃ Canfly(x))
Bird(Sam)
Ab(Tweety)

1. Is Canfly(Sam) minimally entailed by TAb?

2. Extend T to T ′ by formulating the domain closure and unique-names axioms for
T and adding them to T .

3. Is Canfly(Sam) minimally entailed by T ′Ab?
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EXERCISE 2.2.5 Consider the following formulas:

∀x((P (x) ∧ ¬Ab(x )) ⊃ Q(x ))
∀x(R(x) ⊃ Ab(x ))
P (a)

Give all≤Ab-minimal models for this set of formulas. Is Q(a) true in all these models?
And what can you say about R(a)?

EXERCISE 2.2.6 Consider the following empirical default rules.

- Birds normally can fly
- Penguins normally cannot fly
- Genetically modified penguins normally can fly

Assume further as facts that all penguins are birds and all genetically modified penguins
are penguins. Translate this information with the help of abnormality predicates into a
circumscriptive theory. Ensure that in case of conflict the most specific default is ap-
plied; test this with minimal models, assuming that the language contains one constant,
viz. Tweety.

EXERCISE 2.2.7 Consider a circumscriptive theory TP, where P = {Ab1, Ab2, Ab3, Ab4}
and T =

(1) ∀x((BornInNL(x) ∧ ¬Ab1(x)) ⊃ Dutch(x))
(2) ∀x((NorwegianName(x) ∧ ¬Ab2(x)) ⊃ Norwegian(x))
(3) ∀x((Dutch(x) ∧ ¬Ab3(x)) ⊃ LikesSkating(x))
(4) ∀x((Norwegian(x) ∧ ¬Ab4(x)) ⊃ LikesSkating(x))
(5) ∀x¬(Dutch(x) ∧Norwegian(x))
(6) BornInNL(Brigt) ∧NorwegianName(Brygt)

Verify whether LikesSkating(Brigt) is minimally entailed by TP.

2.3 Answers to the Exercises

2.3.1 Default Logic

Below, defaults are assumed to be named as d1, . . . , dn in their order of appearance in
the set of defaults.Exercise 2.1.1:

1. Except in space, ...

2. Except if it is not ripe, or painted ...

3. Except police cars with their sirenes on, ...

4. No exceptions yet ...

5. No exceptions, since this is a lexical definition.

Exercise 2.1.2: The unique extension of this default theory is Th({¬q,¬s}). The tree
has four processes:
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Π1 = {d1, d3}
Π2 = {d2, d1}
Π3 = {d3, d2}
Π4 = {d3, d1}

The first and last process are closed and successful, and lead to the same extension,
while the other two are failed. The process tree is as follows:

Exercise 2.1.3: The extensions are

• E1 = Th(W ∪ {p}, generated by the process d1.

• E2 = Th(W ∪ {q, r}, generated by the processes d2, d3 and d3, d2.

The trick is to see that W makes that applying d1 blocks both d2 and d3 and applying
d2 or d3 blocks d1.

Exercise 2.1.4: Any process that applies zero or one of the defaults is not closed, while
the process Π that applies both defaults is failed: since both q and ¬q are in In(Π),
every well-formed formula is In(Π), and since ¬s and ¬r are in Out(Π), we have that
In(Π) ∩Out(Π) 6= ∅.

Exercise 2.1.5:
Question 1: This default theory has 3 extensions:

E1 = Th(W ∪ {a})
E2 = Th(W ∪ {b, e})
E3 = Th(W ∪ {b,¬e})

The corresponding process tree has three branches, which are all three closed and suc-
cessful:

Π1 = {d1}
Π2 = {d2, d3}
Π3 = {d2, d4}
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The process tree is as follows:

Question 2: This default theory has 3 extensions:

E1 = Th(W2 ∪ {b,¬e})
E2 = Th(W2 ∪ {¬b, e})
E3 = Th(W2 ∪ {¬b,¬e})

E1 is created by the processes d1, d4 and d4, d1

E2 is created by the processes d2, d3 and d3, d2

E3 is created by the processes d2, d4 and d4, d2

There is one failed process, viz. d1, d3.

Question 3: This default theory has 3 extensions:

E1 = Th(W3 ∪ {b, c})
E2 = Th(W3 ∪ {¬b, c, d})
E3 = Th(W3 ∪ {¬b, c, e})

E1 is created by the processes d1, d2 and d2, d1

E2 is created by the processes d2, d3, d5 and d2, d5, d3 and d5, d2, d3

E3 is created by the process d2, d3, d4.

Exercise 2.1.6:

1. This default theory has one extension, viz. Th({p, r}), generated by applying the
only default in D1.

2. This default theory has a different unique extension, viz. Th({p}), generated by
the empty process. Note that ¬(q ∧ ¬q) is in In(Π) for any process Π.

Exercise 2.1.7:

(1) Only E1 and E3 are PDL-extensions of this theory, since the corresponding pro-
cesses are generated by a total order containing <. By contrast, in Π2 the default d3 is
applied while according to the priority ordering d4 should have been applied instead.
So E2 is not generated by any total order containing <.

(3)E3 is not a PDL-extension, since its generation requires that d2 � d5, which contra-
dicts the fact that d5 < d2. However, E1 and E2 are also PDL-extensions: one ordering
that generates E1 is d3 � d1 � d5 � d2 � d4, while one ordering that generates E2

is d5 � d3 � d2 � d1 � d4.

Exercise 2.1.8 Left to the student.
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Exercise 2.1.9:

(1) with specific exception clauses:

D =

{
d1 :

driver : ¬next ∧ ¬cyclist

¬next
, d2 :

cyclist : next ∧ ¬danger

next
, d3 :

cyclist ∧ danger : ¬next

¬next

}
W = {cyclist ⊃ driver}

(1) with general exception clauses:

D =

{
d1 :

driver : ¬next ∧ ¬exc1

¬next
, d2 :

cyclist : next ∧ ¬exc2

next
, d3 :

cyclist ∧ danger : ¬next ∧ ¬exc3

¬next

}
W = {cyclist ⊃ driver , cyclist ⊃ exc1, (cyclist ∧ danger) ⊃ exc2}

(2):

D =

{
d1 :

driver : ¬next

¬next
, d2 :

cyclist : next

next
, d3 :

cyclist ∧ danger : ¬next

¬next

}
d3 < d2 < d1

W = {cyclist ⊃ driver}

Exercise 2.1.10:

D =

{
d1 :

Bird(x) : Flies(x ) ∧ ¬Ab1 (x )

Flies(x )
, d2 :

Penguin(x ) : ¬Flies(x ) ∧ ¬Ab2 (x )

¬Flies(x )

}
W =

{∀x(Penguin(x ) ⊃ Bird(x )),

∀x (Penguin(x ) ⊃ Ab1 (x )),

∀x ((Penguin(x ) ∧GeneticallyModified(x )) ⊃ Ab2 (x ))}

(2): Since the exception for genetically modified penguins intuitively is an ‘undercutter’
instead of a ‘rebuttal’ (i.e., it only blocks conclusions but does not support conclusions),
the optimal formalisation in PDL is slightly contrived:

D = {d1, d2, d3, d4} where

d1 :
Bird(x) ∧ ¬Ab1(x) : Flies(x )

Flies(x )
, d2 :

Penguin(x ) ∧ ¬Ab2 (x ) : ¬Flies(x )

¬Flies(x )

d3 :
: ¬Ab1(x)

¬Ab1(x)
, d4 :

: ¬Ab2(x)

¬Ab2(x)

d2 < d1

W is as under (1).
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Exercise 2.1.11:

(1) Th(W1)
(2) Th(W2)
(3) Th(W3 ∪ {c})

Exercise 2.1.12: This can be determined only if it is known whether the set of terms
in the object language is finite. If it is, the default theory is finite, otherwise it is infinite.

Exercise 2.1.13: Observe first that P (f i(c)) and P (f j(c)) (for 0 ≤ i 6= j) cannot be
together in the same extension, since together with W these two formulas are inconsis-
tent while W alone is consistent and therefore has no inconsistent extension. Consider
next the following sets:

Ei = Th(W ∪ {P (f i(c))})
It is easy to verify that each Ei (for i a natural number) is an extension of ∆, created by
applying exactly one default.

The first observation explained in more detail: suppose we apply to defaults to
obtain Pf1(c) and Pf2(c). Then the third formula in W implies f1(c) = f2(c). Then
with the second formula inW this implies c = f(c) but this contradicts the first formula
in W . It is easy to see that this line of reasoning holds for any two (or more) defaults
we apply, so we can apply just one default. Since we have infinitely many choices, we
end up with infinitely many extensions.

2.3.2 Circumscription

Exercise 2.2.1:
M1: I(Bird) = {Tweety} I(Ab) = ∅ I(Canfly) = {Tweety}
M2: I(Bird) = {Tweety} I(Ab) = {Tweety} I(Canfly) = {Tweety}
M3: I(Bird) = {Tweety} I(Ab) = {Tweety} I(Canfly) = ∅

M1 is the only Ab-minimal model and in this model Canfly(Tweety) is true, so it is
true in all Ab-minimal models of T , so it is nonmonotonically entailed by T .

If T is extended withAb(Tweety) thenM1 is not a model of the new theory and the
remaining models M2 and M3 are both ab-minimal. In M3 Canfly(Tweety) is false,
so this formula is not nonmonotonically entailed by the new theory.
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Exercise 2.2.2:

Question 1:

a: I(P ) = ∅, I(R) = any
b: I(P ) = ∅, {(d1, d1)} ⊆ I(R) ⊆ {(d1, d1), (d1, d2), (d2, d1), (d2, d2)}
c: I(P ) = ∅, I(R) = any
d: I(P ) = {d1}, I(R) = any

I(P ) = {d2}, I(R) = any
e: I(P ) = ∅, I(R) = any
f: I(P ) = ∅, I(R) = ∅
g: I(P ) = {d1}, I(R) = {(d1, d2)}

I(P ) = {d1}, I(R) = {(d1, d1), d1, d2)}
h: I(P ) = ∅, I(R) = {(d1, d1), (d1, d2), (d2, d1), (d2, d2)}

Question 2:

a: ∀x¬Px
b: ¬Pa,∀x¬Px,Raa
c: ¬Pa,∀x¬Px
d: ¬∀xPx, ∀x(Px↔ x = a) ∨ ∀x(Px↔ x = b)
e: ∀x¬Px
f: ∀x¬Px
g: ∀x(Px ≡ x = a)
h: ∀x∀yRxy

Exercise 2.2.3:

1. ¬Pb is not minimally entailed. Consider a modelM1 with domain {d1} and with
I(a) = I(b) = {d1}: M1 satisfies Pb and it is a ≤P-minimal model of TP .

2. Unique-names: a 6= b. Domain closure: ∀x(x = a ∨ x = b).

3. Yes. M1 is not a countermodel any more, since it does not satisfy the unique-
names axiom.

Exercise 2.2.4:

1. No, since there is a minimal model of this theory in which I(Tweety) = I(Sam),
I(Ab) = {Sam,Tweety} and Sam 6∈ I(Canfly).

2. Unique-names: Tweety 6= Sam . Domain closure: ∀x(x = Tweety∨x = Sam).

3. Yes. The countermodel of question (1) is not a model of T ′Ab , since it does not
satisfy the unique-names axiom. The minimal models of T ′Ab are those in which
I(Tweety) 6= I(Sam) and I(Ab) = {Tweety}, and in those models we have
that Sam ∈ I(Canfly).

Exercise 2.2.5: Let I(a) = d. Then the minimal models are all models such that
d ∈ I(P ), I(R) = ∅, I(Ab) = ∅, d ∈ I(Q). So Q(a) is true in all minimal models.
Moreover, R(a) is false in all minimal models.
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Exercise 2.2.6:
∀x((Bird(x) ∧ ¬Ab1 (x )) ⊃ Canfly(x ))
∀x((Penguin(x ) ∧ ¬Ab2 (x )) ⊃ ¬Canfly(x ))
∀x((Penguin(x ) ∧GeneticallyManipulated(x ) ∧ ¬Ab3 (x )) ⊃ Canfly(x ))
∀x(Penguin(x ) ⊃ Ab1 (x ))
∀x((Penguin(x ) ∧GeneticallyManipulated(x )) ⊃ Ab2 (x ))
∀x(Penguin(x ) ⊃ Bird(x ))

Minimised predicates: Ab1, Ab2, Ab3

Exercise 2.2.7: Yes, this is minimally entailed. This theory has two classes of min-
imal models. In one class Ab1 (Brigt) is true while Ab2 (Brigt), Ab3 (Brigt) and
Ab4 (Brigt) are false, and in the other class of models tAb2 (Brigt) is true while the
other three abnormality expressions are false. In the first class of models Norwegian(Brigt)
is true because of (2) and so LikesSkating(Brigt) is true because of (4). In the second
class of models Dutch(Brigt) is true because of (1) and so LikesSkating(Brigt) is
true because of (3).
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Chapter 3

Argumentation logics: introduction

This chapter introduces another way to conceptualise nonmonotonic reasoning, viz. as
patterns of inference where arguments for and against a certain claim are produced and
evaluated, to test the tenability of the claim. In the present chapter some motivating
examples will be presented and the main concepts will be informally introduced, while
in Chapters 4−6 the formal theory of argumentation systems will be developed.

3.1 Motivating examples

We shall illustrate the idea of argumentation-based inference with a dispute between
two persons, A and B. They disagree on whether it is morally acceptable for a newspa-
per to publish a certain piece of information concerning a politician’s private life. Let
us assume that the two parties have reached agreement on the following points.

(1) The piece of information I concerns the health of person P ;
(2) P does not agree with publication of I;
(3) Information concerning a person’s health is information concerning

that person’s private life

A now states the moral principle that

(4) Information concerning a person’s private life may not be published
if that person does not agree with publication.

and A says “So the newspapers may not publish I” (Fig. 3.1, page 30). Although B
accepts principle (4) and is therefore now committed to (1-4), B still refuses to accept
the conclusion that the newspapers may not publish I . B motivates her refusal by
replying that:

(5) P is a cabinet minister
(6) I is about a disease that might affect P ’s political functioning
(7) Information about things that might affect a cabinet minister’s

political functioning has public significance

Furthermore, B maintains that there is also the moral principle that

(8) Newspapers may publish any information that has public significance

B concludes by saying that therefore the newspapers may write about P ’s disease
(Fig. 3.2, page 31). A agrees with (5–7) and even accepts (8) as a moral principle,
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30 Argumentation logics: introduction

but A does not give up his initial claim. Instead he tries to defend it by arguing that he
has the stronger argument: he does so by arguing that in this case

(9) The likelihood that the disease mentioned in I affects P ’s
functioning is small.

(10) If the likelihood that the disease mentioned in I affects P ’s
functioning is small, then principle (4) has priority over principle (8).

Thus it can be derived that the principle used in A’s first argument is stronger than the
principle used by B (Fig. 3.3, page 31), which makes A’s first argument stronger than
B’s, so that it follows after all that the newspapers should be silent about P ’s disease.

(3) Information
concerning a
person’s health is
information
concerning that
person’s private
life.

(1) I concerns
the health of P .

I concerns the
private life of P .

(2) P does not
permit

publication of I .

I concerns the
private life of P
and P does not
permit
publication of I .

(4) Information
concerning a

person’s private
life may not be

published against
that person’s

will.

The newspapers
may not publish I .

Figure 3.1: A’s argument.

Let us examine the various stages of this dispute in some detail. Intuitively, it seems
obvious that the accepted basis for discussion after A has stated (4) and B has accepted
it, viz. (1,2,3,4), warrants the conclusion that the piece of information I may not be
published. However, after B’s counterargument and A’s acceptance of its premises (5-
8) things have changed. At this stage the joint basis for discussion is (1-8), which gives
rise to two conflicting arguments. Moreover, (1-8) does not yield reasons to prefer one
argument over the other: so at this point A’s conclusion has ceased to be warranted.
But then A’s second argument, which states a preference between the two conflicting
moral principles, tips the balance in favour of his first argument: so after the basis
for discussion has been extended to (1-10), we must again accept A’s moral claim as
warranted.

Logical systems that formalise this kind of reasoning are called ‘argumentation
logics’, or ‘argumentation systems’. As the example shows, these systems lack the
monotonicity property of ‘standard’, deductive logic (say, first-order predicate logic,
FOL). According to FOL, if A’s claim is implied by (1–4), it is surely also implied
by (1–8). From the point of view of FOL it is pointless for B to accept (1–4) and yet
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(5) P is a cabinet
minister.

(6) I is about a
disease that

might affect P ’s
political

functioning.

I is about a
disease that
might affect a
cabinet
minister’s
political
functioning.

(7) Information
about things that

might affect a
cabinet

minister’s
political

functioning has
public

significance.

I has public
significance.

(8) Newspapers
may publish any
information that

has public
significance.

The newspapers
may publish I .

Figure 3.2: B’s argument.

(9) The likelihood that the
disease mentioned in I
affects P ’s functioning is
small.

(10) If the likelihood that the disease
mentioned in I affects P ’s functioning is
small, then principle (4) has priority over

principle (8).

Principle (4) has priority
over principle (8).

Figure 3.3: A’s priority argument.

state a counterargument; B should also have refused to accept one of the premises, for
instance, (4).

Does this mean that our informal account of the example is misleading, that it con-
ceals a subtle change in the interpretation of, say, (4) as the dispute progresses? This
is not so easy to answer in general. Although in some cases it might indeed be best to
analyse an argument move likeB’s as a reinterpretation of a premise, in other cases this
is different. In actual reasoning, rules are not always neatly labelled with an exhaustive
list of possible exceptions; rather, people are often forced to apply ‘rules of thumb’ or
‘default rules’, in the absence of evidence to the contrary, and it seems natural to anal-
yse an argument like B’s as an attempt to provide such evidence to the contrary. When
the example is thus analysed, the force of the conclusions drawn in it can only be cap-
tured by a consequence notion that is nonmonotonic: although A’s claim is warranted
on the basis of (1–4), it is not warranted on the basis of (1–8).

Argumentation logics are the most direct attempt to formalise examples like the
above one, by defining notions like argument, counterargument, attack and defeat, and
by defining nonmonotonic consequence in terms of the interaction of arguments for and
against certain conclusions. This approach was initiated by the philosopher John Pol-
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lock (Pollock; 1987), based on his earlier work in epistemology, e.g. (Pollock; 1974),
and the AI researcher Ronald Loui (Loui; 1987).

One application of argumentation logics is to to formalise ‘quick-and-dirty’ com-
monsense reasoning with empirical generalisations. In everyday life people often rea-
son with generalisations such as ‘Birds fly’, ‘Italians usually like coffee’, ‘Chinese
usually do not like coffee’, ‘Witnesses usually speak the truth’ or ‘When the streets are
wet, it must have rained’. In commonsense reasoning, people apply such a generalisa-
tion if nothing is known about exceptions, but they are prepared to retract a conclusion
if further knowledge tells us that there is an exception (for instance, a given bird is in
fact a penguin, a witness has a reason to lie or the streets are wet because they are being
cleaned).

However, argumentation systems have wider scope than just reasoning with such
empirical generalisations. Firstly, argumentation systems can be applied to any form of
reasoning with contradictory information, whether the contradictions have to do with
generalisations and exceptions or not. For instance, the contradictions may arise from
reasoning with several sources of information, or they may be caused by disagreement
about beliefs or about moral, ethical or political claims. Moreover, it is important that
several argumentation systems allow the construction and attack of arguments that are
traditionally called ‘ampliative’, such as inductive, analogical and abductive arguments;
these reasoning forms fall outside the scope of most other nonmonotonic logics.

One domain in which argumentation systems have become popular is legal reason-
ing. This is not surprising, since legal reasoning often takes place in an adversarial
context, where notions like argument, counterargument, rebuttal and defeat are very
common. Argumentation systems have also been applied in, for instance, the medical
domain and in multi-agent models of negotiation and collaboration.

3.2 Argumentation systems: a conceptual sketch

In this section we give a conceptual sketch of the general ideas behind argumentation
logics. First we sketch the general idea, and then we discuss the five main elements of
such logics.

3.2.1 The general idea

Argumentation systems formalise nonmonotonic reasoning as the construction and com-
parison of arguments for and against certain conclusions. The idea is that the construc-
tion of arguments on the basis of a theory is monotonic, i.e., an argument stays an argu-
ment if the theory is enlarged with new information. Nonmonotonicity is explained in
terms of the interactions between conflicting arguments: it arises from the fact that the
new information may give rise to stronger counterarguments, which defeat the original
argument. For instance, in case of Tweety the penguin we may construct one argument
that Tweety flies because it is a bird, and another argument that Tweety does not fly
because it is a penguin, and then we may prefer the latter argument because it is about
a specific class of birds, and is therefore an exception to the general rule.
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3.2.2 Five elements of argumentation systems

Argumentation systems contain the following five elements (although sometimes im-
plicitly): an underlying logical language plus inference rules, definitions of an argu-
ment, of conflicts between arguments and of defeat between arguments and, finally, a
definition of the dialectical status of arguments, which can be used to define a non-
monotonic notion of logical consequence.

A logical language plus inference rules

Argumentation systems are built around an underlying logical language and a set of
inference rules defined over this language. Some systems assume a specific logical
language and set of inferene rules, while other systems leave these things partly or
wholly unspecified. The latter systems can thus be instantiated in alternative ways,
which makes them frameworks rather than systems. An example of such a framework
will be presented in Chapter 6.

Arguments

The notion of an argument corresponds to a tentative proof (or the existence of such
a proof) in the ‘logic’ of the chosen logical language, where this ‘logic’ is expressed
in the set of inference rules over the language. ‘Logic’ is here written between quotes
because the logic does not need to be a standard deductive logic but can also contain
defeasible inference rules (cf. the defaults of default logic). The nature of the inference
rules of an argumentation system will be further discussed in Chapter 6. For now it
suffices to say that the underlying logic of an argumentation system is still monotonic
in the sense that new information cannot invalidate arguments as arguments but can
only give rise to new counterarguments.

As for the layout of arguments, in the literature on argumentation systems three
basic formats can be distinguished, all familiar from the logic literature. Sometimes
arguments are defined as a tree of inferences grounded in the premises, and sometimes
as a sequence of such inferences, i.e., as a deduction. Finally, some systems simply
define an argument as a premises - conclusion pair, leaving implicit that the underlying
logic validates a proof of the conclusion from the premises.

The notions of an underlying logic and an argument still fit with the standard pic-
ture of what a logical system is. The remaining three elements are what makes an
argumentation system a framework for nonmonotonic reasoning.

Conflicts between arguments

The first is the notion of a conflict between arguments (also used are the terms ‘attack’
and ‘counterargument’). In the literature, three types of conflicts are discussed. Firstly,
arguments can be attacked on one of their premises, with an argument whose conclusion
negates that premise. For example, an argument ‘Tweety flies, because it is a bird’ can
be attacked by arguing that Tweety is not a bird. This kind of attack will in Chapter 6
be called undermining attack. The second type of attack is to negate the conclusion of
an argument, as in ‘Tweety flies, because it is a bird’ and ‘Tweety does not fly because
it is a penguin’ (cf. the left part of Fig. 3.4). Finally, when an argument uses a non-
deductive, or defeasible inference rule, it can be attacked on its inference by arguing
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Figure 3.4: Rebutting attack (left) vs. undercutting attack (right).

that there is a special case to which the inference rule does not apply (cf. the right
part of Fig. 3.4). After Pollock (1974, 1987), this is usually called undercutting attack.
Unlike a rebutting attack, an undercutting attack does not negate the conclusion of its
target but just says that its conclusion is not supported by its premises and can therefore
not be drawn. In order to formalise this type of conflict, the rule of inference that is to
be undercut (in Fig. 3.4: the rule that is enclosed in the dotted box, in flat text written
as p, q, r, s/t) must be expressed in the object language: dp, q, r, s/te) and denied:
¬dp, q, r, s/te. 1 While all arguments can be attacked on their premises, only defeasible
arguments can be attacked on their conclusion or inference. The reason why deductive
arguments cannot be rebutted or undercut is that deductive inferences are by definition
truth-preserving, i.e., the truth of their premises guarantees the truth of their conclusion,
so the only way to disagree with the conclusion of a deductive argument is to deny one
of its premsies. By contrast, the conclusion of a defeasible argument can be rejected
even if all its premises are accepted. In Chapter 6 the difference between deductive and
defeasible inference rules will be formalised and several examples of defeasible rules
will be discussed. For now, consider the following example of a defeasible argument
applying the principle of induction: the argument ‘Raven 101 is black since the observed
ravens raven1 . . . raven100 were black’ is undercut by an argument ‘I saw raven102,
which was white’.

Note, finally, that all three kinds of attack have a direct and an indirect version; indi-
rect attack is directed against a subconclusion or a substep of an argument, as illustrated
by Figure 3.5 for indirect rebutting.

Figure 3.5: Direct attack (left) vs. indirect attack (right).

1Ceiling brackets around a meta-level formula denote a conversion of that formula to the object lan-
guage, provided that the object language is expressive enough to enable such a conversion.
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Defeat between arguments

The notion of conflicting, or attacking arguments does not embody any form of evalua-
tion; evaluating conflicting pairs of arguments, or in other words, determining whether
an attack is successful, is another element of argumentation systems. It has the form
of a binary relation between arguments, standing for ‘attacking and not weaker’ (in a
weak form) or ‘attacking and stronger’ (in a strong form). The terminology varies:
some terms that have been used are ‘defeat’, ‘attack’ and ‘interference’. Other systems
do not explicitly name this notion but leave it implicit in the definitions. In this text
we shall use ‘defeat’ for the weak notion and ‘strict defeat’ for the strong, asymmetric
notion. Note that the several forms of attack, rebutting vs. assumption vs. undercutting
and direct vs. indirect, have their counterparts for defeat.

Argumentation systems vary in their grounds for determining the defeat relations.
Often only domain-specific criteria are available, which, moreover, are often defeasible.
For this reason argumentation systems have been developed that allow for defeasible
arguments on these criteria. To give some examples of domain-specific criteria, in do-
mains where observations are important, defeat may depend on the reliability of tests,
observers or sensors. In advice giving or consultancy, defeat may be determined by the
level of expertise of the advisors or consultants. And in legal applications, defeat may
depend on the legal hierarchy among statutes, on the court’s level of authority, or on
social or moral values. Our example in the introduction contains an argument on the cri-
teria for defeat, viz. A’s use of a priority rule (10) based on the expected consequences
of certain events. This argument might, for instance, be attacked by an argument that in
case of important officials even a small likelihood that the disease affects the official’s
functioning justifies publication, or by an argument that the negative consequences of
publication for the official are small.

The dialectical status of arguments

The notion of defeat is a binary relation on the set of arguments. It is important to note
that this relation does not yet tell us with what arguments a dispute can be won; it only
tells us something about the relative strength of two individual conflicting arguments.
The ultimate status of an argument depends on the interaction between all available ar-
guments: it may very well be that argument B defeats argument A, but that B is itself
defeated by a third argument C; in that case C ‘reinstates’ A (see Figure 3.6)2. Sup-

Figure 3.6: Argument C reinstates argument A.

pose, for instance, that the argument A that Tweety flies because it is a bird is regarded
as being defeated by the argument B that Tweety does not fly because it is a penguin
(for instance, because conflicting arguments are compared with respect to specificity).

2While in figures 3.4 and 3.5 the arrows stood for attack relations, from now on they will depict defeat
relations.
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And suppose that B is in turn defeated by an argument C, attacking B’s intermedi-
ate conclusion that Tweety is a penguin. C might, for instance, say that the penguin
observation was done with faulty instruments. In that case C reinstates argument A.

Therefore, what is also needed is a definition of the dialectical status of arguments
on the basis of all the ways in which they interact. Besides reinstatement, this defini-
tion must also capture the principle that an argument cannot be justified unless all its
subarguments are justified. There is a close relation between these two notions, since
reinstatement often proceeds by indirect attack, i.e., attacking a subargument of the
attacking argument (as illustrated by Figure 3.5). It is this definition of the status of
arguments that produces the output of an argumentation system: it typically divides ar-
guments in at least two classes: arguments with which a dispute can be ‘won’ and argu-
ments with which a dispute should be ‘lost’. Sometimes a third, intermediate category
is also distinguished, of arguments that leave the dispute undecided. The terminology
varies here also: terms that have been used are justified vs. defensible vs. defeated (or
overruled), defeated vs. undefeated, in force vs. not in force, preferred vs. not preferred,
etcetera. Unless indicated otherwise, we shall use the terms ‘justified’, ‘defensible’ and
‘overruled’ arguments.

These notions can be defined both in a ‘declarative’ and in a ‘procedural’ form.
The declarative form, usually with fixed-point definitions, just declares certain sets of
arguments as acceptable, (given a set of statements and evaluation criteria) without
defining a procedure for testing whether an argument is a member of this set; the pro-
cedural form amounts to defining just such a procedure. Thus the declarative form of
an argumentation system can be regarded as its (argumentation-theoretic) semantics,
and the procedural form as its proof theory. Note that it is very well possible that,
while an argumentation system has an argumentation-theoretic semantics, at the same
time its underlying logic for constructing arguments has a model-theoretic semantics in
the usual sense, for instance, the semantics of standard first-order logic, or a possible-
worlds semantics of some modal logic.

EXERCISE 3.2.1 Reinstatement.

1. Extend Figure 3.6 (p. 35) with an argument D, such that D defeats C. Are there
arguments that are justified? If so, which arguments? Are there arguments that
are reinstated by D? If so, which?

2. Extend the figure just drawn with a fifth argument, E, such thatE defeatsD. Are
there arguments that are justified? If so, which arguments? Are there arguments
that are reinstated by D? If so, which? Are there arguments that are reinstated
by E? If so, which?

The content of the remaining chapters on argumentation is as follows. Chapter 4
presents a fully abstract formal framework for the semantics of argumentation systems,
which leaves the structure of arguments and the nature of the defeat relation unspeci-
fied. Chapter 5 discusses the proof-theory of these abstract argumentation systems in
the form of so-called argument games. Chapter 6 then presents an instantiation of the
abstract framework with structured arguments and two kinds of inference rules, deduc-
tive and defeasible ones. This framework is still partly abstract in that it abstracts from
the nature and origin of these rules and from the nature of the logical language.



Chapter 4

An abstract framework for
argumentation

This chapter presents a fully abstract framework for the semantics of argumentation,
which leaves the internal structure of arguments and the nature of the defeat relation
completely unspecified. As input it assumes nothing else but a set (of arguments) or-
dered by a binary relation (of defeat) and then defines several ‘semantics’, that is, prop-
erties that subsets of the set of all arguments should satisfy to be justified or defensible.
Note that such argumentation semantics are, unlike the semantics of, say, standard first-
order logic, not based on the notion of truth: since argumentation systems formalise
reasoning that is defeasible, they are not concerned with truth of propositions, but with
justification of accepting a proposition as true. In particular, one is justified in accepting
a proposition as true if there is an argument for the proposition that one is justified in
accepting. Argument-based semantics specify the conditions for when this is the case.

The abstract framework was introduced by Dung (1995). Historically, it came after
the development of a number of more concrete argumentation systems, such as the
systems of Pollock (1987)−(1994) and Vreeswijk (1993a) (which are both predecessors
of the framework to be discussed in Chapter 6). Nevertheless, Dung’s article is by
now widely regarded as seminal. It was a breakthrough in several ways. Firstly, it
contains a general account of argumentation semantics, applicable to all systems that
instantiate his framework. Secondly, it made a precise comparison possible between
different systems by translating them into his abstract format. Third, it made a general
study of formal properties of systems possible, which are inherited by all systems that
instantiate his framework. Finally, all this applies not just to argumentation systems but
also to other nonmonotonic logics, since Dung (1995) showed for several such logics
how they can be translated into his abstract framework. In Section 4.6 we shall discuss
his argument-based reconstruction of default logic.

4.1 The status of arguments: preliminary remarks

We now start the discussion of abstract argument-based semantics. As explained above,
the task of argument-based semantics is to specify the conditions under which it is
justified to accept an argument. These conditions assume an ‘input’ set of arguments,
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ordered by a binary relation of ‘defeat’.1 The framework is as abstract as possible,
leaving both the structure of arguments and the grounds for defeat unspecified.

With Dung (1995) we shall call the input of the framework an ‘abstract argumenta-
tion framework (sometimes ‘argumentation framework’ for short), abbreviated as AF .

Definition 4.1.1 [Abstract argumentation frameworks.]

1. An abstract argumentation framework (AF ) is a pair A,D, where A is a set of
arguments, and D a binary relation of defeat on A.

2. We say that a set S of arguments defeats an argument A iff some argument in S
defeats A; and S defeats a set S′ of arguments iff it defeats a member of S′.

As for applications of the framework, one might think of the set A as all arguments
that can be constructed in a given logic from a given set of premises (although this
is not always the case: the framework equally applies to cases where just some of
the constructible arguments are constructed). Unless stated otherwise, we shall below
implicitly assume an arbitrary but fixed argumentation framework. Recall that we read
‘A defeats B’ in the weak sense of ‘A conflicts with B and is not weaker than B’; so
in some cases it may happen that A defeats B and B defeats A. If A defeats B, then if
B does not defeat A we say that A strictly defeats B, otherwise A weakly defeats B.

Let us now concentrate on the task of defining the notion of a justified argument.
Which properties should such a definition have? A simple definition is the following.

Definition 4.1.2 Arguments are either justified or not justified.

1. An argument is justified iff all arguments defeating it (if any) are not justified.

2. An argument is not justified iff it is defeated by an argument that is justified.

This definition works well in simple cases, in which it is clear which arguments should
emerge victorious, as in the following example.

Example 4.1.3 Consider three arguments A, B and C such that B defeats A and C
defeats B:

A concrete version of this example is

A = ‘Tweety flies because it is a bird’
B = ‘Tweety does not fly because it is a penguin’
C = ‘The observation that Tweety is a penguin is unreliable’

C is justified since it is not defeated by any other argument. This makesB not justified,
since B is defeated by C. This in turn makes A justified: although A is defeated by B,
A is reinstated by C, since C makes B not justified.

In other cases, however, Definition 4.1.2 is circular or ambiguous. In particular
when arguments of equal strength interfere with each other, it is unclear which argument
should remain undefeated.

1Dung (1995) uses the term ‘attack’, but to maintain uniformity throughout this text, we shall use
‘defeat’.
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Example 4.1.4 (Even cycle.) Consider the arguments A and B such that A defeats B
and B defeats A.

A concrete example is

A = ‘Nixon was a pacifist because he was a quaker’
B = ‘Nixon was not a pacifist because he was a republican’

Can we regard A as justified? Yes, we can, if B is not justified. Can we regard B as
not justified? Yes, we can, if A is justified. So, if we regard A as justified and B as not
justified, Definition 4.1.2 is satisfied. However, it is obvious that by a symmetrical line
of reasoning we can also regard B as justified and A as not justified. So there are two
possible ‘status assignments’ to A and B that satisfy Definition 4.1.2: one in which A
is justified at the expense of B, and one in which B is justified at the expense of A. Yet
intuitively, we are not justified in accepting either of them.

In the literature, two approaches to the solution of this problem can be found. The
first approach consists of changing Definition 4.1.2 in such a way that there is always
precisely one possible way to assign a status to arguments, and which is such that with
‘undecided conflicts’ as in our example both of the conflicting arguments receive the
status ‘not justified’. The second approach instead regards the existence of multiple
status assignments not as a problem but as a feature: it allows for multiple assignments
and defines an argument as ‘genuinely’ justified if and only if it receives this status
in all possible assignments. The following two sections discuss the details of both
approaches.

First, however, another problem with Definition 4.1.2 must be explained, having to
do with self-defeating arguments.

Example 4.1.5 (Self-defeat.) Consider an argument L, such that L defeats L (Fig-
ure 4.1). Suppose L is not justified. Then all arguments defeating L are not justified, so
by clause 1 of Definition 4.1.2 L is justified. Contradiction. Suppose now L is justified.
Then L is defeated by a justified argument, so by clause 2 of Definition 4.1.2 L is not
justified. Contradiction.

Figure 4.1: A self-defeating argument.

Thus, Definition 4.1.2 implies that there are no self-defeating arguments. Yet in ordi-
nary discourse examples of self-defeating arguments can be found, as in the following
example.
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Example 4.1.6 (The Liar.) An elementary self-defeating argument can be fabricated
on the basis of the so-called paradox of the Liar. There are many versions of this
paradox. The one we use here, runs as follows:

Dutch people can be divided into two classes: people who always tell the
truth, and people who always lie. Hendrik is Dutch monk, and from Dutch
monks we know that they tend to be consistent truth-tellers. Therefore, it
is reasonable to assume that Hendrik is a consistent truth-teller. However,
Hendrik says he is a liar. Is Hendrik a truth-teller or a liar?

The Liar-paradox is a paradox, because either answer leads to a contradiction.

1. Suppose that Hendrik tells the truth. Then what Hendrik says must be true. So,
Hendrik is a lier. Contradiction.

2. Suppose that Hendrik lies. Then what Hendrik says must be false. So, Hendrik
is not a lier. Because Dutch people are either consistent truth-tellers or consistent
liers, it follows that Hendrik always tells the truth. Contradiction.

From this paradox, a self-defeating argument L can be made out of (1):

Hendrik says:
“I lie”

Dutch monks
tend to be
consistent
truth-tellers

Hendrik is a
Dutch monk

Hendrik is a
consistent

truth-teller

Hendrik lies
Hendrik is not a

consistent
truth-teller

If the argument for “Hendrik is not a consistent truth-teller” is as strong as its subargu-
ment for “Hendrik is a consistent truth-teller,” then L defeats one of its own subargu-
ments, and thus is a self-defeating argument.

In conclusion, the treatment of self-defeating arguments deserves special attention.
Below we shall discuss for each particular semantics how it deals with self-defeat.

4.2 The unique-status-assignment approach

We now discuss an approach that changes Definition 4.1.2 in such a way that there is
always precisely one possible way to assign a status to arguments. This ‘unique-status-
assignment’ approach can best be explained by the way it formalises ‘reinstatement’
(see above, Section 3.2). It does so by combining a notion of acceptability with a
fixed-point operator. Recall that an argument that is defeated by another argument can
only be justified if it is reinstated by a third argument, viz. by a justified argument that
defeats its defeater. Part of this idea is captured by the notion of acceptability (which,
by the way, is also relevant for the multiple-status-assignments approach, as we shall
see below in Section 4.3).
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Definition 4.2.1 [Acceptability.] An argument A is acceptable with respect to a set S
of arguments iff each argument defeating A is defeated by S. When A is acceptable
with respect to S, we also say that S defends A.

The arguments in S can be seen as the arguments capable of reinstating A in case A
is defeated. To illustrate acceptability, consider again Example 4.1.3: A is acceptable
with respect to {C}, {A,C}, {B,C} and {A,B,C}, but not with respect to ∅ and
{B}.

The notion of acceptability is not yet sufficient. Consider in Example 4.1.4 the set
S = {A}. It is easy to see that A is acceptable with respect to S, since all arguments
defeating A (viz. B) are defeated by an argument in S, viz. A itself. Clearly, we do not
want that an argument can reinstate itself, and this is the reason why, to obtain a unique
status assignment, a fixed-point operator must be used.

Intermezzo: fixed point operators Below we need some basics on fixed-point op-
erators. Let S be a set and O : Pow(S) −→ Pow(S) be an operator which for any
subset of S returns a subset of S. T ⊆ S is a fixed point of O iff O(T ) = T . It is
known that if O satisfies certain properties, it has a least fixed point, i.e. a fixed point
which is a subset of all other fixed points of O. The most important of these properties
is monotonicity, which is that O(T ) ⊆ O(T ′) whenever T ⊆ T ′.

Consider now the following operator, which for each set of arguments returns the set of
all arguments that are acceptable to it.

Definition 4.2.2 [Grounded semantics.] Let AF be an abstract argumentation frame-
work, and let S ⊆ AAF . Then the operator FAF is defined as follows:

• FAF (S) = {A ∈ AAF | A is acceptable with respect to S}

The grounded extension of AF is defined as the least fixed point of FAF .

It can be shown that the operator F has a least fixed point, so that the notion of a
grounded extension is well-defined2. (The basic idea is that if an argument is acceptable
with respect to S, it is also acceptable with respect to any superset of S, so that F is
monotonic.) Self-reinstatement can then be avoided by defining the set of justified
arguments as that least fixed point. Note that in Example 4.1.4 the set {A} and {B}
are fixed points of F but not its least fixed point, which is the empty set. In general we
have that if no argument is undefeated, then F (∅) = ∅.

These observations allow the following definition of a justified argument.3

Definition 4.2.3 [Justified arguments in grounded semantics.] An argument is justified
with respect to grounded semantics iff it is a member of the grounded extension.

In applying these definitions, it is useful to know that the least fixed point of F can be
approximated, and under certain conditions even obtained, by iterative application of F
to the empty set.

Proposition 4.2.4 Dung (1995) Consider the following sequence of arguments.

2Below the superscript of F will usually be omitted.
3Henceforth, the definitions in this and the next chapter will, unless specified otherwise, impicitly

assume an arbitrary but fixed abstract argumentation framework.
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• F 0 = ∅

• F i+1 = {A ∈ A | A is acceptable with respect to F i}.
Let Fω = ∪∞i=0(F i). The following observations hold.

1. All arguments in Fω are justified.

2. If each argument is defeated by at most a finite number of arguments, then an
argument is justified iff it is in Fω.

Note that if the condition of (2) does not hold, it is possible that Fω ⊂ F (Fω).
In the iterative construction of the set of justified arguments first all arguments that

are not defeated by any argument are added, and at each further application of F all
arguments that are reinstated by arguments that are already in the set are added. This
is achieved through the notion of acceptability. To see this, suppose we apply F for
the ith time: then for any argument A, if all arguments that defeat A are themselves
defeated by an argument in F i−1, then A is in F i.

It is instructive to see how this works in Example 4.1.3. We have that

F 1 = F (∅) = {C}
F 2 = F (F 1) = {A,C}
F 3 = F (F 2) = F 2

The following example, with an infinite chain of defeat relations, provides another
illustration.

Example 4.2.5 Consider an infinite chain of arguments A1, . . . , An, . . . such that A1

is defeated by A2, A2 is defeated by A3, and so on.

The least fixed point of this chain is empty, since no argument is undefeated. Conse-
quently, F (∅) = ∅. Note that this example has two other fixed points, which also
satisfy Definition 4.1.2, viz. the set of all Ai where i is odd, and the set of all Ai where
i is even.

Defensible arguments

Definition 4.2.3 allows a distinction between two types of arguments that are not jus-
tified. Consider first again Example 4.1.3 and observe that, although B defeats A, A
is still justified since it is reinstated by C. Consider next the following extension of
Example 4.1.4.

Example 4.2.6 (Zombie arguments.) Consider three arguments A, B and C such that
A defeats B, B defeats A, and B defeats C.
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A concrete example is

A = ‘Dixon is no pacifist because he is a republican’
B = ‘Dixon is a pacifist because he is a quaker, and he has no gun

because he is a pacifist’
C = ‘Dixon has a gun because he lives in Chicago’

According to Definition 4.2.3, neither of the three arguments are justified. For A and
B this is since their relation is the same as in Example 4.1.4, and for C this is since
it is defeated by B. Here a crucial distinction between the two examples becomes
apparent: unlike in Example 4.1.3, B is, although not justified, not defeated by any
justified argument and therefore B retains the potential to prevent C from becoming
justified: there is no justified argument that reinstates C by defeating B. Sometimes
arguments like B are called ‘zombie arguments’: B is not ‘alive’, (i.e., not justified)
but it is not fully dead either; it has an intermediate status, in which it can still influence
the status of other arguments.

We shall call the intermediate status of zombie arguments ‘defensible’. In the
unique-status-assignment approach it can be defined as follows.

Definition 4.2.7 [Overruled and defensible arguments in grounded semantics.] With
respect to grounded semantics, an argument is:

• overruled iff it is not justified, and defeated by a justified argument;

• defensible iff it is not justified and not overruled.

Self-defeating arguments

How does Definition 4.2.2 deal with self-defeating arguments? Consider the following
extension of Example 4.1.5.

Example 4.2.8 Consider two arguments A and B such that A defeats A and A defeats
B.

We have that F (∅) = ∅, so neither A nor B are justified. Moreover, they are
both defensible, since they are not defeated by any justified argument. At first sight, it
might be thought that this is undesired since it would seem that self-defeating arguments
should always be overruled. However, in Chapter 6 we will see that that things are more
subtle and that a proper analysis of self-defeating arguments can only be given if the
internal structure of arguments is made explicit.

Unique status assignments: problems

We have seen that the unique-assignment approach can be formalised in a mathemati-
cally elegant way, and that it produces intuitive results in many cases. However, there
are also problems, in particular with examples of the following kind.
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Example 4.2.9 (Floating arguments.) Consider the argumentsA,B,C andD such that
A defeats B, B defeats A, A defeats C, B defeats C and C defeats D.

Since no argument is undefeated, Definition 4.2.3 tells us that all of them are defensible.
However, it might be argued that for C and D this should be otherwise: since C is
defeated by both A and B, C should be overruled. The reason is that as far as the status
of C is concerned, there is no need to resolve the conflict between A and B: the status
of C ‘floats’ on that of A and B. And if C should be overruled, then D should be
justified, since C is its only defeater.

A variant of this example is the following piece of default reasoning. To analyse
this example, we must make two assumptions on the structure of arguments, viz. that
they have a conclusion and that they have subarguments.

Example 4.2.10 (Floating conclusions.) Consider the arguments A−, A, B− and B
such that A− and B− defeat each other and A and B have the same conclusion.

An intuitive reading is

A− = Brigt Rykkje is Dutch because he was born in Holland
B− = Brigt Rykkje is Norwegian because he has a Norwegian name
A = Brigt Rykkje likes ice skating because he is Dutch
B = Brigt Rykkje likes ice skating because he is Norwegian

The point is that whichever way the conflict betweenA− andB− is decided, we always
end up with an argument for the conclusion that Brigt Rykkje likes ice skating, so it
seems that it is justified to accept this conclusion as true, even though it is not supported
by a justified argument. In other words, the status of this conclusion floats on the status
of the arguments A− and B−.

While the unique-assignment approach is inherently unable to capture floating ar-
guments and conclusions, there is a way to capture them, viz. by working with multiple
status assignments. To this approach we now turn.

4.3 The multiple-status-assignments approach

A second way to deal with competing arguments of equal strength is to let them induce
two alternative status assignments, in both of which one is justified at the expense of
the other. In this approach, an argument is ‘genuinely’ justified iff it receives this status
in all status assignments. This approach can be formalised in various ways, of which
so-called stable and preferred semantics are the two best-known.
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4.3.1 Stable semantics

The first way to allow for multiple status assignments, called stable semantics, is to
take Definition 4.1.2 as the basis, and simply use the fact that it allows for multiple
assignments. To this end, we turn this definition into one of a ‘stable status assignment’.

Definition 4.3.1 [stable status assignments.]

LetAF = (A,D) be an abstract argumentation framework and In andOut two subsets
ofA. Then (In,Out) is a stable status assignment on the basis ofAF iff In∩Out = ∅
and In ∪Out = A and for all A ∈ A it holds that:

1. A is in (that is, A ∈ In) iff all arguments defeating A (if any) are out.

2. A is out (that is, A ∈ Out) iff A is defeated by an argument that is in.

Note that the conditions 1 and 2 are just the conditions of Definition 4.1.2.
Definition 4.3.1 is said to define stable status assignments for the following reasons.

Firstly, with each stable status assignment a so-called stable argument extension can be
associated, containing all the arguments that are in in the status assignment.

Definition 4.3.2 [Stable argument extensions.] A set of arguments is a stable argument
extension iff for some stable status assignment it is the set of all arguments that are
assigned the status in.

Now stable argument extensions coincide with what Dung (1995) calls stable exten-
sions. In fact, Dung gives another but equivalent definition, which uses the notion of a
conflict-free set of arguments.

Definition 4.3.3 [Conflict-free sets.] A set S of arguments is conflict-free iff no argu-
ment in S defeats an argument in S.

Then Dung defines stable extensions as follows.

Definition 4.3.4 [Stable extensions.] A set S of arguments is a stable extension iff S
is conflict-free and every argument that is not in S, is defeated by S.

Proposition 4.3.5 The stable argument extensions induced by Definition 4.3.1 are pre-
cisely the stable extensions defined by Definition 4.3.4.

Proof: ⇒:

Suppose (In,Out) is a stable status assignment. To be proven:

1. In is conflict-free.

Assume for contradiction that In contains argumentsA andB such thatA defeats
B. Then by condition (2) of Definition 4.3.1 B is in Out . But since In ∩Out =
∅, we have that B is not in In . Contradiction. So there are no such A and B, so
In is conflict-free.

2. In defeats every argument outside In .

Since stable status assignments assign a status to all arguments in A and
In ∩ Out = ∅, every argument outside In is in Out . Then by condition (2)
of Definition 4.3.1 every such argument is defeated by an argument in In .
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⇐:

Suppose S is a stable extension. To be proven: (S,A/S) is a stable status as-
signment. Note first that by construction this is a partition of A, so In ∩ Out = ∅
and In ∪ Out = A. Then it must be verified that the two labelling conditions of
Definition 4.3.1 are satisfied.

1. Condition (1) of Definition 4.3.1 is satisfied as follows. For the only if-part, if
A ∈ S then since S is conflict-free, no B ∈ S defeats A, so all defeaters of A are
inA. For the if-part, if all defeaters of an argument A are inA, then A cannot be
in A/S, since no defeater of A is in S. So A is in S.

2. Condition (2) of Definition 4.3.1 is satisfied as follows. For the only-if part,
suppose A ∈ A/S. Then since S defeats all arguments outside it, A is defeated
by an argument in S. For the if-part, suppose A is defeated by an argument in S.
Then since S is conflict-free, A ∈ A/S. 2

Below we shall use the term stable extension both for stable argument extensions and
for Dung’s stable extensions.

Example 4.1.3 has only one stable extension, viz. {A,C}, while Example 4.1.4 has
two, induced by the following two status assignments:

Recall that an argumentation system is supposed to define when it is justified to accept
an argument. What can we say in case of A and B in Example 4.1.4? Since both of
them are in in one stable status assignment but out in the other, we must conclude that
with respect to stable semantics neither of them is justified. This is captured by the
following definition:

Definition 4.3.6 [Justified arguments in stable semantics.] With respect to stable se-
mantics, an argument is justified iff it is in in all stable status assignments.

However, this is not all; just as in the unique-status-assignment approach, it is possible
to distinguish between two different categories of arguments that are not justified. Some
of those arguments are in no stable status assignment, but others are at least in some
extensions. The first category can be called the overruled, and the latter category the
defensible arguments.

Definition 4.3.7 [Overruled and defensible arguments in stable semantics.] With re-
spect to stable semantics, an argument is:

• overruled iff it is out in all stable status assignments;

• defensible iff it is in in some but not in all stable status assignments.

It is easy to see that the unique-assignment and multiple-assignments approaches
are not equivalent. Consider again Example 4.2.9. Argument A and B form an even
defeat loop, thus, according to the multiple-assignments approach, either A and B can
be assigned in but not both. So the above defeat relation induces stable two status
assignments:
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While in the unique-assignment approach all arguments are defensible, we now have
that, while A and B are defensible, D is justified and C is overruled.

Multiple status assignments also make it possible to capture floating conclusions.
Informally, this can be done by defining that a formula ϕ is justified as ‘all extensions
contain an argument for ϕ’, rather than as ‘there exists an argument for ϕ that is in all
extensions’. In Chapter 6, in which the structure of arguments is formally defined, these
alternative consequence notions for formulas will be fully formalised.

4.3.2 Preferred semantics

There is reason to discuss a second variant of the multiple-status-assignments approach.
Since a stable extension is conflict-free, it reflects in some sense a coherent point of
view. It is also a maximal point of view, in the sense that every possible argument is
either accepted or rejected. In fact, stable semantics is the most ‘aggressive’ type of
semantics, since a stable extension defeats every argument not belonging to it, whether
or not that argument is hostile to the extension.

This feature is the reason why not all argumentation frameworks have stable exten-
sions, as the following example shows. It contains an ‘odd loop’ of defeat relations.

Example 4.3.8 (Odd loop.) Let A,B and C be three arguments, represented in a tri-
angle, such that A defeats C, B defeats A, and C defeats B.

In this situation, Definition 4.3.1 has some problems, since this example has no stable
status assignments.

1. Assume that A is in. Then, since A defeats C, C is out. Since C is out, B is in,
but then, since B defeats A, A is out. Contradiction.

2. Assume next thatA is out. Then, sinceA is the only defeater of C, C is in. Then,
since C defeats B, B is out. But then, since B is the only defeater of A, A is in.
Contradiction.

Note that a self-defeating argument is a special case of Example 4.3.8, viz. the case
where B and C are identical to A. This means that argumentation frameworks contain-
ing a self-defeating argument may have no stable status assignment.

To give such examples also a multiple-assignment semantics, we need allow for the
possibility of partial status assignments.
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Definition 4.3.9 [(Preferred) status assignments.] Let AF = (A,D) be an abstract
argumentation framework and In and Out two subsets of A. Then (In,Out) is a
status assignment on the basis of AF iff In∩Out = ∅ and for all A ∈ A it holds that:

1. A is in (that is, A ∈ In) iff all arguments defeating A (if any) are out.

2. A is out (that is, A ∈ Out) iff A is defeated by an argument that is in.

A status assignment (In,Out) is preferred iff it maximises the set of argument labelled
in, that is, if there exists no status assignment (In′, Out′) such that In ⊂ In′.

To go back to Example 4.3.8, preferred semantics gives it a unique preferred status
assignment, viz. (∅,∅).

The notions of justified, overruled and defensible arguments defined in Defini-
tions 4.3.6 and 4.3.7 can be easily defined also for preferred semantics, by uniformly
replacing ‘stable’ by ‘preferred’. However, in preferred semantics there are reasonable
alternatives for the definitions of defensible and overruled arguments (and conclusions).
This is because in each status assignment the status of an argument can be one of three
kinds: in, out or undefined. Hence there are, unlike in stable semantics, situations
where an argument is in in some but not in all assignments but yet not out in any as-
signment. Likewise, there are situations where an argument is out in some but not in all
assignments but yet not in in any assignment. In the remainder of this reader we will
for simplicity interpret the notions of defensible and overruled arguments as defined in
Definitions 4.3.7.

To return to the notion of preferred extensions, Dung (1995) defines it not in terms
of partial status assignments but with the notion of an admissible set, which in turn is
defined in terms of acceptability.

Definition 4.3.10 [conflict-free and admissible sets.]

1. A set of arguments is conflict-free iff no argument in the set defeats an argument
in the set.

2. A set of arguments S is admissible iff S is conflict-free and each argument in S
is acceptable with respect to S.

Intuitively, an admissible set represents an admissible, or defendable, point of view.
In Example 4.1.3 the sets ∅, {C} and {A,C} are admissible but all other subsets of
{A,B,C} are not admissible.

Definition 4.3.11 [Preferred extensions.] A conflict-free set of arguments is a preferred
extension iff it is a maximal (with respect to set inclusion) admissible set.

There is a one-to-one correspondence between preferred status assignments and pre-
ferred extensions (cf. Caminada (2006).

Proposition 4.3.12

1. If (In,Out) is a status assignment, then In is an admissible set;

2. Let Out(E) be the set of all arguments defeated by E. If E is a preferred exten-
sion, then (E,Out(E)) is a status assignment;
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3. (In,Out) is a preferred status assignment iff In is a preferred extension.

It follows from Definition 4.3.11 that:

Proposition 4.3.13 (Dung; 1995) Every abstract argumentation framework has at least
one preferred extension.

Grounded status assignments It turns out that grounded semantics can also be for-
mulated in terms of status assignments, namely, as those assignments that minimise the
set of arguments that is labelled in.

Definition 4.3.14 [Grounded status assignments.] A status assignment S = (In,Out)
is grounded iff there is no status assignment S′ = (In′, Out′) such that In′ ⊂ In.

Proposition 4.3.15 (Caminada; 2006) S is the grounded extension of AF if and only
if (S,Out) is a grounded status assignment of AF .

Self-defeat in preferred semantics Finally, how does preferred semantics deal with
self-defeating arguments? It turns out that, just as in grounded semantics, self-defeating
arguments can prevent other arguments from being justified. This can be illustrated with
Example 4.2.8 (two arguments A and B such that A defeats A and A defeats B). The
set {B} is not admissible, so the only preferred extension is the empty set. As said
above, a full analysis of self-defeat requires that the internal structure of arguments is
made explicit; this will be further discussed in Chapter 6, Section 6.6.

4.4 Formal relations between grounded, stable and preferred
semantics

We now give some results on the relation between the various semantics proven by
Dung (1995).

Proposition 4.4.1 Every stable extension is preferred, but not vice versa.

Proof: It is clear that each stable extension is a preferred extension. And Example 4.2.8
shows that the reverse does not hold: the empty set is a preferred extension of this
argumentation framework, but it is not stable. 2

The following results are listed without proofs.

1. The grounded extension is contained in the intersection of all preferred exten-
sions (Example 4.2.9 is a counterexample against ‘equal to’).

2. If an abstract argumentation framework does not give rise to infinite pathsA1, . . . , An, . . .
through the defeat graph such that each Ai+1 defeats Ai then it has exactly one
stable extension, which is also grounded and preferred. (Note that the even loop
of Example 4.1.4 and the odd loop of Example 4.3.8 give rise to such an infinite
defeat path.)

3. Finally, Dung (1995) identifies conditions under which preferred and stable se-
mantics coincide. A necessary condition is that an abstract argumentation frame-
work does not contain odd defeat loops.
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4.5 Comparing the two approaches

How do the unique- and multiple-assignment approaches compare to each other? It
is sometimes said that their difference reflects a difference between a ‘skeptical’ and
‘credulous’ attitude towards drawing defeasible conclusions: when faced with an un-
resolvable conflict between two arguments, a skeptic would refrain from drawing any
conclusion, while a credulous reasoner would choose one conclusion at random (or both
alternatively) and further explore its consequences. However, the distinction skeptical-
credulous is independent of the distinction between the unique- and multiple-status-
assignment approach. When deciding what to accept as a justified belief, what is im-
portant is not whether one or more possible status assignments are considered, but
how the arguments are ultimately evaluated given these assignments. And this evalu-
ation is captured by the qualifications ‘justified’ and ‘defensible’, which thus capture
the distinction between ‘skeptical’ and ‘credulous’ reasoning. And since, as we have
seen, the distinction justified vs. defensible arguments can be made in both the unique-
assignment and the multiple-assignments approach, these approaches are independent
of the distinction ‘skeptical’ vs. ‘credulous’ reasoning.

The use of skeptical reasoning (in whatever way it is formalised) is often defended
by saying that since in an unresolvable conflict no argument is stronger than the other,
neither of them can be accepted as justified, while the use of credulous reasoning has
sometimes been defended by saying that the practical circumstances often require a
person to act, whether or not s/he has conclusive reasons to decide which act to perform.
In our opinion the notions of skeptical and credulous reasoning do not exclude but
completement each other: whether it is better to reason skeptically or credulously may
depend on the application context. For example, for a judge in a law court the reasoning
about whether the suspect is guilty must clearly be skeptical, while for an intelligent
software agent faced with two conflicting goals it makes sense to reason credulously, to
achieve at least one of the goals.

As for their outcomes, the unique- and multiple-assignment approaches mainly dif-
fer in their treatment of floating arguments and conclusions. With respect to these ex-
amples, the question easily arises whether one approach is the right one. However, we
prefer a different attitude: instead of speaking about the ‘right’ or ‘wrong’ definition,
we prefer to speak of ‘senses’ in which an argument or conclusion can be justified. For
instance, the sense in which the conclusion that Brigt Rykkje likes ice skating in Exam-
ple 4.2.10 is justified is different from the sense in which, for instance, the conclusion
that Tweety flies in Example 4.1.3 is justified: only in the second case is the conclusion
supported by a justified argument. And the status of D in Example 4.2.9 is not quite
the same as the status of, for instance, A in Example 4.1.3. Although both arguments
need the help of other arguments to be justified, the argument helping A is itself justi-
fied, while the arguments helping D are merely defensible. Again it may depend on the
application context which sense of justification is the best.

4.6 Argument-based reconstruction of other nonmonotonic
logics

The application of Dung’s abstract argumentation framework is not restricted to argument-
based systems; it can also be used to reformulate other nonmonotonic logics in argument-
based terms. The advantage of this is that these logics can thus be compared in terms
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of a general theory: it can be systematically investigated in which respects they differ,
and what the consequences are of these differences. Moreover, it becomes easier to
formulate alternative versions of these logics. For instance, it is very easy to switch
from one type of semantics to another.

We shall illustrate this for one of the best-known nonmonotonic logics, default
logic. Our reconstruction is based on the one of Dung (1995), but somewhat devi-
ates from it: while Dung bases his reconstruction on Reiter’s original version of default
logic, we base it on Antoniou’s (1999) reformulation in terms of processes.

One way to reconstruct default logic in argument-based terms is by defining an
argument as a finite process in the sense of Antoniou (1999). Recall that (informally) a
process is a sequence of defaults without multiple occurrences such that the prerequisite
of each default is logically implied by the union of the ‘hard’ knowledge W and the
consequents of all preceding defaults in the sequence. A process is closed iff no more
defaults can be appended to the sequence, and it is successful iff each of its assumptions
is consistent with what is derived during the process. Clearly, processes as arguments
do not have to be closed, since arguments are typically constructed to prove a particular
conclusion. Moreover, they do not have to be successful, since unsuccessful processes
correspond to self-defeating arguments.

A default theory can now be interpreted as an abstract argumentation framework as
follows.

Definition 4.6.1 For any default theory ∆ = (W,D), the abstract argumentation frame-
work AF (∆) = (A∆, C∆) is defined as follows.

• A∆ = {Π | Π is a finite process of ∆};

• Π defeats∆ Π′ iff ϕ ∈ In(Π) for some ϕ ∈ Out(Π′).

A formula ϕ is a conclusion of an argument Π iff ϕ ∈ In(Π).

Thus an argument can be defeated by deriving the negation of one of its assumptions.
Under this translation of default logic into an argumentation system, a correspon-

dence can be proven between default logic and stable semantics. More precisely, let ∆
be a default theory, and

- for any set E of formulas, let Args(E) be the set of all Π ∈ Args∆ such that for
all k ∈ Out(Π) : {¬k} ∪ E is consistent,

- for any set S ⊆ Args∆, let Concs(S) be the union of all sets In(Πi) such that
Πi ∈ S.

Then the following holds:

Proposition 4.6.2 For any default theory ∆:

1. If S is a stable extension of AF (∆), then Concs(S) is a Reiter-extension of ∆;

2. If E is a Reiter-extension of ∆, then Args(E) is a stable extension of AF (∆).

The proof of this proposition is not mandatory for this course but since it is not reported
elsewhere in the literature, it is still included here. The proof uses some notation: if d
is a default, then Pre(d), Jus(d) and Cons(d) respectively denote d’s prerequisite,
justifications and consequent. We first prove the following lemma, which in effect says
that violating the consistency check in testing applicability of a default gives rise to a
defeating counterargument.
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Lemma 4.6.3 If S is a stable extension of AF (∆) and Π ∈ S, then:

1. all subsequences Π′ of Π that are arguments are in S;

2. all arguments in S are processes.

Proof: For (1), observe that any defeater of Π′ also is a defeater of Π, so is outside S;
but then Π′ ∈ S by definition of a stable extension.

For (2), suppose Π ∈ S and Π is not a process. Then for some subsequence Π[i]
of Π and di ∈ Π the negation of some j ∈ Jus(di) is in In(Π[i]). So Π[i] defeats Π.
Also, Π[i] ∈ S by (1); but then S is not conflict-free. Contradiction. 2

Proof: To prove (1) of Proposition 4.6.2, we first append all arguments in S into a
sequence of defaults Π and delete each repeated occurrence of every default. Clearly,
by Lemma 4.6.3 and conflict-freeness of S we have that Π is a process. We claim that
Π is a closed and successful process.

Firstly, since S is conflict-free, it follows by definition of defeat that In(Π) ∩
Out(Π) = ∅, so Π is successful.

Next, consider any default d not in Π and suppose that Pre(d) ∈ In(Π). We claim
that In(Π) ` ¬k for some k ∈ Jus(d). By compactness4 of first-order logic, Pre(d)
is implied by some finite subset of In(Π). With this subset a finite subprocess Π[i]
of Π can be associated. Since d is not an element of Π, we have that Π[i], d is not a
subprocess of Π. So by construction of Π we have that Π[i], d 6∈ S. But then since S is
stable, S defeats Π[i], d so In(Π) ` ¬k for some k ∈ Jus(d). Hence Π is closed.

Next, to prove (2), consider a closed process Π generating E and let Args(Π) be the
set of all finite processes that only use defaults from Π. Since Π is closed, we have that
Args(Π) = Args(E).

We next show that Args(Π) is a stable extension. Conflict-freeness of Args(Π)
follows immediately from successfulness of Π. To show that Args(Π) defeats any
argument outside it, consider any such argument A = d1, . . . , dn and let di be the first
default inA that is not in Π. Then since Π is closed, we have that In(Π) ` ¬k for some
k ∈ Jus(d). But then by compactness of first-order logic, some argument in Args(Π)
defeats A. 2

Example 4.6.4 Consider the following default theory ∆1 = (W,D) where W = {p}
and

D =

{
d1 :

p : q ∧ r
q

, d2 :
q : s

t
, d3 :

p : u ∧ ¬t
¬t

}
The argumentation framework AF (∆1) consists of the following arguments.

A = ∅
B = d1

C = d1, d2

D = d3

4Compactness means that if a sentence follows from an infinite set of premises, it also follows from a
finite subset of these premises.
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E = d1, d3

F = d3, d1

G = d1, d3, d2

H = d3, d1, d2

And the defeat relations are depicted in figure 4.2. This figure leaves implicit that
G and H also defeat all other arguments except argument A.

C

D

E

F

G

H

B

A

Figure 4.2: AF (∆1)

It is easy to verify that the default theory ∆1 has one default logic extension, viz.
Th({p, q, t}), generated by the process d1, d2. Correspondingly, AF (∆1) has a unique
stable extension, viz. {A,B,C}. Note that this stable extension contains the process
that generates the default logic extension of ∆1, as well as all its subprocesses.

Example 4.6.5 Consider next a default theory ∆2 = (∅, { :p
¬p}). We know from Anto-

niou (1999) that this default theory has no extensions. We have that AF (∆2) contains
two arguments, viz. ∅ and :p

¬p . The only defeat relation is that the latter argument
defeats itself. Then it is easy to see that this argumentation framework has no stable
extensions.

4.7 Final remarks

As remarked above, Dung’s fully abstract approach was a major innovation in the study
of defeasible argumentation, in that it provided an elegant general framework for inves-
tigating the various argumentation systems. Moreover, the framework also applies to
other nonmonotonic logics, since Dung showed how several of these logics can be trans-
lated into argumentation systems. Thus it becomes very easy to formulate alternative
semantics for nonmonotonic logics. For instance, default logic, which above was shown
to have a stable semantics, can very easily be given an alternative semantics in which
extensions are guaranteed to exist, like preferred or grounded semantics. Moreover,
the proof theories that have been or will be developed for the various argument-based
semantics immediately apply to the systems that are an instance of these semantics.

On the other hand, the fully abstract nature of Dung’s framework also leaves much
to the developers of particular systems. In particular, they have to define the internal
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structure of an argument, the ways in which arguments can conflict, and the origin of
the defeat relation. In the next chapter a more concrete framework will be discussed in
which these elements have been defined.

4.8 Exercises

EXERCISE 4.8.1 Determine, if possible, with Definition 4.1.2 which arguments are
justified in the following two examples.

EXERCISE 4.8.2 Prove that if no argument of AF is undefeated, then FAF (∅) = ∅.

EXERCISE 4.8.3 Determine the grounded extension of the following defeat graphs.
Show in each case its construction as in Proposition 4.2.4.

EXERCISE 4.8.4 Let

• G(S) = {A ∈ A | A is not defeated by a member of S}

1. Show that, for every set of arguments X , F (X) = G2(X) [= G(G(X))].

2. Show that G is anti-monotonic. G is anti-monotonic if A ⊆ B implies G(B) ⊆
G(A).

3. Show on the basis of (2) that F is monotonic.

4. Let {Gi}i≥0 be sets of arguments, such that

G0 =Def ∅,
Gi =Def G(Gi−1).

Show that G0 ⊆ G2 ⊆ G4 ⊆ . . . ⊆ G5 ⊆ G3 ⊆ G1.
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EXERCISE 4.8.5 Determine for each of the defeat graphs in Exercise 4.8.3 which
arguments are justified, which are defensible and which are overruled, all according to
grounded semantics.

EXERCISE 4.8.6 Prove that S is a stable extension iff S = {A | A is not defeated by
S}.

EXERCISE 4.8.7 Determine all status assignments in Examples 4.1.3, 4.1.4 and 4.3.8.
Which of these assignments are maximal?

EXERCISE 4.8.8 Consider two status assignments S = (In,Out) and S′ = (In′, Out′)
to the same argumentation framework such that In ⊂ In′.

1. Does it hold that Out ⊆ Out′? If so, give the proof; if not, give a counterexam-
ple.

2. Does it hold that Out ⊂ Out′? Again, if so, give the proof; if not, give a coun-
terexample.

EXERCISE 4.8.9 Give one or more alternative definitions of the notions of defensible
and overruled arguments in preferred semantics. Verify for each definition whether it
implies that each argument is either justified, or defensible, or overruled. If not, do you
regard this as a flaw of your definition?

EXERCISE 4.8.10 Determine the admissible sets in Example 4.3.8. Which of these
is or are maximally admissible?

EXERCISE 4.8.11

1. Determine the preferred and stable extension(s) of the following defeat graphs.
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2. Determine for each of the above defeat graphs, and with respect to each seman-
tics, which arguments are justified, which are defensible and which are overruled.

EXERCISE 4.8.12 Consider four arguments A,B,C and D such that B strictly de-
feats A, D strictly defeats C, A and D defeat each other and B and C defeat each
other.

Here is a natural-language version, in which the defeat relations are based on which
argument uses the more specific of two conflicting defaults.

A = Larry is rich because he is a public defender, public defenders are
lawyers, and lawyers are rich;

B = Larry is not rich because he is a public defender, and public
defenders are not rich;

C = Larry is rich because he lives in Hollywood, and people who live
in Hollywood are rich;

D = Larry is not rich because he rents in Hollywood, and people who
rent in Hollywood are not rich.

1. Determine the grounded extension and the preferred extension(s) of this argu-
mentation framework.

2. Determine in both cases which conclusions about Larry’s richness are justified.
Does the result agree with your intuitions?

EXERCISE 4.8.13 This exercise builds on Example 4.6.5. To see why preferred se-
mantics can improve default logic, consider the default theory ∆3 which is ∆2 plus an
extra default :q

q .

1. Determine the stable and preferred extensions of AF (∆3).

2. Explain why preferred semantics gives the better outcome.

EXERCISE 4.8.14

1. Consider a default theory ∆ = (W,D) with

W = ∅

D =

{
: b

a
,
: e

e
,
a : c ∧ d

c
,
c : b

b
,
e : ¬a
¬d ,

: ¬a
¬a

}
and answer the following questions on the basis of the argumentation framework
AF (∆).

(a) Construct a minimal argument for the conclusion b.

(b) Construct all minimal arguments that defeat the argument found under (a).
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(c) Is the argument found under (a) element of an admissible set?

(d) Is it in a preferred extension?

(e) Is it in the grounded extension?

EXERCISE 4.8.15 Verify that any failed finite process is a selfdefeating argument.





Chapter 5

Games for abstract argumentation
semantics

So far mainly semantical aspects have been discussed, where the main focus was on
characterising properties of sets of arguments, without specifying procedures for deter-
mining whether a given argument is a member of the set. In this chapter we shall go
deeper into proof-theoretical, or procedural aspects of argumentation, where the chief
concern is to investigate the status of individual arguments. This aspect of argumenta-
tion logics is less well-developed than its semantics; much research is ongoing or still
to be carried out.

5.1 General ideas

The main question of this chapter is: given an argument from an abstract argumentation
framework, how can its status be investigated? Several argumentation systems have
tackled this problem in dialectical style. The common idea can be explained in terms of
an argument game between two players, a proponent and an opponent of an argument.
A dispute is an alternating series of moves by the two players. The proponent starts
with an argument to be tested, and each following move consists of an argument that
defeats (or in some cases strictly defeats) a move of the other party. The initial argument
provably has a certain dialectical status if the proponent has a winning strategy, i.e., if
he can win whatever moves the opponent makes.

The precise rules of the game depend on the semantics the game is meant to capture.
A common winning criterion is that a player has won if s/he has made the other player
run out of moves. However, other criteria are also possible. Other aspects on which
choices have to be made are:

- Must moves strictly defeat their target or can they be weakly defeating?
- May moves be repeated?
- May players backtrack?
- May players defeat or be defeated by their own earlier moves?

These choices have to be made independently for both sides.
A natural idea in dialectical proof theories is that of dialectical asymmetry. The

players of an argument game have different objectives: proponent wants to build a (di-
alectical) proof, while opponent wants to prevent proponent from doing so. In other

59
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words, while proponent is constructive, opponent is destructive, and this leads to dif-
ferent rules for the two players. Moreover, the burden induced by these rules will be
heavier for one player than for the other. Which player has the heavier burden depends
on whether the reasoning is credulous or skeptical: in skeptical reasoning the heavier
burden is on proponent, while in credulous reasoning it is on opponent.

Let us now make these informal observations more precise. A dialectical proof
theory takes the form of an argument game regulating a dispute between two players,
the proponent P and opponent O of an argument. If p is a player, then p denotes the
other player. The players move alternatingly, moving one argument at each turn. The
game has a protocol function for determining legality of moves, by defining at each
point in a dispute which arguments can be moved. Finally, a winning criterion is a
partial function that determines the winner of a dispute, if any. If one player wins, the
other player loses, so the argument game is a so-called zero-sum game.

These notions are formally defined as follows (recall that, unless stated otherwise,
we implicitly assume an arbitrary but fixed argumentation framework).

Definition 5.1.1 [Moves, disputes and protocols.] Given an argumentation framework
AF = (A,D) we define the following notions.

• The set M of moves consists of all pairs (p,A) such that p ∈ {P,O} and A ∈ A;
for any move (p,A) in M we denote p by pl(m) and A by s(m).

• The set of M≤∞ of disputes is the set of all sequences from M and the set
M<∞of finite disputes is the set of all finite sequences from M .

• A protocol is a function that specifies the legal moves at each stage of a dispute.
Formally, a protocol is a function Pr with domain a nonempty subsetD ofM<∞

taking subsets of M as values. That is:

– Pr : D −→ Pow(M)

such that D ⊆M<∞. The elements of D are called the legal finite disputes. The
elements of Pr(d) are called the moves allowed after d. If d is a legal dispute
and Pr(d) = ∅, then d is said to be a terminated dispute. Pr must satisfy the
following conditions for all finite disputes d and moves m:

1. d ∈ D and m ∈ Pr(d) iff d,m ∈ D;

2. ifm ∈ Pr(d) then pl(m) = P if d is of even length, otherwise pl(m) = O.

• A winning function is a partial function of type W : D −→ {P,O}.

The crucial elements of this definition are the protocol and the winning criterion. Di-
alectical proof theories differ only on these two elements.

We now define an abstract game-theoretic notion of defeasible provability, which
is the same for all dialectical proof theories. It is defined in terms of the notion of a
strategy. A strategy for a player in a dispute game has the form of a tree of disputes that
for each possible move of the other player specifies a unique reply.

Definition 5.1.2 [Strategies.]

1. A strategy for player p is a tree of disputes only branching after p’s moves, and
containing all legal replies of p.
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2. A strategy for p is winning iff p wins all disputes in the strategy.

If the winning criterion is that the other player has no legal moves, then it is easy to see
that a winning strategy for a player is a strategy in which all branches end with a move
by that player.

Defeasible provability is now defined as follows, parametrised by a protocol X .

Definition 5.1.3 [Provability.] An argument A is defeasibly provable in the X-game
iff the proponent has a winning strategy in a dispute with as root the argument A that
satisfies protocol X .

5.2 Dialectics for grounded semantics

In this section we discuss a proof theory for determining whether an argument is in the
grounded extension of a given argumentation framework. Since a grounded extension
only contains justified arguments, the dialectical asymmetry favours the opponent: her
moves are allowed to be simply defeating1, while proponent’s moves must be strictly
defeating. Moreover, the proponent is not allowed to repeat his arguments. Finally,
backtracking is not allowed for both players.

Definition 5.2.1 [Proof theory for grounded semantics.] A dispute satisfies theG-game
protocol iff it satisfies the following conditions.

1. Moves are legal iff in addition to Definition 5.1.1 they satisfy the following con-
ditions.

(a) Proponent does not repeat his moves; and

(b) Proponent’s moves (except the first) strictly defeat opponent’s last move;
and

(c) Opponent’s moves defeat proponent’s last move.

2. A player wins a dispute iff the other player has no legal moves.

A dispute satisfying the protocol of the G-game is called a G-dispute.

Example 5.2.2 Let A,B,C and D be arguments such that B and D defeat A, and C
defeats B. Then a G-dispute on A may run as follows:

P : A, O: B, P : C

In this dispute P attempts to show A justified. Both B and D defeat A, which means
that O has two choices in response to A. O chooses to respond with B in the second
move. Then C is the only argument defeating B, so that P has no choice than to
respond with C in the third move. There are no arguments against C, so that O cannot
move and loses the dispute.

However, this outcome is not inevitable for O; her loss was merely caused by her
weak play. A dispute in which O follows an optimal strategy is

P : A, O: D
1When below we say that move m defeats move m′ we mean that s(m) defeats s(m′).
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And P has no reply, soO wins. Concluding, in this example P has no winning strategy.
The only reason why P wins the first dispute is that O chooses the wrong argument,
viz. B, in response to A. In fact, O is in the position to win every game, provided it
chooses the right moves. In other words, O possesses a winning strategy.

Example 5.2.3 To give an another example, consider two strategies for P as depicted
in Figure 5.1. The tree on the left is based on an argumentation framework AF1 with
A = {A,B,C,D,E, F,G} and D as shown by the arrows. Here P has a winning
strategy, since in all disputesO eventually runs out of moves; so argumentA is provable
on the basis of AF1. The tree on the right is based on an extension of AF1 into AF2

by adding H , I and J to A and adding new defeat relations corresponding to the new
arrows (the extension is shown inside the dotted box). This is not a winning strategy
for P , since one dispute ends with a move by O; so (assuming P has no better strategy)
A is not provable on the basis of AF2.

P1: A

O1: B O1’: C

P2’: E

O2: F O2’: C

P2: D

P3: G P3’: E

A is provable

P1: A

O1: B O1’: C

P2: D

O2: F

P3: G

O2’: C

P3’: E

P2’: E

O1’’: H

P2’’: I

P3’’: E

O2’’: C O2’’’: J

A is not provable

Figure 5.1: Two trees of proof-theoretical disputes.

Some words are in order on the non-repetition requirement of Definition 5.2.1 (con-
dition 1a). This requirement does not change provability of any argument, since O will
have a reply the second time iff she had a reply the first time. However, it avoids infinite
disputes if A is finite, which is especially convenient for computational purposes. The
same holds for the condition that P ’s arguments are strictly defeating; allowing them to
be simply defeating does not change provability, but it avoids certain infinite disputes.

As for the relation between grounded semantics and its proof theory, the following
proposition holds.

Proposition 5.2.4 [Soundness and completeness of the G-game.] An argument is in
the grounded extension of an AF iff it is defeasibly provable on the basis of AF in the
G-game.

Proof: (Sketch). We give a sketch of the proof for finitary AF ’s. Without this re-
striction the proof is more complicated. The restriction makes sense for computational
purposes, since saying that an AF is finitary is equivalent to saying that each strategy
based on AF has at most a finite number of branches.
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⇐ (soundness):
Assume that P has a winning strategy W for A. Clearly, all of W ’s leaves An are in
F 1, since they have no defeaters. But then in every branch of W , An−2 is acceptable
with respect to F 1 and so is in F 2. This can be repeated until the root of W is reached.
2

⇒ (completeness):
Suppose A is in the grounded extension of AF . Then, since AF is finitary, there is
a least number i such that A ∈ F i. Then P has the following winning strategy if
he begins a dispute with A. For each argument B defeating A moved by O, P can
choose one argument C from F i−1 that strictly defeats B. This can be repeated for
each argument defeating C, and so on, until P can choose an argument from F 1, which
has no defeaters, so O has no legal reply. 2

Note that completeness here does not imply semi-decidability (a logic is semi-decidable
iff there exists an algorithm that can produce any provable formula): if the logic for con-
structing individual arguments is not decidable, then the search for counterarguments is
in general not even semi-decidable, since this search is essentially a consistency check.

This completes the discussion of the dialectical proof theory for grounded seman-
tics. We now turn to a dialectical proof theory for credulous reasoning, in particular for
preferred semantics.

5.3 Dialectics for preferred semantics

In this section we present the so-called P - game2, which serves as a credulous proof
theory for preferred semantics, and was developed by Vreeswijk and Prakken (2000).
For notational convenience we now denote defeat relations with ←. Throughout this
section we will use the following example.

Example 5.3.1 The pair A = 〈X,←〉 with arguments

X = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, p, q}

and← as indicated in Figure 5.2 is an example of an abstract argumentation framework.
It accommodates a number of interesting cases, and will therefore be used as a running
example throughout this chapter.

5.3.1 The basic ideas illustrated

Example 5.3.1 gives us some useful clues as to which features the argument game
for preferred semantics should have. We are interested in credulous reasoning, so in
testing membership of some extension. The argument game is based on the following
idea. By definition, a preferred extension is a ⊆-maximal admissible set. It is known
that each admissible set is contained in a maximal admissible set (see the proof of
Proposition 4.3.13), so the procedure comes down to trying to construct an admissible
set ‘around’ the argument in question. If this succeeds, we know that the admissible set
and hence the argument in question is contained in a preferred extension.

2The P in ‘P -game should not be confused with the P denoting proponent.
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Figure 5.2: Defeat relations in the running example.

Suppose now we wish to investigate whether a is preferred, i.e., belongs to a pre-
ferred extension. We know that it suffices to show that the argument in question is
admissible. The idea is to start with S = {a} and, if a has defeaters, to find other
arguments in order to complete S into an admissible set.

Example 5.3.2 (Straight failure). Consider the argument system of Figure 5.2, and
suppose that P ’s task is to show that a is preferred. The first action of P is simply
putting forward a:

If a cannot be defeated, then S = {a} is admissible, and P succeeds. However, since
a← h, O forwards h:

Now it is up to P to defend a by finding arguments against h. There are no such argu-
ments, so that P fails to construct an admissible set ‘around’ a. So a is not admissible,
hence not preferred.

Example 5.3.3 (Straight success). Suppose that P wants to show that b is admissible.
The first action of P is putting forward b:

O defeats b with d:
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P defends this attack with g:

Example 5.3.4 (Even loop success). Suppose that P wants to show that f is admissi-
ble.

This example shows that P must be allowed to repeat his arguments, while O must be
forbidden to repeat O ’s arguments (at least in the same ‘line of dispute’; see further
below).
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Example 5.3.5 (Odd loop failure). Suppose that P wants to show thatm is admissible.

P has no other arguments in response to l and m, so that he is unable to close S into an
admissible set. So m is not contained in an admissible set. Note that we cannot allow
P to reply to m with l, since otherwise the set that P is constructing ‘around’ m is not
conflict-free, hence not admissible. So we must forbid P to repeat O ’s moves. On the
other hand, this example also shows that O should be allowed to repeat P ’s moves,
since such a repetition reveals a conflict in P ’s position.

Example 5.3.6 (The need for backtracking). The next feature of our argument game is
not illustrated by Figure 5.2 so we need a new example. Consider an argument system
with five arguments a, b, c, d and e and defeat relations as shown in the graph.

This example shows that we must allow O to backtrack. Suppose P starts with a, O
defeats a with d, and P defends a with e. If O now defeats e with b, P can defend e
by repeating e itself. However, O can backtrack to a, this time defeating it with c, after
which P can only defend awith bwhich repeatsO, and in Example 5.3.5 we concluded
that P must be forbidden to do so. So by backtracking O can reveal that P ’s position
is not conflict-free.
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Repetition

Let us summarise our observations about repetition of moves.

i. It makes sense for P to repeat himself (if possible), because O might fail to find
or produce a new defeater of P ’s repeated argument. If so, then P ’s repetition
closes a cycle of even length, of which P ’s arguments are admissible.

ii. It makes sense for O to repeat P (if possible), because thus she shows that P ’s
collection of arguments is not conflict-free.

iii. P must not repeat O, because doing so would introduce a conflict into P ’s own
collection of arguments.

iv. O must not repeat herself, because P has already shown to have adequate defense
for O’s previous arguments.

5.3.2 The P -game defined

We now turn to the formal definition of the argument game for preferred semantics. Let
us fix some terminology.

- A dispute line is a dispute without backtracking moves.
- An eo ipso (meaning: “you said it yourself”) is a move that uses a previous argument

of the other player.

Definition 5.3.7 [A proof theory for preferred semantics.] A dispute satisfies the P -
game protocol iff satisfies the following conditions.

1. Moves are legal iff in addition to Definition 5.1.1 they satisfy the following con-
ditions.

(a) A move by P responds to the previous move by O.

(b) A move by O responds to some earlier move by P .

(c) A move defeats the argument to which it responds.

(d) P does not repeat O’s moves.

(e) O does not repeat O’s moves in the same dispute line.

(f) No two responses to the same move have the same content.

2. O wins a dispute iff she does an eo ipso or makes P run out of legal moves;
otherwise P wins.

A dispute satisfying the rules of the P -game is called a P -dispute.

Note that an infinite dispute is won by P .
Since the P -game allows O to backtrack, during a P -dispute a tree of dispute lines

is constructed. (By contrast, a G-dispute consists of only one dispute line, since in a
G-dispute each argument replies to the immediately preceding move in the dispute.)
Accordingly, there are two ways to display a P -dispute: as a linear structure, in the or-
der in which the arguments are moved, and as a tree structure, where the edges indicate
to which argument an argument replies. The reader should not confuse the tree form of
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a single dispute with the tree form of a strategy: in the latter tree (cf. Definition 5.1.2)
an edge between two arguments indicates that the child argument is moved immediately
after the parent argument; in other words, each branch of a strategy tree is a complete
dispute, possibly with backtracking moves, but displayed in linear form.

Proposition 5.3.8 [Soundness and completeness of the P -game.] An argument is in
some preferred extension of an AF iff it is defeasibly provable on the basis of AF in
the P -game

Proof: (Below we say that an argument a is defended in a dispute iff the dispute begins
with a and is won by P .) By definition of preferred extensions it suffices to show that
an argument is admissible iff it can be defended in every dispute.

First suppose that a can be defended in every dispute. This includes disputes in
whichO has opposed optimally. Let us consider such a dispute. LetA be the arguments
that P used to defend a. (in particular a ∈ A.) If A is not conflict-free then ai ← aj
for some ai, aj ∈ A, and O would have done an eo ipso, which is not the case. If A is
not admissible, then ai ← b for some ai ∈ A while b←/ A. In that case, O would have
used b as a winning argument, which is also not the case. Hence A is admissible.

Conversely, suppose that a ∈ A with A admissible. Now P can win every dispute
by starting with a, and replying with arguments from A only. (P can do this, because
all arguments in A are acceptable wrt A.) As long as P picks his arguments from A, O
cannot win by eo ipso, because A is conflict-free. So a can be defended in dispute.2

Finally, a drawback of the P -game is that in some cases proofs have to be infinite.
This is obvious when an argument has an infinite number of defeaters, but even other-
wise some proofs are infinite, as in the case of Example 4.2.5. Nevertheless, it is easy
to verify that with a finite set of arguments all proofs are finite.

5.4 A simplification of the P -game

Applying the P -game as defined above can be quite complex, since it combines two
kinds of trees: the tree of reply relations within a single P - game and the game tree in
the game-theoretical sense, that is, the tree of all possible ways in which a game about
a given argument can be played. Fortunately, a simplification is possible, since Wu
(2012) has proved that the proponent has a winning strategy in the P -game just in case
there exists a terminated game won by the proponent. Here ‘terminated’ means that the
player to move cannot move any further legal move. Note that infinite games can also
be terminated in this sense. The intuition behind this result is that since the opponent
can freely backtrack in a single game, a single terminated game will already contain all
possible ways the opponent can attack the proponent’s arguments.

5.5 Exercises

EXERCISE 5.5.1 Consider an argumentation framework with the arguments {A−G}
and the following defeat relations: A and B defeat each other, E and G defeat each
other, C defeats B, D defeats A, E defeats D, and F defeats D.

1. Draw the defeat graph.
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2. Determine all strategies for P and O in a game for A according to grounded
semantics. Indicate which of these strategies are winning.

EXERCISE 5.5.2

1. Change Definition 5.2.1 to the effect that the non-repetition rule is dropped, and
P ’s arguments are allowed to be simply defeating. Give a dispute that is finite
under the original definition but infinite under the new definition.

2. Answer the same question for the case that only the non-repetition rule is dropped.

3. Give a dispute that is infinite under the original definition.

EXERCISE 5.5.3

1. Investigate for the following arguments in Exercise 4.8.3 whether they can be
proven justified with respect to grounded semantics. For each provable argument,
give a winning strategy for P . For each argument that is not provable, show why
P ’s strategies fail.

(a) In (a): investigate A, B and D.

(b) In (b): investigate C and E.

(c) In (c): investigate A, B and C.

(d) In (d): investigate C.

2. Answer the same question about defeat graph (e) of Exercise 4.8.11, for the ar-
guments C and D.

3. For each argument under 1 that is provable, compare the structure of P ’s win-
ning strategy with the construction of the grounded extension that you found in
Exercise 4.8.3. How are they related?

EXERCISE 5.5.4 This exercise is a continuation of Exercise 4.8.14. Investigate whether
the argument for b that you constructed in that exercise, is defeasibly provable in the
G-game. If so, give a winning strategy for P .

EXERCISE 5.5.5 Verify that a proof in the P -game of A1 in Example 4.2.5 has to be
infinite.

EXERCISE 5.5.6 Show with an example that the P -game is incorrect as a proof the-
ory for stable semantics.

EXERCISE 5.5.7

1. Investigate for the following arguments in Exercise 4.8.11 whether they can be
proven to be in some preferred extension. For each provable argument, give
a winning strategy P . For each argument that is not provable, show why all
strategies for P fail.

(a) All arguments in (b);

(b) All arguments in (c);
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(c) Argument c in (d).

2. Answer the same question for argument c in Figure 5.2.

3. For all arguments from the previous subquestions that are provable, give a termi-
nated game won by P .



Chapter 6

A framework for argumentation
with structured arguments

6.1 Introduction

As explained above, Dung’s (1995) abstract framework was an important advance in the
formal study of argumentation. However, its fully abstract nature makes it less suitable
for directly representing specific argumentation problems. It is best used as a tool for
analysing particular argumentation formalisms and for developing a metatheory of such
systems. When actual applications of argumentation-based inference have to be mod-
elled, Dung’s framework should be refined with accounts of the structure of arguments
and the nature of the defeat relation. However, here too abstraction is still possible
and worthwhile. This chapter instantiates Dung’s abstract approach by assuming an
unspecified logical language and by defining arguments as (directed acyclic) inference
graphs formed by applying two kinds of inference rules, deductive (or ‘strict’) and de-
feasible rules’. As explained in Section 3.2, the notion of an argument as an inference
graph naturally leads to three ways of attacking an argument: attacking a premise, at-
tacking a conclusion and attacking an inference. To resolve such conflicts, preferences
may be used, which leads to three corresponding kinds of defeat: undermining, re-
butting and undercutting defeat. To characterise them, some minimal assumptions on
the logical object language must be made, namely that certain well-formed formulas
are a contrary or contradictory of certain other well-formed formulas. Apart from this
the framework is still abstract: it applies to any set of inference rules, as long as it is
divided into strict and defeasible ones, and to any logical language with a (possibly
non-symmetric) negation connective.

The resulting framework unifies two ways to capture the fallibility of reasoning.
Some, e.g. Bondarenko et al. (1997), locate the fallibility of arguments in the uncer-
tainty of their premises, so that arguments can only be attacked on their premises.
Others, e.g. Pollock (1994); Vreeswijk (1997), instead locate the fallibility of argu-
ments in the riskiness of their inference rules: in these logics inference rules are of
two kinds, being either deductive or defeasible, and arguments can only be attacked on
their applications of defeasible inference rules. Vreeswijk (1993b, Ch. 8) called these
two approaches plausible and defeasible reasoning: he described plausible reasoning
as sound (i.e, deductive) reasoning on an uncertain basis, and defeasible reasoning as
unsound (but still rational) reasoning on a solid basis. In his chapter 8, Vreeswijk at-
tempted to combine both forms of reasoning in a single formalism, but since then most
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formal accounts of argumentation have modelled either only plausible or only defeasi-
ble reasoning. The present framework again combines the two forms of reasoning but
this time within the abstract setting of Dung (1995).

The account offered in this chapter further develops work undertaken in the Euro-
pean ASPIC project (Amgoud et al.; 2006; Caminada and Amgoud; 2007) and is more
fully reported in (Prakken; 2010; Modgil and Prakken; 2013). It is based on work of
John Pollock (1987; 1994) and Gerard Vreeswijk (1993b; 1997) on the structure of ar-
guments, work of Pollock (1974; 1987) on notions of defeat and work of Prakken and
Sartor (1997) and others on argumentation with prioritised rules. The proofs of the for-
mal results stated in this chapter can be found in (Prakken; 2010; Modgil and Prakken;
2013). The text of this chapter is largely based on Modgil and Prakken (2014), which
gives a tutorial introduction to the ASPIC+ framework. In addition, some fragments
are taken from the recent handbook chapter of Modgil and Prakken (2018).

6.2 Design choices and Overview

People argue to remove doubt about a claim (Walton; 2006, p. 1), by giving reasons
why one should accept the claim and by defending these reasons against criticism. The
strongest way to remove doubt is to show that the claim deductively follows from in-
disputable grounds. A mathematical proof from the axioms of arithmetic is like this:
its grounds are mathematical axioms, while its inferences are deductively sound. So
such a proof cannot be attacked in any way: not on its grounds and not on its infer-
ences. However, such perfection is not attainable in real life: our grounds may not be
indisputable or they may provide less than conclusive support for their claim.

Suppose we believe that John was in Holland Park some morning and that Holland
Park is in London. Then we can deductively reason from these beliefs, to conclude
that John was in London that morning. So the reasoning cannot be attacked. However,
perfection remains unattainable since the argument is still fallible: its grounds may turn
out to be wrong. For instance, Jan may tell us that he met John in Amsterdam that
morning around the same time. We now have a reason against our belief that John was
in Holland Park that morning, since witnesses usually speak the truth. Can we retain
our belief or must we give it up? The answer to this question determines whether we
can accept that John was in London that morning.

Maybe we originally believed that John was in Holland Park for a reason. Maybe
we went jogging in Holland Park and we saw John. We then have a reason supporting
our belief that John was in Holland Park that morning, since we know that our senses
are usually accurate. But we cannot be sure, since Jan told us that he met John in
Amsterdam that morning around the same time. Perhaps our senses betrayed us this
morning? But then we hear that Jan has a reason to lie, since John is a suspect in a
robbery in Holland Park that morning and Jan and John are friends. We then conclude
that the basis for questioning our belief that John was in Holland Park that morning
(namely, that witnesses usually speak the truth and Jan witnesses John in Amsterdam)
does not apply to witnesses who have a reason to lie. So our reason in support of our
belief is undefeated and we accept it.

If we want to formalise a logic for argumentation, then this simple example (dis-
played in Figure 6.1) already suggests a number of issues we have to deal with. At least
two further important design decisions have to be made: how can arguments be built,
i.e., how can claims be supported with grounds, and how can arguments be attacked?
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Figure 6.1: An informal example

We shall see that the answers to these two questions are related.
First, the claims and beliefs in our example were supported in various ways: in

the first case we appealed to the principles of deductive inference when concluding
that John was in London (visualised in Figure 6.1 with solid links). ASPIC+ is there-
fore designed so that arguments can be constructed using deductive or strict inference
rules that license deductive inferences from premises to conclusions. However, in the
other two cases the reasoning from grounds to claim appealed to the reliability of, re-
spectively, our senses and witnesses as sources of information. Should these kinds of
support (inferences) from grounds to claims be modelled as deductive?

To help answer this question, consider that our informal example contains three
ways of attacking an argument: 1) Our initial argument that John was in London was
attacked by the witness argument on its ground, or premise, that John was in Holland
Park that morning; 2) We then modified our initial argument by extending it with an
additional argument for the attacked premise, but the extended argument was still at-
tacked (by the witness argument) on the (now) intermediate conclusion that John was in
Holland Park that morning; 3) Finally, we counterattacked the witness argument not on
a premise or conclusion but on the reasoning from the grounds to the claim: namely, the
inference step from the premise that Jan said he met John in Amsterdam that morning
to the claim that John was in Amsterdam that morning (note that here we regard the
principle that witnesses usually speak the truth as an inference rule).

Now, returning to the question whether all kinds of inference should be deductive,
the second type of attack would not be possible on the deductively inferred intermediate
conclusion since the nature of deductive support is that it is absolutely watertight: if one
accepts all antecedents of a deductively valid inference rule, then one must also accept
its consequent no matter what, on the penalty of being irrational. If the antecedents of
a deductively valid inference rule are true, then its consequent must also be true. So if
we have reason to believe that the conclusion of a deductive inference is not true, then
there must be something wrong with its premises (which may in turn be the conclusions
of subarguments). It is for this very same reason that the third type of attack, on the
deductive inferential step itself, is also not possible.

ASPIC+ is therefore designed to comply with the common-sense and philosoph-
ically argued position (Pollock (1995, p.41); Pollock (2009, p. 173)) advocating the
rationality of supporting claims with grounds that do not deductively entail them. In
other words, the fallibility of an argument need not only be located in its premises, but
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can also be located in the inference steps from premises to conclusion (visualised in
Figure 6.1 with dashed links). Thus, arguments in ASPIC+ can be constructed using
defeasible inference rules, and arguments can be attacked on the application of such
defeasible inference rules, in keeping with the interpretation that the premises of such
a rule presumptively, rather than deductively, support their conclusions,

However, some would argue that the second and third type of attacks can be simu-
lated using only deductive rules (specifically the deductive rules of classical logic) by
augmenting the antecedents of these rules with normality premises. For example, with
regard to the second type of attack, could we not say that our argument claiming that
John was in Holland Park that morning since we saw him there has an implicit premise
our senses functioned normally, and that the argument that John was in Amsterdam that
morning in fact attacks this implicit premise, rather than its claim, thus reducing attacks
on conclusions to attacks on premises? With regard to the third type of attack, could
we not say that instead of attacking the defeasible inference step from Jan’s testimony
to the claim that John was in Amsterdam, we could model this step as deductive, and
then add the premise that normally witnesses speak the truth, and then direct the at-
tack at this premise? In other words, can we reduce attacks on inferences to attacks on
premises?

In answer to these questions, we first note that some have argued that such deduc-
tive simulations are prone to yielding counterintuitive results. This is a topic that we
will return to and examine in more detail in Section 6.4.5. Second, we claim that there
is some merit in modelling the everyday practice of ‘jumping to defeasible conclusions’
and of considering arguments for contradictary conclusions. This is especially impor-
tant given that one of the argumentation paradigm’s key strengths is its characterisation
of formal logical modes of reasoning in a way that corresponds with human modes of
reasoning and debate.

The above discussion introduced the notion of fallible premises that can be attacked.
However ASPIC+ also wants to allow you to distinguish premises that are axiomatic
and so cannot be attacked. We discuss the uses of such premises in Section 6.4, but for
the moment we can summarise by saying that ASPIC+ arguments can be constructed
from fallible and infallible premises (respectively called ordinary and axiom premises
in Section 6.3), and strict and defeasible inference rules, and that arguments can be
attacked on their ordinary premises, the conclusions of defeasible inference rules, and
the defeasible inference steps themselves. Finally, a key feature of the ASPIC+ frame-
work is that it accommodates the use of preferences over arguments, so that an attack
from one argument to another only succeeds (as a defeat) if the attacked argument is
not stronger than (strictly preferred to) the attacking argument, according to some given
preference relation. The justified ASPIC+ arguments are then evaluated with respect to
the Dung framework relating ASPIC+ arguments by the defeat relation.

6.3 The framework defined: Special case with ‘ordinary’ nega-
tion

In this section we present the basis definitions of the ASPIC+ framework. Note that
in this section we present a special case of ASPIC+, in which conflict is based on the
standard classical notion of negation, and then in Section 6.5 we replace negation by a
more general notion of conflict between formulae.
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6.3.1 Argumentation systems, knowledge bases, and arguments

To use ASPIC+, you need to provide the following information. You must choose
a logical language L closed under negation ¬ (which we later replace with a more
general notion of conflict). You must then provide two (possibly empty) sets of strict
(Rs) and defeasible (Rd) inference rules. If you provide a non-empty set of defeasible
rules, you then need to also specify which well-formed formulas in L correspond to
(i.e., name) which defeasible rule in Rd. To do the latter requires specifying a partial
function n from Rd to L. These names can then by used when attacking arguments on
defeasible inference steps. Informally, n(r) is a wff in L which says that the defeasible
rule r ∈ R is applicable, so that an argument claiming ¬n(r) attacks the inference step
in the corresponding rule1.

The above is summarised in the following formal definition:

Definition 6.3.1 [Argumentation systems] An argumentation system is a tripleAS =
(L,R, n) where:

• L is a nonempty logical language with a unary negation symbol ¬.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the
form {ϕ1, . . . , ϕn} → ϕ and {ϕ1, . . . , ϕn} ⇒ ϕ respectively (where ϕi, ϕ are
meta-variables ranging over wff in L), andRs ∩Rd = ∅. ϕ1, . . . , ϕn are called
the antecedents and ϕ the consequent of the rule.2

• n is a partial function such that n : Rd −→ L.

If there is no danger for confusion, we will sometimes write the sequence of antecedents
of a strict or defeasible rule as a set. Furthermore, we write ψ = −ϕ just in case
ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say that formulas ϕ and −ϕ
are each other’s negation). Note that − is not part of the logical language L but a
metalinguistic function symbol to obtain more concise definitions.

It is important to stress here that ASPIC+’s strict and defeasible inference rules are
not object-level formulae in the language L, but are meta to the language, allowing
one to deductively, respectively defeasibly, infer the rule’s consequent from the rule’s
antecedents. Such inference rules may range over arbitrary formulae in the language,
in which case they will, as usual in logic, be specified as schemes. For example, a
scheme for strict inference rules capturing modus ponens for the material implication
of classical logic can be written as α, α ⊃ β → β3, where α and β are metavariables for
wff in L. Alternatively, strict or defeasible inference rules may be domain-specific in
that they reference specific formulae, as in the defeasible inference rule concluding that
an individual flies if that individual is a bird: Bird ⇒ Flies . We will further discuss
these distinct uses of inference rules in Section 6.4.

If you want to use ASPIC+, then an argumentation system is not all you have to
specify: you must also specify from which body of information the premises of an
argument can be taken. We call this a knowledge base, and as discussed in Section 6.2,
distinguish ordinary premises, which are uncertain and so can be attacked, and premises
that are axioms, hence certain, and so cannot be attacked.

1n is a partial function since you may want to enforce that some defeasible inference steps cannot be
attacked.

2Below the brackets around the antecedents will be omitted.
3In this chapter we use ⊃ to denote the material implication connective of classical logic.
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Definition 6.3.2 [Knowledge bases] A knowledge base in an AS = (L,R, n) is a
set K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary
premises).

ASPIC+ leaves you fully free to choose your language, what is an axiom and what
is an ordinary premise and how you specify your strict and defeasible rules. However
some care needs to be taken in making these choices, to ensure that the result of argu-
mentation is guaranteed to be well-behaved. By ‘well-behaved’ we mean that the desir-
able properties proposed by Caminada and Amgoud (2007) are satisfied; for example,
that the conclusions of arguments in the same extension are mutually consistent (we
will define below what this means) and are closed under application of strict inference
rules (whatever you can derive from your conclusions of arguments in an extension,
with strict rules alone, is already a conclusion of an argument in that extension). In
Section 6.4 we present some theorems which tell you how you can make your choices
in such a way that the result is guaranteed to be well-behaved. These theorems will
talk about two notions of consistency, namely, direct and indirect consistency. Indirect
consistency is defined in terms of the closure of a set of well-formed formulas under
application of strict inference rules. Informally, the strict closure of a set of wff is the
set itself plus everything that can be derived from it when only applying strict rules.

Definition 6.3.3 [Consistency and strict closure] For any S ⊆ L, let the closure of S
under strict rules, denoted Cl(S), be the smallest set containing S and the consequent
of any strict rule inRs whose antecedents are in Cl(S). Then a set S ⊆ L is

• directly consistent iff @ ψ, ϕ ∈ S such that ψ = −ϕ

• indirectly consistent iff Cl(S) is directly consistent.

We call the combination of an argumentation system and a knowledge base an ar-
gumentation theory:

Definition 6.3.4 [Argumentation theory] An argumentation theory is a tuple AT =
(AS,K) where AS is an argumentation system and K is a knowledge base in AS.

ASPIC+ arguments are now defined relative to an argumentation theory AT =
(AS,K), and chain applications of the inference rules from AS into directed acyclic
inference graphs, starting with elements from the knowledge base K (if no premise is
used more than once, then the graph will be a tree). In what follows, for a given argu-
ment, the function Prem returns all the formulas of K (called premises) used to build
the argument, Conc returns its conclusion, Sub returns all its sub-arguments, DefRules
returns all the defeasible rules of the argument and TopRule returns the last inference
rule used in the argument.

Definition 6.3.5 [Argument] An argument A on the basis of an argumentation theory
with a knowledge base K and an argumentation system (L,R, n) is any structure ob-
tainable by applying one or more of the following steps finitely many times:

1. ϕ if ϕ ∈K with: Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ}, DefRules(A)
= ∅, TopRule(A) = undefined.
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2. A1, . . . An → ψ if A1, . . . , An are arguments such that there exists a strict rule
Conc(A1), . . . , Conc(An)→ ψ inRs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . Conc(An)→ ψ

3. A1, . . . An ⇒ ψ if A1, . . . , An are arguments such that there exists a defeasible
rule Conc(A1), . . . , Conc(An)⇒ ψ inRd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1)∪. . .∪DefRules(An)∪{Conc(A1), . . . Conc(An)⇒
ψ},
TopRule(A) = Conc(A1), . . . Conc(An)⇒ ψ.

For any argumentA we define Premn(A) = Prem(A)∩Kn and Premp(A) = Prem(A)∩
Kp. Moreover, each of the functions Func in this definition is also defined on sets of
arguments S = {A1, . . . , An} as follows: Func(S) = Func(A1) ∪ . . . ∪ Func(An).
Note, finally, that the→ and⇒ symbols are overloaded to denote both inference rules
and arguments.

Example 6.3.6 Consider a knowledge base in an argumentation system with L con-
sisting of p, q, r, s, t, u, v, w, x, d1, d2, d3, d4, d5, d6 and their negations, with Rs =
{s1, s2} andRd = {d1, d2, d3, d4, d5, d6}, where

d1: p⇒ q d4: u⇒ v s1: p, q → r
d2: s⇒ t d5: v, x⇒ ¬t s2: v → ¬s
d3: t⇒ ¬d1 d6: s⇒ ¬p

Moreover, Kn = {p} and Kp = {s, u, x}. Note that in presenting the example, we
have informally used names di to refer to defeasible inference rules. We now define
the n function that formally assigns wff di to such rules, i.e., for any rule informally
referred to as di, we have that n(di) = di, so that ‘n(d1) = d1’ is a shorthand for
n(p ⇒ q) = d1. In further examples we will often specify the n function in the same
way.4

An argument for r (i.e., with conclusion r) is displayed in Figure 6.2, with the
premises at the bottom and the conclusion at the top of the argument graph (which in
this case is a tree). In this and the next figure, the type of a premise is indicated with
a superscript and defeasible inferences, underminable premises and rebuttable conclu-
sions are displayed with dotted lines. The figure also displays the formal structure of
the argument. We have that

Prem(A3) = {p} DefRules(A3) = {d1}
Conc(A3) = r TopRule(A3) = s1

Sub(A3) = {A1, A2, A3}

4In our further examples we will often leave the logical languageL and the n function implicit, trusting
that they will be obvious.
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Figure 6.2: An argument

The distinction between two kinds of inference rules and two kinds of premises moti-
vates a distinction into four kinds of arguments.

Definition 6.3.7 [Argument properties] An argumentA is strict if DefRules(A) = ∅;
defeasible if DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A)∩Kp 6=
∅. We write S ` ϕ if there exists a strict argument for ϕ with all premises taken from
S, and S |∼ ϕ if there exists a defeasible argument for ϕ with all premises taken from
S.

Example 6.3.8 In Example 6.3.6 the argumentA1 is both strict and firm, whileA2 and
A3 are defeasible and firm. Furthermore, we have that K ` p, K |∼ q and K |∼ r.

In logic-based approaches to argumentation (see Section 6.4.4 below) arguments
are often required to be minimal in that no proper subset of their premises should log-
ically (according to the adopted base logic) imply the conclusion. In the ASPIC+ con-
text such a constraint would be fine for applications of strict rules. However, minimality
cannot be required for application of defeasible inference rules, since defeasible rules
that are based on more information may well make an argument stronger. For example,
Observations done in ideal circumstances are usually correct is stronger than Observa-
tions are usually correct.

Another requirement of logic-based approaches, namely, that an argument’s premises
have to be consistent, can optionally be imposed in basic ASPIC+, leading to two vari-
ants of the basic framework. We define a special class of arguments whose premises are
indirectly consistent. In this way ASPIC+ can be used as a framework for reconstruct-
ing logic-based argumentation formalisms, as we will further discuss in Section 6.4.4.

Definition 6.3.9 [consistent arguments] An argument A is consistent iff Prem(A) is
indirectly consistent.

6.3.2 Attack and defeat

Recall that ASPIC+ is meant to generate Dung-style abstract argumentation frame-
works, that is, a set of arguments with a binary relation of defeat. Having defined
arguments above, we now define the attack relation and then, as discussed in Section
6.2, we apply preferences to determine the defeat relation (in fact Dung called his rela-
tion “attack” but we reserve this term for the basic notion of conflict, to which we then
apply preferences).
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Attack

We now first present the three ways in which arguments in ASPIC+ can be in con-
flict, that is, three kinds of attack. In short, arguments can be attacked on a conclusion
of a defeasible inference (rebutting attack), on a defeasible inference step itself (un-
dercutting attack), or on an ordinary premise (undermining attack). As discussed in
Section 6.2, that arguments cannot be attacked on their strict inferences goes without
saying. We also discussed why arguments cannot be attacked on the conclusions of
strict inferences: if the antecedents of a deductively valid inference rule are true, then
its consequent must also be true no matter what. So if we have reason to believe that
the conclusion of a deductive inference is not true, then there must be something wrong
with the claims from which it is drawn. In Section 6.4.2 we will give a second reason
why arguments cannot be attacked on conclusions of strict inferences. In short, this
is because if we allow such attacks, then consistency and strict closure of conclusions
cannot be guaranteed.

To define undercutting attack, the function n of an AS is used, which assigns to
elements of Rd a well-formed formula in L. Recall that informally, n(r) (where r ∈
Rd) means that r is applicable. Then an argument using r is undercut by any argument
with conclusion −n(r).

Definition 6.3.10 [attacks]A attacksB iffA undercuts, rebuts or underminesB, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on ϕ) iff Conc(A) = −ϕ for an ordinary premise ϕ
of B.

This definition allows for a distinction between direct and indirect attack: an argument
can be indirectly attacked by directly attacking one of its proper subarguments. This
distinction will turn out to be crucial for a proper application of preferences to resolve
attacks.

Example 6.3.11 In our running example argument A3 cannot be undermined, since all
its premises are axioms. A3 can potentially be rebutted on A2, with an argument for
¬q. However, the argumentaton theory of our example does not allow the construction
of such a rebuttal. Likewise, A3 can potentially be undercut on A2, with an argument
for ¬d1. Our example does allow the construction of such an undercutter, namely:

B1: s
B2: B1 ⇒ t
B3: B2 ⇒ ¬d1

Argument B3 has an ordinary premise s, so it can be undermined on B1 with an argu-
ment for ¬s:

C1: u
C2: C1 ⇒ v
C3: C2 → ¬s

Note that since C3 has a strict top rule, argument B1 does not in turn rebut C3.
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Argument B3 can potentially be rebut or undercut on either B2 or B3, since both
of these subarguments of B3 have a defeasible top rule. Our argumentation theory only
allows for a rebutting attack on B2:

C1: u
C2: C1 ⇒ v
D3: x
D4: C2, D3 → ¬t

All relevant arguments and attacks are displayed in Figure 6.3.
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Figure 6.3: Attacks

Defeat

The attack relation tells us which arguments are in conflict with each other: if two
arguments are in conflict then they cannot both be justified. However, Definition 4.2.1’s
notion of the acceptability of arguments is based on the notion that one argument can
be used as a counter-argument to another. In general, an argument A can be used as a
counter-argument to B, if A successfully attacks, i.e., defeats, B. Whether an attack
from A to B (on its sub-argument B′) succeeds as a defeat, may depend on the relative
strength of A and B′, i.e., whether B′ is strictly stronger than, or strictly preferred to
A. Note that only the success of undermining and rebutting attacks is contingent on
preferences; undercutting attacks succeed as defeats independently of any preferences
(see Modgil and Prakken (2013) for a discussion as to why this is the case).
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Where do these preferences come from? Again, ASPIC+ allows you to make any
choice you like. All that ASPIC+ as a framework wants is that you as a user give a
binary ordering � on the set of all arguments that can be constructed on the basis of an
argumentation theory. Then, as usual, if A � B and B � A then B is strictly preferred
to A (denoted A ≺ B). Also, if A � B and B � A then A ≈ B. We will later
identify some conditions under which argument orderings are well-behaved in that they
promote consistency and strict closure of conclusions. We will also define two example
argument orderings that satisfy these conditions. However, for now all we need for
defining ASPIC+’s defeat relation is the attack relation and a preference ordering over
arguments.

How should the preference ordering be applied to resolve attacks? At first sight,
it would seem that ASPIC+ can be taken to generate a so-called preference-based ar-
gumentation framework (PAF) in the sense of Amgoud and Cayrol (2002), that is, a
triple consisting of the set of arguments, the attack relation and the argument ordering.
That A defeats B could then be defined as A attacks B and A 6≺ B. However, this
does not work, for two reasons. First, PAFs do not recognise that undercutting attacks
succeed irrespective of preferences. More seriously, PAFs cannot express how and at
which points arguments attack each other, and yet this is crucial for a proper application
of preferences to attack relations. Prakken (2012); Modgil and Prakken (2013) have
shown that the use of PAFs leads to violation of the rationality postulates of subargu-
ment closure and consistency (see further Section 6.4.2 below) in cases where ASPIC+

with the following definition satisfies these postulates.

Definition 6.3.12 [Successful rebuttal, undermining and defeat]

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.

• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.

• A defeatsB iffA undercuts or successfully rebuts or successfully underminesB.

The success of rebutting and undermining attacks thus involves comparing the conflict-
ing arguments at the points where they conflict; that is, by comparing those arguments
that are in a direct rebutting or undermining relation with each other. The definition
of successful undermining exploits the fact that an argument premise is also a subargu-
ment.

Example 6.3.13 In our running example two argument orderings are relevant for whether
attacks are successful: between B1 and C3 and and between B2 and D4. Note that the
undercutting attack of B3 on A2 (and thereby on A3) succeeds as a defeat irrespective
of the argument ordering between B3 and A2. The undermining attack of C3 on B1

succeeds if C3 6≺ B1. If B2 ≈ D4 or their relation is undefined then these two argu-
ments defeat each other, while D4 strictly defeats B3. If D4 ≺ B2 then B2 strictly
defeats D4 while if B2 ≺ D4 then D4 strictly defeats both B2 and B3.

Let us now put all these elements together; that is the arguments and attacks defined on
the basis of an argumentation theory, and a preference ordering over the arguments:

Definition 6.3.14 Let AT be an argumentation theory (AS,KB). A (c-)structured
argumentation framework ((c-)SAF) defined by AT , is a triple (A, C,�) where

• In a SAF , A is the set of all arguments on the basis of KB in AS;
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• In a c-SAF , A is the set of all consistent arguments on the basis of KB in AS;

• � is a preference ordering on A;

• (X,Y ) ∈ C iff X attacks Y .

Example 6.3.15 In our running example A = {A1, A2, A3, B1, B2, B3, C1, C2, C3,
D3, D4}, while C is such that B3 attacks both A2 and A3, argument C3 attacks all of
B1, B2, B3, argument D4 attacks both B2 and B3 and, finally, B2 attacks D4.

6.3.3 Generating Dung-style abstract argumentation frameworks

We are now ready to instantiate a Dung framework with ASPIC+ arguments and the
ASPIC+ defeat relation.

Definition 6.3.16 [Argumentation frameworks] An abstract argumentation frame-
work (AF ) corresponding to a (c-)SAF = (A, C,�) is a pair (A,D) such that D is the
defeat relation on A determined by (A, C,�).

The justified arguments of the above defined AF are then defined under the various
semantics of Chapter 4.

It is now also possible to define a consequence notion for well-formed formulas.
Several definitions are possible. The following definition directly uses the notions of
justified, defensible and overruled arguments from Chapter 4: (here an S-justified (S-
defensible, S-overruled) argument is an argument that is justified (defensible, over-
ruled) according to semantics S):

Definition 6.3.17 [The status of conclusions] For every semantics S and for every (c-
)structured argumentation framework (c-)SAF with corresponding abstract argumenta-
tion framework AF , and every formula ϕ ∈ LAT :

1. ϕ is S-justified in (c-)SAF if and only if there exists an S-justified argument on
the basis of AF with conclusion ϕ;

2. ϕ is S-defensible in (c-)SAF if and only if ϕ is not S-justified in SAF and there
exists an S-defensible argument on the basis of AF with conclusion ϕ;

3. ϕ is S-overruled in (c-)SAF if and only if it is not S-justified or S-defensible in
SAF and there exists an S-overruled argument on the basis of AF with conclu-
sion ϕ.

Example 6.3.18 In our running example, if D4 strictly defeats B2, then we have a
unique extension in all semantics which at least contains the set S = {A1, A2, A3, C1, C2,
C3, D3, D4}. If in addition C3 does not defeat B1, then the extension also contains B1.
In both cases this yields that wff r is sceptically justified.

Alternatively, if B2 strictly defeats D4, then the status of r depends on whether C3

defeatsB1. If it does, then we again have a unique extension in all semantics consisting
of the set S, so r is sceptically justified. By contrast, if C3 does not defeat B1, we
obtain a unique extension with A1, B1, B2, B3, C1, C2, C3 and D3, so r is neither
sceptically nor credulously justified.
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Finally, ifB2 andD4 defeat each other, then the outcome again depends on whether
C3 defeats B1. If it does, then the situation is as in the previous case – a unique ex-
tension S – but if C3 does not defeat B1, then the grounded extension consists of A1,
B1, C1-C3, D3. So in the latter case, in grounded semantics r is neither sceptically nor
credulously justified. However, in preferred and stable semantics we then obtain two
alternative extensions: the first contains D4 while the second instead contains B2 and
B3 and so excludes A2 and A3. So in the latter case r is credulously, but not sceptically
justified under stable and preferred semantics.

Note that the first condition of Definition 6.3.17 is equivalent to

1. ϕ is S-justified in (c-)SAF if and only if there exists an argument with conclusion
ϕ that is contained in all S-extensions of AF .

Thus this definition does not allow that different extensions contain different arguments
for a skeptical conclusion and therefore does not capture floating conclusions (see Sec-
tion 4.2). The following alternative definition does capture floating conclusions.

Definition 6.3.19 [Justified conclusions (possibly floating)]

1. ϕ is S-f-justified in (c-)SAF if and only if all S-extensions of AF contain an
argument with conclusion ϕ.

6.3.4 More on argument orderings

A well studied use of preferences in the non-monotonic logic literature is based on the
use of priority orderings over formulae in the language or defeasible inference rules. If
ASPIC+ is to be used as a framework for giving argumentation-based characterizations
of non-monotonic formalisms augmented with priorities, then it needs to provide an
account of how these priority orderings can be ‘lifted’ to preferences over arguments.
Now the first thing to note is that if your use of ASPIC+ involves using defeasible
inference rules and ordinary premises, then both may come equipped with priority or-
derings ≤ on Rd and ≤′ on Kp. We assume that these priority orderings are distinct to
allow for the ontological nature of the rules and premises to be distinct. For example,
the ordinary premises may represent the content of percepts from sensors or of witness
testimonies, whose priority ordering reflects the relative reliability of the sensors, re-
spectively witnesses. The defeasible rules may, for example, be prioritized based on
probabilistic strength, on temporal precedence (defeasible rules acquired later are pre-
ferred to those acquired earlier), on the basis of principles of legal precedence, and so
on. The challenge is to then define a preference over arguments A and B based on the
priorities over their constituent ordinary premises and defeasible rules.

We now define two argument preference orderings, called the weakest-link and last-
link orderings. These orderings are in turn based on priority orderings ≤ on Rd and
≤′ on Kp, where as usual, X <(′) Y iff X ≤(′) Y and Y �(′) X (note that we may
represent orderings in terms of the strict counterpart they define). However, these pri-
orities relate individual defeasible rules, respectively ordinary premises, whereas when
comparing two arguments, we want to compare them on the (possibly non-singleton)
sets of rules/premises that these arguments are constructed from. So, to define these
argument preferences, we need to first define an ordering over sets of rules/premises.
We will denote this ordering with �s. For technical reasons we interpret it as strict
preference; that is, Γ �s Γ′ means that Γ′ is strictly preferred over Γ.
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Note that for any sets of defeasible rules/ordinary premises Γ and Γ′, we intuitively
want that:
1) if Γ is the empty set, it cannot be that Γ �s Γ′;
2) if Γ′ is the empty set, it must be for any non-empty Γ that Γ �s Γ′ .
In other words, arguments that have no defeasible rules (ordinary premises) are, modulo
the premises (rules), strictly stronger than (preferred to) arguments that have defeasible
rules (ordinary premises). Hence the following definition explicitly imposes these con-
straints, and then gives two alternative ways of defining �s; the so called Elitist and
Democratic ways (i.e., s = Eli and Dem respectively). Eli compares sets on their
minimal and Dem on their maximal elements.

Definition 6.3.20 [Orderings �s] Let Γ and Γ′ be finite sets5. Then �s is defined as
follows:

1. If Γ = ∅ then it cannot be that Γ �s Γ′ ;

2. If Γ′ = ∅ and Γ 6= ∅ then Γ �s Γ′ ;

else, assuming a preordering ≤ over the elements in Γ ∪ Γ′, then if :

3. s = Eli:
Γ �Eli Γ′ if ∃X ∈ Γ s.t. ∀Y ∈ Γ′, X < Y .

else, if:

4. s = Dem:
Γ �Dem Γ′ if ∀X ∈ Γ, ∃Y ∈ Γ′, X < Y .

Henceforth, we will assume that �Eli is used to compare sets of rules/premises.
Now the last-link principle strictly prefers an argument A over another argument

B if the last defeasible rules used in B are strictly less preferred (�s) than the last
defeasible rules in A or, in case both arguments are strict, if the premises of B are
strictly less preferred than the premises of A. The concept of ‘last defeasible rules’ is
defined as follows.

Definition 6.3.21 [Last defeasible rules] Let A be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.

• IfA =A1, . . .,An⇒ φ, then LastDefRules(A) = {Conc(A1), . . ., Conc(An)⇒
φ}, else LastDefRules(A) = LastDefRules(A1)∪ . . .∪ LastDefRules(An).

A simple example with more than one last defeasible rule is with K = {p; q}, Rs =
{r, s → t} and Rd = {p ⇒ r; q ⇒ s}. Then for the argument A for t we have that
LastDefRules(A) = {p⇒ r; q ⇒ s}.

The above definition is now used to compare pairs of arguments as follows:

Definition 6.3.22 [Last link principle] Let A and B be two arguments. Then A ≺ B
iff:

1. LastDefRules(A) �s LastDefRules(B); or

5Notice that it suffices to restrict � to finite sets since ASPIC+ arguments are assumed to be finite (in
Definition 6.3.14) and so their sets of ordinary premises/defeasible rules must be finite.
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2. LastDefRules(A) and LastDefRules(B) are empty and Premp(A)�s Prem(pB).

Moreover, A � B iff A ≺ B or A = B.

Because of this definition, the last-link ordering � is in fact a strict partial ordering,
i.e., it is transitive (If A � B and B � C then A � C) and antisymmetric (if A � B
and B � A then A = B).

Example 6.3.23 Suppose in our running example that u <′ s, x <′ s, d2 < d5 and
d4 < d2. Applying the last-link ordering, we must, to check whether C3 defeats
B1, compare LastDefRules(C3) = {d4} with LastDefRules(B1) = ∅. Clearly,
{d4}�Eli∅, soC3 ≺ B1, soC3 does not defeatB1. Next, to check the conflict between
B2 and D4 we compare LastDefRules(B2) = {d2} with LastDefRules(D4) =
{d5}. Since d2 < d5 we have that LastDefRules(B2) �Eli LastDefRules(D4), so
D4 strictly defeats B2.

The weakest-link principle considers not the last but all uncertain elements in an ar-
gument. Recall that in the following definition, Premp(A) = Prem(A) ∩ Kp.

Definition 6.3.24 [Weakest link principle] Let A and B be two arguments. Then A ≺
B iff

1. If both B and A are strict, then Premp(A) �s Premp(B), else;

2. If both B and A are firm, then DefRules(A) �s DefRules(B), else;

3. Premp(A) �s Premp(B) and DefRules(A) �s DefRules(B)

Moreover, A � B iff A ≺ B or A = B.

Like the last-link ordering, the weakest-link ordering is also a strict partial ordering.

Example 6.3.25 If in our running example we apply the weakest-link ordering, then
we must, to check whether C3 defeats B1, first compare Premp(C3) = {u} with
Premp(B1) = {s}. Since u <′ s we have that Premp(C3) �Eli Premp(B1). Then we
must compare DefRules(C3) = {d4} with DefRules(B1) = ∅. We have as above
that {d4} �Eli ∅. So C3 ≺ B1 and so C3 does not defeat B1. Next, to check the con-
flict between B2 and D4 we must first compare Premp(B2) = {s} with Premp(D4) =
{u, x}. Since both u <′ s and x <′ s we have that Premp(D4) �Eli Premp(B2). We
must then compare DefRules(B2) = {d2} with DefRules(D4) = {d4, d5}. Since
d4 < d2 we now have that DefRules(D4) �Eli DefRules(B2). So D4 ≺ B2 and B2

strictly defeats D4.

We next discuss with two examples when the last-, respectively, weakest-link ordering
may be more suitable. Consider first the following example on whether people misbe-
having in a university library may be denied access to the library.6

Example 6.3.26 Let Kp = {Snores; Professor},Rd =

{Snores ⇒d1 Misbehaves;
Misbehaves ⇒d2 AccessDenied ;
Professor ⇒d3 ¬AccessDenied}.

6In all examples below, sets that are not specified are assumed to be empty.
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Assume that Snores <′ Professor and d1 < d2, d1 < d3, d3 < d2, and consider the
following arguments.

A1: Snores B1: Professor
A2: A1 ⇒ Misbehaves B2: B1 ⇒ ¬AccessDenied
A3: A2 ⇒ AccessDenied

Let us apply the ordering to the arguments A3 and B2. The rule sets to be compared
are LastDefRules(A3) = {d2} and LastDefRules(B2) = {d3}. Since d3 < d2

we have that LastDefRules(B2) /Eli LastDefRules(A3), hence B2 ≺ A3. So A3

strictly defeats B2 (i.e., A3 defeats B2 but B2 does not defeat A3). We therefore have
that A3 is justified in any semantics, so we conclude AccessDenied .

With the weakest-link principle the ordering between A3 and B2 is different. Both
A and B are plausible and defeasible so we are in case (3) of Definition 6.3.24. Since
Snores <′ Professor , we have that Premp(A3) �Eli Premp(B2). Furthermore, the
rule sets to be compared are now DefRules(A3) = {d1, d2} and DefRules(B2) =
{d3}. Since d1 < d3 we have that DefRules(A3) �Eli DefRules(B2). So now we
have that A3 ≺ B2. Hence B2 now strictly defeats A3 and we conclude instead that
¬AccessDenied .

Which outcome in this example is better? Some have argued that the last-link ordering
gives the better outcome since the conflict really is between the two legal rules about
whether someone may be denied access to the library, while d1 just provides a sufficient
condition for when a person can be said to misbehave. The existence of a conflict on
whether someone may be denied access to the library is in no way relevant for the issue
of whether a person misbehaves when snoring. More generally, it has been argued that
for reasoning with legal (and other normative) rules the last-link ordering is appropriate.

However, an example can be given of exactly the same form but with the legal rules
replaced by empirical generalisations, and in that case intuitions seem to favour the
weakest-link ordering:

Example 6.3.27 Let Kp = {BornInScotland ; FitnessLover},Rd =

{BornInScotland ⇒d1 Scottish;
Scottish ⇒d2 LikesWhisky ;
FitnessLover ⇒d3 ¬LikesWhisky}.

Assume that BornInScotland <′ FitnessLover and d1 < d2, d1 < d3, d3 < d2, and
consider the following arguments.

A1: BornInScotland B1: FitnessLover
A2: A1 ⇒ Scottish B2: B1 ⇒ ¬LikesWhisky
A3: A2 ⇒ LikesWhisky

This time it seems reasonable to conclude ¬LikesWhisky , since the epistemic uncer-
tainty of the premise and d1 of A3 should propagate to weaken A3. And this is the
outcome given by the weakest-link ordering. So it could be argued that for epistemic
reasoning the weakest-link ordering is appropriate.

6.4 Ways to use the framework

As should be clear by now, ASPIC+ is not a system but a framework for specifying
systems. ASPIC+ leaves you fully free to make choices as to the logical language, the
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strict and defeasible inference rules, the axioms and ordinary premises in your knowl-
edge base, and the argument preference ordering. In this section we discuss various
more or less principled ways to make your choices, and then show specific uses of
ASPIC+.

6.4.1 Choosing strict rules, axioms and defeasible rules

Domain specific strict inference rules

When designing your ASPIC+ system, you can specify domain specific strict infer-
ence rules, as illustrated by the following example (based on Example 4 of Caminada
and Amgoud 2007) in which the strict inference rules capture definitional knowledge,
namely, that bachelors are not married.7

Example 6.4.1 LetRd = {d1, d2} andRs = {s1, s2}, where:

d1 = WearsRing ⇒ Married s1 = Married → ¬Bachelor
d2 = PartyAnimal ⇒ Bachelor s2 = Bachelor → ¬Married

Finally, let Kp = {WearsRing ,PartyAnimal}. Consider the following arguments.

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: A2 → ¬Bachelor B3: B2 → ¬Married

We have that A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its subargu-
ment A2. Note that A2 does not rebut B3, since B3 applies a strict rule; likewise for B2

and A3.

Notice that in the above example, the rules s1 and s2 are ‘transpositions’ of each
other, andRs is ‘closed under transposition’, in the following sense:

Definition 6.4.2 [Closure under transposition] A strict rule s is a transposition of ϕ1,
. . ., ϕn→ ψ iff s = ϕ1, . . ., ϕi−1, −ψ, ϕi+1, . . ., ϕn→−ϕi for some 1 ≤ i ≤ n.

The set Rs of strict rules is closed under transposition iff for all rules r in Rs the
transposition of r is also in Rs. The closure under transposition of a set S of rules
is denoted as Cltp(S) or simply as Cl(S) if there is no danger for confusion. An
argumentation theory is said to be closed under transposition iff its set Rs is closed
under transposition.

In general it is a good idea to ensure that your theory is closed under transposition.
Proponents of this idea argue that this follows from the intuitive meaning of a strict rule
as capturing deductive, that is, perfect inference: a strict rule q → ¬s expresses that
if q is true, then this guarantees the truth of ¬s, no matter what. Hence, if we have
s, then q cannot hold, otherwise we would have ¬s. In general, if the negation of the
consequent of a strict rule holds, then we cannot have all its antecedents, since if we had
all of them, then its consequent would hold. This is the very meaning of a strict rule.
So it is very reasonable to include in Rs the transposition of a strict rule that is in Rs.

7In the examples that follow we may use terms of the form si, di or fi, to identify strict or defeasible
inference rules or items from the knowledge base. We will assume that the di names are those assigned
by the n function of Definition 6.3.1; sometimes we will attach these names to the⇒ symbol. Note that
the si and fi names have no formal meaning and are for ease of reference only.
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A second reason for ensuring closure under transposition is that it ensures satisfaction
of Caminada and Amgoud (2007)’s rationality postulates, as illustrated later in Section
6.4.2.

Strict inference rules and axioms based on deductive logics

Some find the use of domain-specific strict inference rules rather odd: why not instead
express them as material implications inL and put them in the knowledge base as axiom
premises? These people want to reserve the strict inference rules for general patterns
of deductive inference, since they say that this is what inference rules are meant for
in logic. (Below we will see that the same issue arises with regard to the choice of
defeasible rules, but we ignore that issue for the moment). ASPIC+ allows you to do
this by basing your strict inference rules (and axioms) on a deductive logic of your
choice. You can do so by choosing a semantics for your choice of L with an associated
monotonic notion of semantic consequence, and then filling Rs with rules that are
sound with respect to that semantics. For example, suppose you want it to conform to
classical logic: you want to choose a standard propositional (or first-order) language,
and you want that arguments can contain any classically valid inference step over this
language. In ASPIC+ you can achieve this in two ways, a crude way and a sophisticated
way.

A crude way is to simply put all valid propositional (or first-order) inferences over
your language of choice in Rs. So if you have chosen a propositional language, then
you define the content of Rs as follows. (where `PL denotes standard propositional-
logic consequence). For any finite S ⊆ L and any ϕ ∈ L:8

S → ϕ ∈ Rs if and only if S `PL ϕ
In fact, with this choice of Rs, strict parts of an argument don’t need to be more than
one step long. For example, if rules S → ϕ and ϕ→ ψ are in Rs, then S ∪ {ϕ} → ψ
will also be in Rs. Note also that using this method your strict rules will be closed
under transposition, because of the properties of classical logic. The proof is easy:
suppose p → q is in Rs for some p and q. Then we know that p `PL q, so (by the
deduction theorem for classical logic) `PL p ⊃ q so (by the properties of `PL) we have
`PL −q ⊃ −p so (by the other half of the deduction theorem) we have −q `PL −p,
so (by choice ofRs) −q → −p ∈ Rs.

Let us illustrate the crude approach with a variation on Example 6.4.1. We retain
the defeasible rules d1 and d2 but we replace the domain-specific strict rules s1 and s2

with a single material implication Married ⊃ ¬Bachelor in Kn. Moreover, we put all
propositionally valid inferences over our language in Rs. Then the arguments change
as follows:

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: Married ⊃ ¬Bachelor B3: Married ⊃ ¬Bachelor
A4: A2, A3 → ¬Bachelor B4: B2, B3 → ¬Married

Now A4 rebuts B4 on B2 while B4 rebuts A4 on A2.
A sophisticated way to base the strict part of ASPIC+ on a deductive logic of your

choice is to build an existing axiomatic system for your logic into ASPIC+. You can
8Although antecedents of rules formally are sequences of formulas, we will sometimes abuse notation

and write them as sets.
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include its axiom(s) (typically a handfull) in Kn and its inference rule(s) (typically just
one or a few) in Rs. For example, there are axiomatic systems for classical logic with
just four axioms and just one inference rule, namely, modus ponens (i.e, ϕ ⊃ ψ,ϕ →
ψ)9. With this choice of Rs strict parts of an argument could be very long, since in
logical axiomatic systems proofs of even trivial validities might be long. However, this
difference with the crude way is not very big, since if we want to be crude, we must, to
know whether S → ϕ is inRs, first construct a propositional proof of ϕ from S.

With the sophisticated way of building classical logic into our argumentation sys-
tem, argument A4 in our example stays the same, since modus ponens is in Rs. How-
ever, argument B4 will change, since modus tollens is not in Rs. In fact, B4 will be
replaced by a sequence of strict rule applications, together being an axiomatic proof of
¬Married from Married ⊃ ¬Bachelor and Bachelor .

Which approach is more natural? We think that the crude way is more like how peo-
ple reason: people often summarise chunks of deductive reasoning in one step. But if
you want to implement such reasoning on a computer, then the crude and sophisticated
way do not differ much.

However, note that in the sophisticated method, closure under transposition may not
hold; our example above does not contain modus tollens (that is, ϕ ⊃ ψ,−ψ → −ϕ).
But we have already argued that the contrapositive reasoning yielded by the inclusion
of transpositions is a desirable feature. Is this a problem for this method? No, since
this reasoning can also be enforced without explicitly requiring transpositions of rules.
Recall that S ` ϕ was defined as ‘there exists a strict argument for ϕ with all premises
taken from S’. Now it turns out that if ` contraposes, then this is just as good as closure
of the strict rules under transposition. Contraposition of ` means that if S ` ϕ, then if
we replace one element s of S with −ϕ, then −s is strictly implied:

Definition 6.4.3 [Closure under contraposition] An argumentation theory is closed un-
der contraposition iff for all S ⊆ L, s ∈ S and φ, if S ` φ, then S\{s} ∪ {−φ} ` −s.

Now the point is that if ` corresponds to classical provability (as we have made it by our
choice of axioms and inference rules), then ` does indeed contrapose. Again, as will
be discussed in Section 6.4.2, closure under contraposition also ensures satisfaction of
rationality postulates.

We end this section by stating a quite general result on a class of logics that, if em-
bedded in ASPIC+, ensures closure of the strict rules under contraposition. In Amgoud
and Besnard (2009) the idea was introduced to base argumentation logics on so-called
Tarskian abstract logics. Very briefly, abstract logics assume just some unspecified log-
ical language L and a consequence operator over this language, which to each subset
of L assigns a subset of L (its logical consequences). Tarski then assumed a number of
constraints on Cn, which we need not repeat here. Finally, Tarski defined a set S ⊆ L
as consistent iff Cn(S) 6= L.

Now Amgoud and Besnard (2009)’s idea was to define an argument as a pair (S, p)
where S ⊆ L and p ∈ L, where S is consistent, p ∈ Cn(S) and S is minimal in
satisfying all these conditions. In ASPIC+ Tarski’s notion of an abstract logic can be
used to generate the strict rules, via the following constraint (for any finite S):

S → p ∈ Rs iff p ∈ Cn(S)

9As explained above, this strictly speaking is not a rule but a scheme or rules, with meta variables
ranging over L.
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It turns out that any AT with this choice of strict rules satisfies closure under contraposi-
tion. Strictly speaking, this only holds under some assumptions on the relation between
the Cn function and ASPIC+’s negation (note that Tarski did not make any assumption
on the syntax of L), but these assumptions are quite natural. For the details we refer the
reader to Section 5.2 of Modgil and Prakken (2013).

Choosing defeasible inference rules

Let us return to the question of how to choose the defeasible rules. Can we derive them
from a logic of our choice just as we can derive the strict rules from a logic of our
choice if we want to? This is controversial. Some philosophers argue that all rule-like
structures that we use in daily life are “inference licences” and so cannot be expressed in
the logical object language. In this view, all that can be done is apply them to formulas
from L to support new formulas from L. That is, these philosophers see all defeasible
generalisations as inference rules, whether they are domain-specific or not.

Others (usually logicians) take a more standard-logic approach (e.g. Kraus et al.
(1990); Pearl (1992)). They say that all contingent knowledge should be expressed in
the object language, so they reject the idea of domain-specific defeasible inference rules
(for the same reason they don’t like domain-specific strict rules). They would introduce
a new connective into L, let us write it as ;, where they informally read p ; q
as something like “If p then normally/typically/usually q”. They then want to give a
model-theoretic semantics for this connective just as logicians give a model-theoretic
semantics for all connectives. The main difference is that such semantics for defeasible
conditionals do not look at all models of a theory to check whether it entails a formula
(as semantics for deductive logics do) but only to a preferred class of models of the
theory (for example, all models where things are as normal as possible). They would
then add a strict inference rule S → ϕ to Rs just in case ϕ is true in all models of S,
while they would add a defeasible inference rule S ⇒ ϕ to Rd just in case ϕ is true in
all preferred models of S but not in all models of S.

Now what inference rules for ; could result from such an approach? On two
things there is consensus between logicans: modus ponens for ; is defeasibly but
not deductively valid, so the rule ϕ ; ψ,ϕ ⇒ ψ should go into Rd. There is also
consensus that contraposition for ; is deductively invalid, so the rule ϕ ; ψ →
−ψ ; −ϕ should not go into Rs. However, here the consensus ends. Should the
defeasible analogue of this rule go intoRd or not? Opinions differ at this point10.

Let us illustrate the difference between the two approaches with a further variation
on Example 6.4.1. Above we used the approach where all defeasible generalisations
are inference rules. We now replace the two domain-specific defeasible inference rules
d1 and d2 with two object-level conditionals expressed in L and now add them to Kp:

WearsRing ; Married
PartyAnimal ; Bachelor

Moreover, we add defeasible modus ponens for ; toRd:

Rd = {ϕ; ψ,ϕ⇒ ψ}
The arguments then change as follows (assuming the crude way of incorporating clas-
sical logic):

10See Chapter 4 of Caminada (2004) for a very readable overview of the discussion.
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A1: WearsRing B1: PartyAnimal
A2: WearsRing ; Married B2: PartyAnimal ; Bachelor
A3: A1, A2 ⇒ Married B3: B1, B2 ⇒ Bachelor
A4: Married ⊃ ¬Bachelor B4: Married ⊃ ¬Bachelor
A5: A3, A4 → ¬Bachelor B5: B3, B4 → ¬Married

Now A5 rebuts B5 on B3 while B5 rebuts A5 on A3.
Concluding, if you want, you can base at least some of your choices concerning de-

feasible inference rules on model-theoretic semantics for nonmonotonic logics. How-
ever, it is an open question whether a model-theoretic semantics is the only criterion
by which we can choose our defeasible rules. Some have based their choice on other
criteria, since they do not primarily see defeasible rules as logical inference rules but
as principles of human cognition or rational action, so that they should be based on
foundations other than semantics. For example, John Pollock based his defeasible rea-
sons on his account of epistemology (the part of philosophy that studies how we can
obtain knowledge). Others have based their choice of defeasible reasons on the study of
argument schemes in informal argumentation theory. We give examples of both these
approaches in Section 6.4.3.

Naming defaults in first-order languages

We finally illustrate some subtleties of the naming convention for defeasible rules. If
domain-specific defeasible rules are defined over a first-order language, then the same
notational naming convention is often used as for defaults in default logic. A rule with
free variables is used as a scheme for all its ground instances, that is, for all its instances
in which the variable x is replaced by a ground term from L. Moreover, the scheme is
often given a name d(x1, . . . , xn), where x1, . . . , xn are all free variables that occur in
the scheme. Such a name allows the formulation of undercutters to a rule. Consider,
for example:

d(x): Bird(x)⇒ Flies(x)

Then schemes for undercutters can be written as follows:

u(x): Penguin(x)⇒ ¬d(x)

To see how this naming convention can be used, consider the following knowledge
base:

Kn = {∀x(Penguin(x) ⊃ Bird(x))}
Kp = {Penguin(Tweety), Bird(Polly)}

Then two arguments can be constructed for the conclusions that Tweety and Polly can
fly (the strict rules are assumed to be all valid first-order inferences):

A1: Penguin(Tweety) B1: Bird(Polly)
A2: ∀x(Penguin(x) ⊃ Bird(x)) B2: B1 ⇒ Flies(Polly)
A3: A1, A2 → Bird(Tweety)
A4: A3 ⇒ Flies(Tweety)

However, only for Tweety can an undercutter be constructed:

C1: Penguin(Tweety)
C2: C1 ⇒ ¬d(Tweety)
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The point is that d(x) is not a rule name but a rule name scheme, and only for its
instance d1(Tweety) can an undercutter be constructed. If, by contrast, the birds-fly
rule had been named with d, then applying the undercutter for Tweety would also block
the default for Polly, which is clearly undesirable.

6.4.2 Satisfying rationality postulates

We are now in a position to state under what conditions ASPIC+ satisfies Caminada
and Amgoud (2007)’s four rationality postulates. These are listed below (it is helpful
to refer to concepts defined in Definition 6.3.3 when reading these postulates), adapted
to the ASPIC+ framework.11

Definition 6.4.4 [Rationality postulates for ASPIC+] Let (c-)SAF = (A, C,�) be
an ASPIC+ (c-)structured argumentation framework defined by an ASPIC+ AT with
AS = (L,R, n) and K = Kn ∪ Kp. Let AF be the abstract argumentation framework
corresponding to (c-)SAF and let T ∈ {complete, preferred, grounded, stable}. Then:

• (c-)SAF satisfies the closure under subarguments postulate iff for all T -extensions
E of AF it holds that if an argument A is in E then all subarguments of A are in
E;

• (c-)SAF satisfies the direct consistency postulate iff for all T -extensionsE ofAF
it holds that Conc(E) is directly consistent;

• (c-)SAF satisfies the indirect consistency postulate iff for all T -extensions E of
AF it holds that Conc(E) is ndirectly consistent;

• (c-)SAF satisfies the strict closure postulate iff for all T -extensions E of AF it
holds that Conc(E) = ClRs(Conc(E)).

The first postulate, closure under subarguments, holds unconditionally for the present
framework.

Proposition 6.4.5 Let (A,D) be an abstract argumentation framework as defined in
Definition 6.3.16 and E any of its grounded, preferred or stable extensions. Then

• for all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E;

• Conc(E) = ClRs(Conc(E)).

The two consistency postulates do not hold in general.

Example 6.4.6 A simple counterexample to consistency is with two defeasible rules
d1: ⇒ p and d2: ⇒ q and a strict rule p→ ¬q, where d1 < d2. Then with the weakest-
or last-link ordering the argument for ¬q does not defeat the argument for q so in all
semantics we have a single extension with both arguments.

11Caminada and Amgoud (2007) also propose postulates for the intersection of extensions and their con-
clusion sets, but since their satisfaction directly follows from satisfaction of the postulates for individual
extensions, these postulates will below be ignored.
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We now discuss under which conditions the consistency postulates are satisfied.
Depending on the choices outlined in Section 6.4.1, the first requirement for sat-

isfying the consistency postulates is that your argumentation theory is closed under
transposition or contraposition. This is because if neither property is satisfied, then
since strict rule applications cannot be attacked, direct consistency may then be vio-
lated. This can be illustrated with the first version of Example 6.4.1. Suppose we only
have one strict rule, namely, s1. we cannot construct B3, since B3 applies the now
missing rule s2. We still have that A3 rebuts B2. Suppose now that d1 < d2 and we
apply the last-link argument ordering. Then A3 does not defeat B2. In fact, no argu-
ment in the example is defeated, so we end up with a single extension in all semantics,
which contains arguments for both Bachelor and ¬Bachelor and so violates direct and
indirect consistency.

However, with transposition this bad outcome is avoided: if we also have s2, then
argumentB3 can be constructed, which rebutsA3 onA2. Again applying the preference
d1 < d2 with the last-link ordering, we have that B3 strictly defeats A2. Again we have
a unique extension in all semantics, containing all arguments except A2 and A3. This
extension does not violate consistency.

Example 6.4.7 Consider Example 6.3.6. As discussed in Example 6.3.18, if the argu-
ment ordering is such that C3 does not defeat B1, then both arguments will be in the
same extension, which thus violates consistency since the conclusions of these argu-
ments contradict each other. However, if the transposition s→ ¬v of v → ¬s is added
to Rs, then B1 can be continued to an argument for ¬v, which successfully rebuts C3

on C2, excluding the consistency-violating extensions.

Some say that the above violation of consistency, before inclusion of the transposed
rule, arises because ASPIC+ forbids attacks on strictly derived conclusions. Consis-
tency would not be violated if B2 was allowed to attack A3 in the first version of Ex-
ample 6.4.1. However, apart from the reasons discussed in Section 6.2, there is another
reason for prohibiting attacks on strictly derived conclusions: if they are allowed, then
extensions may not be strictly closed or indirectly consistent, even if the strict rules are
closed under transposition. To see why, suppose we changed ASPIC+’s definitions to
allow attacks on strict conclusions, so that B2 attacks A3, A2 attacks B3, and A3 and
B3 attack each other in Example 6.4.1. Suppose also that all knowledge-base items
and all defeasible rules in the example are of equal preference, and suppose we apply
the weakest- or last-link argument ordering. Then all rebutting attacks in the example
succeed. But then the set {A1, A2, B1, B2} is admissible and is in fact both a stable
and preferred extension. But this violates the rationality postulates of strict closure
and indirect consistency. The extension contains an argument for Bachelor but not for
¬Married , which strictly follows from it by rule s2. Likewise, the extension contains
an argument for Married but not for ¬Bachelor , which strictly follows from it by rule
s1. So the extension is not closed under strict rule application. Moreover, the extension
is indirectly inconsistent, since its strict closure contains both Married and ¬Married ,
and both Bachelor and ¬Bachelor .

Other requirements for satisfying the consistency postulates are that the axioms Kn
are indirectly consistent (axiom consistency) and the preference ordering is reasonable.
The rationale for requiring the former is self-evident. A reasonable argument ordering
essentially amounts to requiring that: 1) arguments that are both strict and firm are
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strictly preferred over all other arguments; 2) the strength (and implied relative prefer-
ence) of an argument is determined exclusively by the defeasible rules and/or ordinary
premises; 3) the preference ordering is acyclic, and if B ≺ A then it must be that
B′ ≺ A where B′ is some maximal fallible (i.e., defeasible or plausible) sub-argument
ofB (for example in our running example C2 but not C1 is a maximal fallible argument
of C3). We refer the reader to Modgil and Prakken (2013) for the technical definition
of a reasonable ordering; suffice to say that it has been shown that the weakest- and
last-link argument orderings of Section 6.3.4 are reasonable.

We are now in a position to state an important result proved in Modgil and Prakken
(2013) that if your (c-)SAF is well-defined, in that its argumentation theory satisfies
axiom consistency, and transposition or contraposition, and your argument preference
ordering is reasonable, then the consistency postulates are satisfied by the ASPIC+

framework as defined in Section 6.3.

Theorem 6.4.8 Let (A,D) be an abstract argumentation framework corresponding to
a well-defined (c-)SAF and let E be any of its grounded, preferred or stable extensions.
Then

• Conc(E) is consistent;

• ClRs(Conc(E)) is consistent.

Finally, note that if you do not include any strict rules or axiom premises in your ar-
gumentation theory, then the requirement that your (c-)SAF be well defined obviously
does not apply, but it is also worth noting that the preference ordering need not be rea-
sonable in order that all four rationality postulates be satisfied (indeed no assumptions
as to the properties of the preference ordering are required in this case).

6.4.3 Using ASPIC+ to model argument schemes

We concluded Section 6.4.1 by remarking on the use of defeasible inference rules as
principles of cognition in John Pollock’s work and as argument schemes in informal
argumentation theory. We now illustrate how both approaches can be formalised in
ASPIC+ and how strict inference rules can also be accommodated when doing so.

Let us first look in more detail at John Pollock’s work. He formalised defeasible
rules for reasoning patterns involving perception, memory, induction, temporal persis-
tence and the statistical syllogism, as well as undercutters for these reasons.

In ASPIC+ his principles of perception and memory can be written as follows:

dp(x, ϕ): Sees(x, ϕ)⇒ ϕ
dm(x, ϕ): Recalls(x, ϕ)⇒ ϕ

In fact, these defeasible inference rules are schemes for all their ground instances (that
is, for any instance where x and ϕ are replaced by ground terms denoting a specific per-
ceiving agent and a specific perceived state of affairs). Therefore, their names dp(x, ϕ)
and dm(x, ϕ) as assigned by the n function are in fact also schemes for names. A
proper name is obtained by instantiating these variables by the same ground terms as
used to instantiate these variables in the scheme. Thus it becomes possible to formulate
undercutters for one instance of the scheme (say for Jan who saw John in Amsterdam)
while leaving another instance unattacked (say for Bob who saw John in Holland Park).
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Note, finally, that these schemes assume a naming convention for formulas in a first-
order language, since ϕ is a term in the antecedent while it is a well-formed formula in
the consequent. In the remainder we will leave this naming convention implicit.

Now undercutters for dp state circumstances in which perceptions are unreliable,
while undercutters of dm state conditions under which memories may be flawed. For
example, a well-known cause of false memories of events is that the memory is distorted
by, for instance, seeing pictures in the newspaper or watching a TV programme about
the remembered event. A general undercutter for distorted memories could be

um(x, ϕ): DistortedMemory(x, ϕ)⇒ ¬dm(x, ϕ)

combined with information such as

∀x, ϕ(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))

Pollock’s epistemic inference schemes are in fact a subspecies of argument schemes.
The notion of an argument scheme was developed in philosophy and is currently an
important topic in the computational study of argumentation. Argument schemes are
stereotypical non-deductive patterns of reasoning, consisting of a set of premises and a
conclusion that is presumed to follow from them. Uses of argument schemes are eval-
uated in terms of critical questions specific to the scheme. An example of an epistemic
argument scheme is the scheme from the position to know (Walton; 1996, pp. 61–63):

A is in the position to know whether P is true
A asserts that P is true
P is true

Walton gives this scheme three critical questions:

1. Is A in the position to know whether P is true?
2. Did A assert that P is true?
3. Is A an honest (trustworty, reliable) source?

A natural way to formalise reasoning with argument schemes is to regard them as de-
feasible inference rules and to regard critical questions as pointers to counterarguments.
For example, in the scheme from the position to know questions (1) and (2) point to un-
derminers (of, respectively, the first and second premise) while questions (3) points to
undercutters (the exception that the person is for some reason not credible).

Accordingly, we formalise the position to know scheme and its undercutter as fol-
lows:

dw(x, ϕ): PositionToKnow(x, ϕ), Says(x, ϕ)⇒ ϕ
uw(x, ϕ): ¬Credible(x)⇒ ¬dw(x, ϕ)

We will now illustrate the modelling of both Pollock’s defeasible reasons and Walton’s
argument schemes with our example from Section 6.2, focusing on a specific class of
persons who are in the position to know, namely, witnesses. In fact, witnesses always
report about what they observed in the past, so they will say something like “I remember
that I saw that John was in Holland Park”. Thus an appeal to a witness testimony
involves the use of three schemes: first the position to know scheme is used to infer
that the witness indeed remembers that he saw that John was in Holland Park, then the
memory scheme is used to infer that he indeed saw that John was in Holland Park, and
finally, the perception scheme is used to infer that John was indeed in Holland Park.
Now recall that John was a suspect in a robbery in Holland Park and that Jan testifed
that he saw John in Amsterdam on the same morning, while Jan is a friend of John.
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Suppose now we also receive information that Bob read newspaper reports about the
robbery in which a picture of John was shown. One way to model this in ASPIC+ is as
follows.

The knowledge base consists of the following facts (since we don’t want to dispute
them, we put them in Kn):

f1: PositionToKnow(Bob, Recalls(Bob, Sees(Bob, InHollandPark(John))))
f2: Says(Bob, Recalls(Bob, Sees(Bob, InHollandPark(John))))
f3: SeesPicturesAbout(Bob, Sees(Bob, InHollandPark(John)))
f4: ∀x, ϕ.(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))
f5: ∀x.InHollandPark(x) ⊃ InLondon(x)
f6: PositionToKnow(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f7: Says(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f8: Friends(Jan, John)
f9: SuspectedRobber(John)
f10: ∀x, y, ϕ.Friends(x, y) ∧ SuspectedRobber(y) ∧ InvolvedIn(y, ϕ) ⊃

¬Credible(x)
f11: InvolvedIn(John, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f12: ∀x¬(InAmsterdam(x) ∧ InLondon(x))

Combining this with the schemes from perception, memory and position to know, we
obtain the following arguments (for reasons of space we don’t list separate lines for
arguments that just take an item from K).

A3: f1, f2 ⇒dw Recalls(Bob, Sees(Bob, InHollandPark(John)))
A4: A3 ⇒dm Sees(Bob, InHollandPark(John))
A5: A4 ⇒dp InHollandPark(John)
A7: A5, f5 → InLondon(John)

This argument is undercut (on A4) by the following argument applying the undercutter
for the memory scheme:

B3: f3, f4 → DistortedMemory(Bob, Sees(Bob, InHollandPark(John)))
B4: B3 ⇒um ¬dm(Bob, Sees(Bob, InHollandPark(John)))

Moreover, A7 is rebutted (on A5) by the following argument:

C3: f6, f7 ⇒dw Recalls(Jan, Sees(Jan, InAmsterdam(John)))
C4: C3 ⇒dm Sees(Jan, InAmsterdam(John))
C5: C4 ⇒dp InAmsterdam(John)
C8: C5, f5, f12 → ¬InHollandPark(John)

This argument is also undercut, namely, on C3 based on the undercutter of the position
to know scheme:

D5: f8, f9, f10, f11 → ¬Credible(Jan)
D6: D5 ⇒uw ¬dw(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))

Finally, C8 is rebutted on C5 by the following continuation of argument A7:

A8: A5, f5, f12 → ¬InAmsterdam(John)

A8 is in turn undercut by B4 (on A4) and rebutted by C8 (on A5).
The example is displayed in Figure 6.4.
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Figure 6.4: A formalised example

Because of the two undercutting arguments, neither of the testimony arguments are
credulously or sceptically justified in any semantics. Let us see what happens if we do
not have the two undercutters. Then we must apply preferences to the rebutting attack
of C8 on A5 and to the rebutting attack of A8 on C5. As it turns out, the same prefer-
ences have to be applied in both cases, namely, those between the three defeasible-rule
applications in the respective arguments. And this is what we intuitively want.

Finally, we note that counterarguments based on critical questions of argument
schemes may themselves apply argument schemes. For example, we may believe that
Jan and John are friends because another witness told our so. Or we may believe that
Holland Park is in London because a London taxi driver told us so (an application of
the so-called expert testimony scheme).

6.4.4 Instantiations with no defeasible rules

All that has been said so far about ways to choose the strict rules applies irrespective
of whether you also want to include defeasible rules in your argumentation system. In
fact, ASPIC+ allows you to only use strict inference rules. Principled ways to do so are
to base the strict rules on classical logic or indeed on any Tarskian consequence rela-
tion. In this way, ASPIC+ extends the classical-logic approach of Besnard and Hunter
(2009) and the abstract-logic approach of Amgoud and Besnard (2009), by providing
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guidelines for using preferences to resolve inconsistencies in classical logic or any other
underlying Tarksian logic. The use of preferences is of particular importance in such
contexts, since in these contexts the stable and preferred extensions of Dung frame-
works simply correspond to the maximal consistent subsets of the instantiating theories
(Amgoud and Besnard; 2013). One thus needs some ‘extra-logical’ means, such as
preferences, to resolve inconsistencies.

The idea is as follows. Given a set S of wff in some language L and a Tarksian
consequence relation Cn over L (note that classical consequence is such a Tarskian
consequence relation), we let the axioms and defeasible inference rules be empty, and
the strict rules defined as indicated in Section 6.4.1, namely, as S → p ∈ Rs iff
p ∈ Cn(S), for any finite S ⊆ L. Furthermore, in keeping with the above mentioned
classical, and more general Tarskian Logic approaches, we assume all arguments to be
consistent and, moreover, their premise sets subset-minimal in applying their conclu-
sion.

For this special case all ASPIC+ arguments are strict, so all attacks are undermining
attacks. In Modgil and Prakken (2013) it was shown that these ASPIC+ reconstructions
of Tarskian and classical approaches are equivalent to the originals if these originals use
a form of undermining attack. Moreover, the result stated in Section 6.4.1 – that any
ASPIC+ AT with the strict rules derived from a Tarskian logic satisfies closure under
contraposition — then implies that without preferences these reconstructions are well-
defined and thus satisfy the rationality postulates. Moreover, if these reconstructions are
extended with a reasonable argument ordering, then this result also holds for the case
with preferences. Thus the ASPIC+ framework has in fact been used to extend both the
classical-logical approach of Besnard and Hunter (2009) and the more general Tarskian
approach of Amgoud and Besnard (2009) with preferences in a way that satisfies all
rationality postulates of Caminada and Amgoud (2007).

6.4.5 Illustrating uses of ASPIC+ with and without defeasible rules

In this section we compare respective uses of ASPIC+ with and without defeasible
rules in more detail. We first say more about the arguments of some that classical-
logic simulations of defeasible rules may yield counterintuitive results. Let us as-
sume a classical-logic instantiation of ASPIC+ as defined in Section 6.4.4 and for-
malise natural-language generalisations ‘If P then normallyQ’ as material implications
P ⊃ Q put in Kp. The idea is that since P ⊃ Q is an ordinary premise, its use as a
premise can be undermined in exceptional cases. Observe that by classical reasoning
we then have a strict argument for ¬Q ⊃ ¬P . Some say that this is problematic. Con-
sider the following example: ‘Anyone who is a man usually has no beard’, so (strictly)
‘Anyone who has a beard usually is not a man’. This strikes some as counterintuitive,
since we know that virtually everyone who has a beard is a man, so the contraposition
of ‘If P then normally Q’ cannot be deductively valid12.

12One way to argue why classical simulations may give counter-intuitive results is to recall that a num-
ber of researchers provide statistical semantics for defeasible inference rules. These semantics regard a
defeasible rule of the form P ⇒ Q as a qualitative approximation of the statement that the conditional
probability of Q, given P , is high. The laws of probability theory then tell us that this does not entail that
the conditional probability of ¬P , given ¬Q, is high. The problem with the classical-logic approach is
then that it conflates this distinction by turning the conditional probability of Q given P into the uncondi-
tional probability of P ⊃ Q, which then has to be equal to the unconditional probability of ¬Q ⊃ ¬P .
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A more refined classical approach is to give the material implication an extra nor-
mality condition N , which informally reads as ‘everything is normal as regards P im-
plying Q’, and which is also put in Kp. The idea then is that exceptional cases give rise
to underminers of N . However, (P ∧N) ⊃ Q also deductively contraposes, namely, as
(¬Q ∧N) ⊃ ¬P , so it seems that we still have the controversial deductive validity of
contraposition for generalisations (in the beard and men example the contraposition of
the rule with the added normality condition would read: ‘Anyone who has a beard and
all is normal regarding men and having beards, usually is not a man’ !).

So far we only discussed reasons for belief but argumentation is often about what
to do, prefer or value (what philosophers often call practical reasoning). Here too it
has been argued on philosophical grounds that reasons for doing, preferring or valu-
ing cannot be expressed in classical logic since they do not contrapose. This view
can, of course, not be based on a statistical semantics for such reasons, since statistics
only applies to reasoning about what is the case (what philosophers often call epis-
temic reasoning). Space limitations prevent us from giving more details about these
philosophical arguments.

We next illustrate two different ways to use ASPIC+ with a detailed example. Both
ways use classical logic in their strict part and use explicit preferences, but only the
second way uses defeasible inference rules. The first way instead expresses defeasible
generalisations as material implications with normality assumptions. The example will
shed further light on the issue whether empirical generalisations can be represented in
classical logic, and it will also motivate the use of axiom premises. Our example is a
well-known one from the literature on nonmonotonic logic. Suppose a defeasible rea-
soner accepts all following natural-language statements are true. For the generalisations
(1) and (2) this means that the reasoner accepts that they hold in general but that they
may have exceptions.

(1) Birds normally fly
(2) Penguins normally don’t fly
(3) All penguins are birds
(4) Penguins are abnormal birds with respect to flying
(5) Tweety is a penguin

A defeasible reasoner then wants to know what can be concluded from this informa-
tion about whether Tweety can fly. It seems uncontroversial to say that any defeasible
reasoner will conclude that Tweety can fly.

We now formalise these statements with the just-explained method to represent
empirical generalisations as material implications with explicit normality assumptions.
We use a classical-logic instantiation of ASPIC+ with preferences as defined above in
Section 6.4.4.

(1) bird ∧ ¬ab1 ⊃ canfly
(2) penguin ∧ ¬ab2 ⊃ ¬canfly
(3) penguin ⊃ bird
(4) penguin ⊃ ab1

(5) penguin

Let us first add these formulas toKp. The idea now is that the normality assumptions of
a defeasible reasoner are expressed as additional statements ¬ab1 and ¬ab2, also added
to Kp. We then define the preference ordering on Kp such that all of (1-5) are strictly
preferred over any of these two assumptions and that ¬ab1 <

′ ¬ab2.
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We can then construct many arguments on the issue whether Tweety can fly. Note
that {1, 2, 3, 4, 5} ∪ {¬ab1,¬ab2} is minimally inconsistent, so if we take any single
element out, the rest can be used to build an argument against it. This means that we
can formally build arguments not just against the two normality assumptions but also
against any of (1-5) (note the similarity with the fact that, as noted above, in classical-
logic argumentation without preferences the stable and preferred extensions corespond
to maximal consistent subsets of the knowledge base). With the weakest- or last-link
ordering we do obtain the intuitive conclusion ¬canfly , but the fact that arguments
against any of (1-5) can be built may be regarded as somewhat odd, since we just noted
that a defeasible reasoner accepts (1-5) as given and is only interested in what follows
from them.

Let us therefore move (1-5) to the axiomsKn, so that they cannot be attacked. Then
we have just a few arguments on the issue whether Tweety can fly: we have an argument
{1, 2, 3, 4, 5} ∪ {¬ab2} → ¬canfly , which has one attacker, namely, {1, 2, 3, 5} ∪
{¬ab1} → ab2. However, with the weakest- or last link principle this attacker does
not defeat it target, since we have ¬ab1 <

′ ¬ab2. Hence ¬canfly is justified in any
semantics. So at first sight it would seem that the classical-logic approach enriched
with axiom premises adequately models reasoning with empirical generalisations.

However, this approach still has some things to explain, as can be illustrated by
changing our example a little: above it was given as a matter of fact that Tweety is a
penguin but in reality the particular ‘facts’ of a problem are often not simply given but
derived from information sources (sensors, testimonies, databases, the internet, and so
on). Now in reality none of these sources is fully reliable, so inferring facts from them
can only be done under the assumption that things are normal. So let us change the
example by saying that Tweety was observed to be a penguin and that animals that are
observed to be penguins normally are penguins. We change 5 to 5′ and we add 6 to Kn:

(5’) observed as penguin
(6) observed as penguin ∧ ¬ab3 ⊃ penguin

Moreover, we add ¬ab3 to Kp. We can still build an argument that Tweety cannot
fly, namely, {1, 2, 3, 4, 5′}∪ {¬ab2,¬ab3} → ¬canfly . However, we can also build an
attacker of this argument, namely {1, 2, 3, 4, 5′, 6}∪{¬ab1,¬ab2} → ab3. We can still
obtain the intuitive outcome by preferring the assumption ¬ab3 over the assumption
¬ab1 . However, some have argued that this is an ad-hoc solution, since there would
be no general principle on which such a preference can be based. The heart of the
problem, they say, is the fact that the material implication satisfies contraposition, a
property which, as we just mentioned, can be argued to be too strong for defeasible
generalisations. In reality a defeasible reasoner would not even construct an argument
against penguin . As can be easily checked, the same issues arise if we put (1-4,5’,6)
in Kp while we then have our old issue back that arguments can be constructed against
any element of Kp.

Concluding so far, those who want to model ‘default reasoning’ in classical argu-
mentation have to explain why arguments as the one for ab3 can be constructed and why
it does not defeat the argument for ¬canfly (or alternatively, why the latter conclusion
is not justified). Moreover, if they apply the first version of this approach, by putting all
of {1, 2, 3, 4, 5′, 6} in Kp, then they also have to explain why arguments against any of
these premises can be constructed and whether these arguments succeed as defeats.
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Let us next formalise the example with domain-specific defeasible rules and with
the strict rules still corresponding to classical logic.

d1: bird ⇒ canfly
d2: penguin ⇒ ¬canfly
d3: observed as penguin ⇒ ¬penguin
f1: penguin ⊃ bird
f2: penguin ⊃ ¬r1

f3: observed as penguin

It now does not matter whether we put the facts in Kn or Kp, nor does it matter which
priorities we define on Kp orRd. We have the following arguments:

A1: observed as penguin B1: A2 ⇒ ¬canfly
A2: A1 ⇒ penguin
A3: penguin ⊃ bird
A4: A2, A3 ⇒ canfly C1: A2 ⇒ ¬r1

Note also that no argument can be built against the conclusion penguin . We have that
A4 and B1 rebut each other while C1 undercuts A4. Whatever the argument ordering
between A4 and B1, we thus obtain that the conclusion ¬canfly is justified in any
semantics.

Concluding, the classical modelling of this example is simpler in that it only uses
classical inference and does not have to rely on the notion of a defeasible inference
rule. On the other hand, to obtain the intuitive outcome it needs more preferences
than the modelling with defeasible rules, while the issue arises on which grounds these
preferences can be stated. Moreover, if the classical approach regards all knowledge
as fallible in principle, then it generates many more arguments than perhaps intuitively
expected, at least many more than in the modelling with defeasible rules.

6.4.6 Representing facts

ASPIC+ allows you to represent facts in various ways, each with their pros and cons.
Disputable factsϕ can either be put as such inKp or as defeasible rules⇒ ϕwith empty
antecedents. An advantage of including disputable facts in Kp is that thus ASPIC+

captures classical and abstract-logic argumentation with preferences as special cases.
On the other hand, if disputable facts ϕ are represented as defeasible rules⇒ ϕ, then
the definition of the weakest- and last-link argument orderings becomes simpler, since
then only sets of defeasible rules need to be compared. In addition, this choice removes
the need for undermining attack, which simplifies the definitions of attack and defeat.

Undisputable facts ϕ can either be put as such in Kn or as strict rules → ϕ with
empty antecedents. This choice does not make a difference for the weakest- or last-link
argument ordering, since these orderings disregard axiom premises and strict rules.
However, a disadvantage of representing undisputable fact ϕ as strict rules→ ϕ is that
then the strict rules do not express a logic any more, so the above-mentioned theorems
on definitions ofRs in terms of Tarskian abstract logics do not apply any more.

6.4.7 Summary

We have seen that ASPIC+ allows you to make any choice of axioms, strict and defea-
sible rules you like. You can choose domain-specific strict and/or defeasible inference
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rules, and you can choose logical strict and/or defeasible inference rules, for any de-
ductive and/or nonmonotonic logic of your choice, good or bad. You can add logical
axioms to Kn but you can also add any other information to Kn that you don’t want
to put up for discussion. You can also base your defeasible rules on informal accounts
of argument schemes. All that ASPIC+ tells you is how arguments can be built with
your rules of choice, how they can be attacked, and how these attacks can be resolved,
given an argument ordering of your choice. Moreover, we have some theorems about
ASPIC+ that inform you about some properties of your choices.

6.5 Generalising negation in ASPIC+

The notion of an argumentation system in Section 6.3.1, assumed a language L closed
under negation (¬), where the standard classical interpretation of ¬ licenses a sym-
metric notion of conflict based attack, so that an argument consisting of an ordinary
premise φ or with a defeasible top rule concluding φ, symmetrically attacks an argu-
ment consisting of an ordinary premise ¬φ or with a defeasible top rule concluding ¬φ.
However, the ASPIC+framework as presented in Prakken (2010); Modgil and Prakken
(2013), accommodates a more general notion of conflict, by defining an argumentation
system to additionally include a function − that, for any wff ψ ∈ L, specifies the set of
wff’s that are in conflict with ψ. With this idea, which is taken from assumption-based
argumentation (Bondarenko et al.; 1997; Dung et al.; 2009), one can define both an
asymmetric and symmetric notion of conflict-based attack. More formally:

Definition 6.5.1 − is a function from L to 2L, such that:

• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ ;

• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ ;

• each ϕ ∈ L has at least one contradictory.

Note that classical negation is now a special case of the symmetric contradictory
relation: α ∈ β iff α is of the form ¬β or β is of the form ¬α (i.e., for any wff α,
α and ¬α are contradictories). Modgil and Prakken (2013) then redefine Definition
6.3.3’s notion of direct consistency so that a set S is directly consistent iff @ ψ, ϕ ∈
S such that ψ ∈ ϕ. Also, Conc(A) ∈ ϕ (Conc(A) ∈ n(r)) replaces Conc(A) = −ϕ
(Conc(A) = −n(r)) in Definition 6.3.10’s definition of attacks.

With this, one can reconstruct assumption-based argumentation (ABA) in ASPIC+

as shown by Prakken (2010), since as just noted, ABA also generalises the notion
of conflict through the use of a − function. To summarise, an ASPIC+reconstruction
of ABA will have empty sets of defeasible rules and axiom premises, and consist of
ordinary premises and strict rules (respectively corresponding to the assumptions and
rules in an ABA theory). Then, for every ordinary premise α, one specifies that:

1. there is a β in L such that β is a contrary or contradictory of α

2. α is not the conclusion of a strict inference rule (corresponding to so called ‘flat’
ABA theories)

Then, without the use of preference relation, a correspondence can be shown between
ABA and ASPIC+. One benefit of this is that one can then identify conditions under
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which ABA satisfies rationality postulates (by requiring, for instance, that the strict
rules are closed under transposition).

The rationale for these more general notions of conflict and attack is two-fold.
Firstly, one can for pragmatic reasons state that two formulae are in conflict, rather than
requiring that one implies the negation of another; for example, assuming a predicate
language with the binary ‘<’ relation, one can state that any two formulae of the form
α < β and β < α are contradictories. Secondly, the − function allows for an asym-
metric notion of negation. This in turn is required for modelling negation as failure
(as in logic programming). Using the negation as failure symbol ∼ (also called ‘weak’
negation, in contrast to the ‘strong’ negation symbol ¬), then ∼ α denotes the negation
of α under the assumption that α is not provable (i.e., the negation of α is assumed in
the absence of evidence to the contrary). It is not then meaningful to assert that such an
assumption brings into question (and so initiates an attack on) the evidence whose very
absence is required to make the assumption in the first place. In other words, if A is
an argument consisting of the premise ∼ α, and B concludes α (the contrary of ∼ α),
then B attacks A, but not vice versa. Furthermore, since the very construction of A
is invalidated by evidence to the contrary, i.e., B, then such attacks succeed as defeats
independently of preferences.

To accommodate the notion of contrary, and attacks on contraries succeeding as de-
feats independently of preferences, we further modify Definition 6.3.10 to distinguish
the special cases where Conc(A) is a contrary of ϕ, in which case we say that A con-
trary rebuts B and A contrary undermines B, and then modify Definition 6.3.12 so
that:

• A successfully rebutsB ifA contrary rebutsB, orA rebutsB onB′ andA ⊀ B′.

• A successfully undermines B if A contrary undermines B, or A undermines B
on φ and A ⊀ φ.

Following on from the discussion in Section 6.4.2, one can then show (Modgil and
Prakken; 2013) that with the additional notion of contrary, satisfaction of the four ratio-
nality postulates not only requires that the argument theory satisfy axiom consistency,
and transposition or contraposition, but also that it is well formed in the following sense:

Definition 6.5.2 An argumentation theory is well-formed if the following holds: if φ is
a contrary of ψ then ψ /∈ Kn and ψ is not the consequent of a strict rule.

To illustrate the use of negation as failure, suppose you want your arguments to be
built from a propositional language that includes both ¬ and ∼. One could then define
L as a language of propositional literals, composed from a set of propositional atoms
{a, b, c, . . .} and the symbols ¬ and ∼. Then:

• α is a strong literal if α is a propositional atom or of the form ¬β where β is a
propositional atom (strong negation cannot be nested).

• α is a wff of L, if α is a strong literal or of the form ∼ β where β is a strong
literal (weak negation cannot be nested).

Then α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the
form∼ α (i.e., for any wff α, α and ¬α are contradictories and α is a contrary of∼ α).
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Finally, for any ∼ α that is in the antecedent of a strict or defeasible inference rule, one
is required to include ∼ α in the ordinary premises.

Consider now Example 6.3.6, where we now have that u ∈ ∼ u, and we replace
the rule d4 : u ⇒ v with d′4: ∼ u ⇒ v, and add ∼ u to the ordinary premises:
Kp = {∼ u, s, u, x}. Then, the arguments C3 and D4 are now replaced by arguments
C ′3 and D′4 each of which contain the sub-argument E : ∼ u (instead of C1 : u). Then
C1 : u contrary undermines, and so defeats, C ′3 and D′4 on ∼ u.

We finally note that according to Toni (2014) the philosophy behind ABA is to
translate preferences and defeasible rules into ABA rules plus ABA assumptions, so
that rebutting and undercutting attack and the application of preferences all reduce to
premise attack. The idea of this is to keep the formal theory simpler and to make the
technical machinery of ABA available for other approaches. In line with this philoso-
phy, Dung and Thang (2014) have shown that their rule-based systems, which are a spe-
cial case of ASPIC+ with no knowledge base and no preferences, can be translated into
ABA instantiations. They do this by translating every defeasible rule p1, . . . , pn ⇒ q
as a strict rule di, p1, . . . , pn, not¬q → q, where

• di = n(p1, . . . , pn ⇒ q) in ASPIC+;

• di, not¬q ∈ A (i.e., they are ABA assumptions);

• q = not¬q and for all ϕ: ϕ = ¬ϕ and ¬ϕ = ϕ

Dung and Thang (2014) then show (on the assumption that ASPIC+ rule names do not
occur as antecedents or consequents in ASPIC+ rules), that for grounded, preferred and
stable semantics the resulting ABA framework validates the same conclusions as the
original ASPIC+ SAF . We agree that this approach has its merits but note that it is
an open question whether ASPIC+ can in its full generality be translated into ABA.
Also, as we noted above, we claim that there is also some merit in having a theory
with explicit notions of rebutting and undercutting attack and preference application,
namely, if the aim is to formalise modes of reasoning in a way that corresponds with
human modes of reasoning and debate.

6.6 Self-defeat

In Chapter 4, Section 4.2 we said that a proper analysis of self-defeating arguments must
make the structure of arguments explicit. Now that we have done so, we can explain
why this is needed. In the present framework two types of self-defeating arguments
are possible: serial self-defeat occurs when an argument defeats one of its earlier steps,
while parallel self-defeat occurs when the contradictory conclusions of two or more
arguments are taken as the premises for ⊥. It turns out that parallel self-defeating can
cause problems if argumentation systems are not carefully defined, particularly if they
include standard propositional logic.

The following example explains why serial self-defeat does not cause problems.

Example 6.6.1 Consider the following version of the argument scheme from witness
testimony plus an undercutter in case the witness is incredible:

dw(x, ϕ): Says(x, ϕ)⇒ ϕ
uw(x, ϕ): Incredible(x)→ ¬dw(x, ϕ)
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Figure 6.5: Illustrating trivialisation

Now suppose that Kp contains Says(John, “Incredible(John)”). Then we have

A1: Says(John, “Incredible(John)”)
A2: A1 ⇒ Incredible(John)
A3: A2 → ¬dw(John, “Incredible(John)”)

Argument A3 is self-defeating since it undercuts itself on A2. In both preferred and
grounded semantics there is a unique extensionE = {A1}. Arguably this is the desired
outcome, since suppose witness John also says something completely unrelated, say,
‘the suspect stabbed the victim with a knife’ if the self-defeating argument A3 were
overruled, the argument that can be constructed for ‘the suspect stabbed the victim with
a knife’ would be justified since all its defeaters are overruled, while yet it is based on
a statement of a witness who says of himself that he is incredible.

The following abstract example illustrates the problems that can be caused by parallel
self-defeat.

Example 6.6.2 Let Rd = {p ⇒ q; r ⇒ ¬q; t ⇒ s} and K = {p, r, t} while Rs
consists of all propositionally valid inferences. Then:

A1: p A2: A1 ⇒ q
B1: r B2: B1 ⇒ ¬q C: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

Figure 6.5 displays these arguments and their attack relations. Argument C attacks
D2. Whether C defeats D2 depends on the argument ordering but plausible argument
orderings are possible in which C 6≺ D2 and so C defeats D2. This is problematic,
since s can be any formula, so any defeasible argument unrelated to A2 or B2, such
as D2, can, depending on the argument ordering, be defeated by C. Clearly, this is
extremely harmful, since the existence of just a single case of mutual rebutting defeat,
which is very common, could trivialise the system. In fact, of the semantics defined by
Dung (1995) this is only a problem for grounded semantics. Since all preferred/stable
extensions contain either A2 or B2, argument C is not in any of these extensions so
D2 is in these extensions. However, if neither of A2 and B2 strictly defeats the other,
then neither of them is in the grounded extension so that extension does not defend D2

against C and therefore does not contain D2.

(Actually, if examples of parallel ‘self-defeat’ are translated into a Dung-style abstract
argumentation framework, there are no abstract self-defeating arguments. Nevertheless,
intuitively, this is a case of self-defeat, which is why it is discussed in this section.)
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Current research on tackling these issues has made some progress. Wu (2012)
proves for the special case withL a propositional or first-order language with a classical
interpretation and with a simple argument ordering that if the set of all conclusions of an
argument is required to be indirectly consistent, the above problems do not arise while
all results on the rationality postulates still hold. Note that with this requirement, the
argument C1 in Example 6.6.2 cannot be constructed. Moreover, Grooters and Prakken
(2016) prove for the more general case with any reasonable argument ordering that the
problems can avoided by imposing two additional constraints on the construction of
arguments: (1) strict rules can only be applied to classically consistent sets of formulas,
and (2) strict rules cannot be chained. This also rules out C1 in Example 6.6.2 and,
moreover, rules out other problematic examples. Note that Grooters and Prakken (2016)
do not adopt Wu (2012)’s constraint that the set of all conclusions of an argument should
be consistent.

In conclusion, there are good reasons to believe that the two types of self-defeating
arguments should be treated differently: while arguments based on parallel self-defeat
should always be overruled, arguments with serial self-defeat should retain their force
to prevent other arguments from being justified or defensible.

6.7 Variants of rebutting attack

Several papers have considered alternative definitions of rebutting attack in which an
argument can under specific conditions also be rebutted on the conclusions of strict
inferences.

6.7.1 Unrestricted rebuts

In ASPIC+ as presented so far, arguments can only be rebutted on conclusions of
defeasible-rule applications. Caminada and Amgoud (2007) call this restricted rebut.
They also study unrestricted rebut, which allows rebuttals on the conclusion of a strict
inference provided that at least one of the argument’s subarguments is defeasible. Their
replacement of restricted with unrestricted rebut leads to a variant of their simplified
version of ASPIC+ (which is in fact equivalent to Dung and Thang (2014)’s rule-based
systems). They prove that for grounded semantics the rationality postulates are (un-
der the usual conditions) satisfied but they provide a counterexample for stable and
preferred semantics, presented above in Section 6.4.1 with a modification of Exam-
ple 6.4.1.

Caminada et al. (2014) argue in favour of unrestricted rebut on the grounds that this
would lead to more natural presentations of dialogues. They argue that when applying
argumentation in dialogical settings, the notion of restricted rebuts sometimes forces
agents to commit to statements they have insufficient reasons to believe. In abstract
terms, suppose an agent Ag1 submitting an argument A whose top rule is a strict rule
s1 = α1, . . . , αn → α, where for i = 1 . . . n, αi is an ordinary premise in A or the
head of a defeasible rule in A. Now suppose Ag2 has an argument B that defeasibly
concludes ¬α. Since B does not rebut A on α, then to attack A requires that Ag2

construct, for some i = 1 . . . n, an argument B′ that extends B and the arguments
concluding αj , j 6= i, with the transposition si1 = α1, . . . , αi−1,¬α, αi+1, αn → ¬αi.
But then Ag2 is forced to commit to her interlocutors’ arguments concluding αj , j 6= i,
for which she has no reasons to believe.
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Caminada et al. (2014) give the following concrete example.

John: “Bob will attend conferences AAMAS and IJCAI this year, as he has
papers accepted at both conferences.”
Mary: “That won’t be possible, as his budget of £1000 only allows for one
foreign trip.”

Formally, this discussion could be modelled using an argumentation theory withRd ⊇
{accA⇒attA; accI⇒attI; budget⇒¬(attA∧ attI)} andRs ⊇ {→ accA; →accI; →
budget; attA, attI→attA ∧ attI}.

A direct formalisation of the above arguments is then:

J1: → accA M1: → budget
J2: J1 ⇒ attA M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI
J4: J3 ⇒ attI
J5: J3, J4 → attA ∧ attI

In ASPIC+, Mary’s argument does not attack John’s argument, since the conclusion
Mary wants to attack (attA ∧ attI) is the consequent of a strict rule. Mary can only
attack John’s argument by attacking the consequent of one of the defeasible rules, that
is, by uttering one of the following two statements.

Mary′: “Bob can’t attend AAMAS because he will attend IJCAI, and his
budget does not allow him to attend both.”
Mary′′: “Bob can’t attend IJCAI because he will attend AAMAS, and his
budget does not allow him to attend both.”

The associated formal counterarguments are as follows.13

M1: → budget
M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI J1: → accA
J4: J3 ⇒ attI J2: J1 ⇒ attA
M ′5: M2, J4 → ¬attA M ′′5 : M2, J2 → ¬attI

According to Caminada et al. (2014) the problem with this is that Mary does not know
which of the two conferences Bob will attend, but ASPIC+ with restricted rebut forces
her to assert that Bob will attend one or the other. They argue that from the perspective
of commitment in dialogue (Walton and Krabbe; 1995), this is unnatural.

Caminada et al. (2014) then define a restricted version of basic ASPIC+ as presented
above in Section 6.3 – which they call ASPIC− – that substitutes strict rules with empty
antecedents for axiom premises, and defeasible rules with empty antecedents for or-
dinary premises. Moreover, ASPIC− allows unrestricted rebuts on the conclusions of
strict rules. They then show that under the assumption of a total ordering on the de-
feasible rules, and assuming either the Elitist or Democratic set comparisons used
in defining weakest- or last-link preferences, all of Caminada and Amgoud (2007)’s
rationality postulates are satisfied for well-defined SAFs, but only for the grounded
semantics. They have thus generalised Caminada and Amgoud (2007)’s results for
some specific cases with preferences.

13Assuming Rs ito be closed under transposition, the fact that Rs contains attA, attI → attA ∧ attI
implies thatRs also contains ¬(attA ∧ attI), attI→ ¬attA and attA,¬(attA ∧ attI)→ ¬attI.
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6.7.2 Weak rebuts and an alternative view on the rationality postulates

Prakken (2016) studies a weaker version of unrestricted rebut, motivated by the general
observation that deductive inferences may weaken an argument. His argument is that
when a deductive inference is made from the conclusions of at least two ‘fallible’ (de-
feasible or plausible) subarguments, the deductive inference can be said to aggregate
the degrees of fallibility of the individual arguments to which it is applied. This in turn
means that the deductive inference may be less preferred than either of these subargu-
ments, so that a successful attack on the deductive inference does not necessarily imply
a successful attack on one of its fallible subarguments. And this in turn means that there
can be cases where it is rational to accept a set of arguments that is not strictly closed
and that violate indirect consistency. Note that this line of reasoning does not apply
to cases where a deductive inference is applied to at most one fallible subargument:
then the amount of fallibility of the new argument is exactly the same as the amount
of fallibility of the single fallible argument to which the deductive inference is applied.
Accordingly, Prakken (2016) defines weak rebut as allowing rebuttals on the conclusion
of a strict inference, provided that the strict inference is applied to at least two fallible
subarguments. Moreover, he argues that there are cases where argument orderings can-
not be required to satisfy all properties of a so-called reasonable argument ordering as
defined by Modgil and Prakken (2013).

Prakken (2016) illustrates this with the lottery paradox, a well-known paradox from
epistemology, first discussed by Kyburg (1961). Imagine a fair lottery with one million
tickets and just one prize. If the principle is accepted that it is rational to accept a propo-
sition if its truth is highly probable, then for each ticket Ti it is rational to accept that
Ti will not win while at the same time it is rational to accept that exactly one ticket will
win. If we also accept that everything that deductively follows from a set of rationally
acceptable propositions is rationally acceptable, then we have two rationally acceptable
propositions that contradict each other: we can join all individual propositions ¬Ti into
a big conjunction ¬T1∧ . . .∧¬T1,000,000 with one million conjuncts, which contradicts
the certain fact that exactly one ticket will win.

Many views on this paradox exist. Prakken (2016) wants to formalise the view that
for each individual ticket it is rational to accept that it will not win while at the same
time it is not rational to accept the conjunction of these acceptable beliefs. He considers
the following modelling of the lottery paradox in ASPIC+. Let L be a propositional
language built from the set of atoms {Ti | 1 ≤ i ≤ 1, 000, 000}. Then let X denote a
well-formed formula X1 Y . . . YX1,000,000 where Y is exclusive or and where each Xi

is of one of the following forms:

• If i = 1 then Xi = T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn

• If i = n then Xi = ¬T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn−1 ∧ Tn

• Otherwise Xi = ¬T1 ∧ . . . ∧ ¬Ti−1 ∧ Ti ∧ ¬Ti+1 ∧ . . . ∧ ¬Tn

Next we choose Kp = {¬Ti | 1 ≤ i ≤ 1, 000, 000}, Kn = {X}, Rs as consisting of
all propositionally valid inferences from finite sets andRd = ∅.

The following arguments are relevant for any i such that 1 ≤ i ≤ 1, 000, 000.

¬Ti and ¬T1, . . . ,¬Ti−1,¬Ti+1, . . . ,¬T1,000,000, X → Ti (call it Ai)
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Making ¬Ti justified for all i requires for all i that Ai ≺ ¬Ti, to prevent Ai from
defeating ¬Ti. Then we have a single extension in all semantics containing arguments
for all conclusions ¬Ti but not for their conjunction.

Prakken then proposes a definition of a weakly reasonable argument ordering ac-
cording to which applying a strict rule to the conclusion of a single argument A to
obtain an argument A′ does not change the ‘preferedness’ of A′ compared to A. This
is reasonable in general, since A and A′ have exactly the same set of fallible elements
(ordinary premises and/or defeasible inferences). He then proposes weakened versions
of the postulates of strict closure and indirect consistency, according to which these
properties are only required to hold for subsets of extensions with at most one fallible
argument. He also proposes a notion of weak rebut, according to which an argument
can be rebutted on a strict top rule provided it has at least two fallible subarguments. He
then proves that if weak rebut is allowed in addition to restricted rebut and argument
orderings are required to be weakly reasonable, then the original postulate of direct
consistency plus the weakened postulates of strict closure and indirect consistency are
satisfied if AT is closed under contraposition or transposition and Prem(A) ∪ Kn is
indirectly consistent.

Prakken (2016) concludes with some general observations on the relation between
deduction and justification. He argues to have shown that preservation of truth (the
definition of deductively valid arguments) does not imply preservation of rational ac-
ceptance, since truth and rational acceptance are different things. However, he also
argues that deduction still plays an important role in argumentation. Deductive infer-
ence rules are still available as argument construction rules and if an argument with a
strict top rule has no attackers or all its attackers are less preferred, then the argument
may still be sceptically justified. The specifics of the adopted argument ordering are
essential here. For instance, in the lottery paradox the argument ordering might allow
that application of the conjunction rule to a small number of conclusions ¬Ti is still
sceptically justified.

6.8 Conclusion

In this chapter we presented ASPIC+, a framework for structured argumentation based
on two ideas: that conflicts between arguments are sometimes resolved with explicit
preferences, and that arguments are built with two kinds of inference rules: strict, or
deductive rules, which logically entail their conclusion, and defeasible rules, which
only create a presumption in favour of their conclusion. The second idea implies that
ASPIC+ does not primarily see argumentation as inconsistency handling in a given
‘base’ logic: conflicts between arguments may not only arise from the inconsistency of
a knowledge base but also from the defeasibility of the reasoning steps in an argument.

ASPIC+ is not a system but a framework for specifying systems. A main objective
is to identify conditions under which instantiations of ASPIC+ satisfy logical consis-
tency and closure properties. We first discussed ASPIC+’s philosophical underpin-
nings. We then illustrated the main definitions with examples and we presented some
more and less principled ways to instantiate the framework. We also briefly discussed
how ASPIC+ captures several other approaches as special cases. As we saw above,
the ASPIC+ framework can be instantiated in many different ways. We have already
discussed some of these ways and their properties. We hope that in due course more
‘best practices’ in using ASPIC+ will emerge.
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Finally, two implementations are available online of instantiations of ASPIC+ with
domain-specific inference rules and with rule priorities:

• TOAST (http://toast.arg-tech.org);

• PyArg (https://pyarg.npai.science.uu.nl/).

6.9 Exercises

In the following exercises an argument ordering is called simple if it holds that A ≺ B
iff A is plausible or defeasible while B is strict and firm, and A ≈ B otherwise.

EXERCISE 6.9.1 Consider an argumentation system in whichRs consists of all valid
propositional and first-order inferences from finite sets, and with as knowledge base

Kn = {∀x(Px ⊃ Qx)}
Kp = {Pa,∀x(Qx ⊃ Rx)}

1. Construct a consistent argument A for Ra.

2. Identify Prem(A), Conc(A), Sub(A), DefRules(A) and TopRule(A).

3. What is in terms of Definition 6.3.7 the type of this argument?

EXERCISE 6.9.2 Consider the following argumentation theory with a simple argu-
ment ordering and:

Rs consists of all valid inferences of propositional logic from finite sets;
Rd = {

p, q ⇒ r,
r ∨ s⇒ t,
u⇒ v,
w ⇒ ¬u}

Kn = {¬(q ∧ v)}
Kp = {p, q, u, w} Evaluate the following questions relative to the c-SAF induced by
this example.

1. Verify the status of t according to grounded semantics, assuming the weakest-link
ordering on arguments given the simple argument ordering.

2. Assume now the following preference orderings ≤ onRd and ≤′ on Kp:

w ⇒ ¬u < u⇒ v

q <′ u

w <′ u

Verify how the answer to question (1) changes for the elitist last-link ordering.

3. Answer the same question for the elitist weakest-link ordering.
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EXERCISE 6.9.3 Consider the following argumentation theory with:

Rs consists of all valid propositional inferences from finite sets,
Rd = {
d1: p⇒ q,
d2: p, q ⇒ r,
d3: s⇒ t}

Kp = {p, s, (q ∧ r) ⊃ ¬t}

With an ordering ≤ on Rd such that d3 < d1 and d2 < d3. Evaluate the following
questions relative to the c-SAF induced by this example.

1. Verify the status of t and ¬t according to preferred semantics, assuming the last-
link ordering on arguments.

2. Specify the following for all arguments X that you constructed in your answer:
Prem(X), Conc(X), Sub(X), DefRules(X), LastDefRules(X) and TopRule(X).

EXERCISE 6.9.4 Consider Example 6.6.1.

1. Explain why E = {A1} is the only grounded and preferred extension.

2. Extend the example with the argument based on John’s testimony about the sus-
pect and verify its status in grounded and preferred semantics.

EXERCISE 6.9.5 Consider the following example of a civil legal case. Assume that
in a medical malpractice case, a doctor is liable for compensation if the patient was
injured because of the doctor’s negligence, and that if a patient is injured in a non-risky
operation, this is negligence. We also have that an appendicitis operation generally
is a non-risky operation but that operations on patients with bad blood circulation are
generally risky. Assume finally, that a given patient was injured in an appendicitis
operation and that two medical tests gave contradicting results on whether the patient
had bad blood circulation. One way to represent this is with the following facts and
domain-specific defeasible rules: Rs = Kp = ∅,Rd = {r1-r6} while Kn = {f1-f4}.

r1: injury, negligence⇒ compensation f1: injury
r2: injury, ¬ risky operation⇒ negligence f2: appendicitis
r3: appendicitis⇒¬ riskyOperation f3: medicalTest1
r4: badCirculation⇒ riskyOperation f4: medicalTest2
r5: medicalTest1⇒ badCirculation
r6: medicalTest2⇒¬ badCirculation

1. Construct all arguments on the basis of this argumentation theory and their attack
relations.

2. Specify the following for all argumentsX: Prem(X), Conc(X), Sub(X), DefRules(X)
and TopRule(X).

3. Suppose that r3 < r4 and r5 < r6. Determine the defeat relations with the elitist
last-link ordering.
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4. Determine the grounded extension of the SAF defined by the above argumen-
tation theory and the argument ordering induced by the preference relation of
(b).

5. Determine the preferred extension(s).

6. Move f3 and f4 from Kn to Kp and assume also that f4 <
′ f3. Answer again

questions (b-d) but now for the elitist weakest-link ordering.

EXERCISE 6.9.6 Give the abstract argumentation framework corresponding to Fig-
ure 6.4.

EXERCISE 6.9.7 Consider the following argumentation theory with:

Rs = {p, q → r, t→ ¬d1},
Rd = {

d1: p⇒ q,
d2: s⇒ t,
d3: u⇒ v,
d4: v ⇒ ¬t}

Kp = {p, s, u}

With orderings ≤ on Rd and ≤′ on Kp such that d2 < d4, d3 < d2 and u <′ s.

1. Verify the status of r according to preferred semantics, assuming the weakest-link
ordering on arguments.

2. Answer the same question assuming the last-link ordering on arguments.

EXERCISE 6.9.8 Consider the following, equally strong defaults

1. Persons born in The Netherlands are typically Dutch.
2. Persons with a Norwegian name are typically Norwegian.
3. Persons who are Dutch or Norwegian typically like ice skating.

and the following facts:

4. Brigt Rykkje was born in the Netherlands
5. Brigt Rykkje has a Norwegian name.
6. Nobody is both Dutch and Norwegian.

Evaluate the following questions relative to the c-SAF induced by this example.

1. Translate this information into an argumentation theory of which Rs consists of
all valid propositional and first-order inferences from finite sets and Rd consists
of the defeasible inference scheme for ; from Section 6.4.1.

2. Assume that the argument ordering is determined by the last-link principle. We
want to know whether Brigt Rykkje likes ice skating. Construct all arguments
that are relevant for this proposition and determine whether the conclusion that
Brigt Rykkje likes ice skating is justified in grounded semantics.

3. Answer the same question for preferred semantics.
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4. Answer the same question for f -justification in preferred semantics.

EXERCISE 6.9.9 Formalise the example of Exercise 4.8.12 as an argumentation the-
ory with domain-specific defeasible rules in a way that satisfies your intuitions about
this example.

EXERCISE 6.9.10 LetRs = {p→ q; p→ r; p, r → s}.
1. Determine Cltp(Rs).

2. Determine whether with Cltp(Rs) it holds that {p} ` s.

3. Determine whether with Cltp(Rs) it holds that {−s} ` −p.

EXERCISE 6.9.11 LetRs = {p→ q; ¬q → r; r → ¬p; ¬r → q; p→ ¬r} and let
− correspond to classical negation.

1. Is an argumentation theory withRs closed under transposition?

2. Is an argumentation theory withRs closed under contraposition?

EXERCISE 6.9.12 Consider an argumentation theory AT with L being a proposi-
tional language and with:

Rs consisting of all valid inferences of propositional logic from finite sets;
Rd = {

d1: p⇒ r,
d2: q ⇒ s,
d3: s⇒ t}

Kn = {p, q,¬r ∨ ¬t}
Kp = ∅
and with a strict partial ordering on Rd such that d2 < d1 < d3.

1. Construct an argument for ¬r.

2. Verify the status of ¬r according to grounded semantics, assuming the weakest-
link argument ordering.

3. Verify the status of ¬r according to grounded semantics, assuming the last-link
argument ordering.

You may display the arguments by drawing pictures, but make sure that the pictures are
unambiguous.

EXERCISE 6.9.13 14 Let (L,−,R, n) be an argumentation system where:

• L is a language of propositional literals, composed from a set of propositional
atoms {a, b, c, . . .} and the symbols ¬ and ∼ respectively denoting strong and
weak negation (i.e., negation as failure). α is a strong literal if α is a propositional
atom or of the form ¬β where β is a propositional atom (strong negation cannot
be nested). α is a wff of L, if α is a strong literal or of the form ∼ β where β is
a strong literal (weak negation cannot be nested).

14Adapted from S. Modgil & H. Prakken, A general account of argumentation with preferences. Artifi-
cial Intelligence 195 (2013): 361–397.
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• α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the form
∼ α (i.e., for any wff α, α and ¬α are contradictories and α is a contrary of∼ α).

• Rs = {t, q → ¬p},Rd = {∼ s⇒ t; r ⇒ q; a⇒ p}

• n(∼ s⇒ t) = d1, n(r ⇒ q) = d2, n(a⇒ p) = d3

Furthermore, K is the knowledge base such that Kn = ∅ and Kp = {a, r,¬r,∼ s}.

1. Construct all arguments on the basis of this argumentation theory.

2. Determine the attack relations.

3. Assume that the argument ordering � is defined in terms of preorderings ≤ on
defeasible rules and ≤′ on ordinary premises. Assume that r ⇒ q < a⇒ p (i.e.,
d2 < d3) and ¬r <′ r;¬a ≈′ r; ∼ s <′ ¬r. Determine the defeat relations with
the elitist last link ordering.

4. Add the transpositions of t, q → ¬p to Rs. Which new arguments, attacks and
defeats are now generated?

EXERCISE 6.9.14 Consider the same language L as in Exercise 6.9.13 but let now
Rs = {∼ a → b}, Rd = {b ⇒d1 ¬c; ⇒d2 c; c ⇒d3 a} (here the names of the
defaults are attached to ⇒), Kn = ∅ and Kp = {∼ a}. Finally, assume a partial
preorder < onRd such that that d2 < d1 and d1 < d3.

1. Determine the arguments and their attack relations.

2. Determine which attacks succeed as defeats with the elitist last-link ordering.

3. Determine the grounded extension of the resulting abstract argumentation theory.

4. Determine the preferred extension(s) of this abstract argumentation theory.

EXERCISE 6.9.15 Consider the argumentation theory of Example 6.6.2.

1. Verify the status of argument D2 for s in grounded semantics.

2. Verify the status of argument D2 for s in preferred semantics.

EXERCISE 6.9.16 Consider an argumentation theory in whichRs consists of all valid
propositional inferences from finite sets,Rd = Kn = ∅ and Kp =

{¬ab ⊃ ¬guilty ,
murder ⊃ guilty ,
murder ,
¬ab}.

Consider a variant of ASPIC+ in which all arguments are consistent and in which strict
rules cannot be chained.

1. Verify whether guilty is justified according to grounded semantics, assuming a
simple argument ordering.
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2. Then specify a partial preorder on Kp such that with the elitist weakest-link ar-
gument ordering guilty is justified according to grounded semantics.

3. Alternatively to (b), move one or more formulas from Kp to Kn such that guilty
becomes justified as a result of the change.

EXERCISE 6.9.17 Consider a SAF defined by anAT with a knowledge baseK = ∅,
Rd = {⇒ p; p ⇒ q;⇒ ¬p ∨ ¬q} and Rs is instantiated with all valid inferences in
classical logic. Assume that ⇒ p has priority 1 (lowest), ⇒ ¬p ∨ ¬q has priority
2 (middle) and p ⇒ q has priority 3 (highest) and assume the last-link preference
ordering on arguments.

1. Verify the status of p in grounded semantics.

2. Suppose the definition of consistent arguments is changed to the effect that an
argument A is consistent iff Conc(Sub(A)) is indirectly consistent. Verify the
status of p in grounded semantics according to the c-SAF induced by this new
definition.

3. Does the c-SAF of question (b) satisfy the rationality postulates of indirect con-
sistency and strict closure?





Chapter 7

Preferences, support, graduality:
abstract versus structured
approaches

In Chapter 6 we discussed how Dung’s (1995) abstract approach to argumentation is
instantiated by the ASPIC+ framework by specifying the structure of arguments and
the nature of the defeat relation. In this chapter we review work employing an al-
ternative approach, consisting in not instantiating Dung’s notions but extending them
with new notions. We will in particular review work that extends abstract argumenta-
tion frameworks with preference and support relations between arguments. At the end
of this chapter we will also briefly comment on another recent development, develop-
ing gradual notions of argument evaluation as alternatives to Dung’s (1995) semantics.
An important theme in our discussion will be that it is dangerous to extend or mod-
ify Dung’s (1995) frameworks or semantics in the abstract, without considering the
structure of arguments and the nature of their relations, since this creates the danger
that implicit assumptions are made at the abstract level that do not hold in general for
instantiations.

7.1 Preference-based argumentation frameworks

The approach to extend argumentation frameworks at the abstract level was first applied
for preferences. Amgoud and Cayrol (1998) added to AFs a preference relation on A,
resulting in preference-based argumentation frameworks (PAFs), which are a triple
A, C,�), where C is an attack relation on A. An argument A then defeats an argument
B if A attacks B and A 6≺ B. Thus each PAF generates an AF of the form (A,D),
to which Dung’s theory of AFs can be applied. At first sight, this looks very similar
to the treatment of preferences in ASPIC+, but there is a crucial difference, since in
ASPIC+ the structure of arguments is crucial in determining how preferences must be
applied to attacks. Since PAFs do not specify the structure of arguments, they cannot
model various subtle differences at this point.

To start with, there are reasonable notions of attack that result in defeat irrespective
of preferences, such as ASPIC+’s undercutting attack. A framework that does not make
the structure of arguments explicit cannot distinguish between preference-dependent
and preference-independent attacks. At first sight it might seem that this problem can

117
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be solved by allowing two abstract kinds of attack, called preference-dependent and
preference-independent attack, and to apply the argument ordering only to the first type
of attack. However, this solution still faces problems, since it cannot recognise that in
general the question which preference must be used to resolve an attack depends on the
structure of arguments.

Consider the following example in ASPIC+ , with Kn = Ka = ∅;Kp = {p, q},
Rs = ∅, Rd = {p ⇒ r; q ⇒ ¬r;¬r ⇒ s}, where the contrariness relation over
L corresponds to classical negation in the obvious way. We then have the following
arguments:

A1 = p B1 = q
A2 = A1 ⇒ r B2 = B1 ⇒ ¬r

B3 = B2 ⇒ s

We have that A2 and B2 attack each other and A2 attacks B3, since it directly rebuts its
subargument B2 (see Figure 7.1).

Figure 7.1: The attack graph

Assume that the defeasible rules are ordered as follows: q ⇒ ¬r < p ⇒ r, p ⇒
r < ¬r ⇒ s and let us apply the last-link argument ordering, which orders arguments
according to the preferences of their last-applied defeasible rules (this ordering is, for
instance, suitable for reasoning with legal rules). Then the following argument ordering
is generated: B2 ≺ A2 since q ⇒ ¬r < p ⇒ r, and A2 ≺ B3 since p ⇒ r <
¬r ⇒ s. A PAF modelling then generates the following single defeat relation: A2

defeats B2 (see Figure 7.2). Then we have a single extension (in whatever semantics),
namely, {A1, B1, A2, B3}. So not only A2 but also B3 is justified. However, this

Figure 7.2: The PAF defeat graph

violates Caminada and Amgoud (2007)’s rationality postulate of subargument closure
of extensions, since B3 is in the extension while its subargument B2 is not. The cause
of the problem is that the PAF modelling of this example cannot recognise that the
reason whyA2 attacksB3 is thatA2 directly attacksB2, which is a subargument ofB3.
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So the PAF modelling fails to capture that in order to check whether A2’s attack on
B3 succeeds, we should compare A2 not with B3 but with B2, as happens in ASPIC+.
Now sinceB2 ≺ A2 we also have thatA2 defeatsB3 (see Figure 7.3), so in ASPIC+ the
single extension (in whatever semantics) is {A1, B1, A2, B3} and we have that A2 is
justified and bothB2 andB3 are overruled, so closure under subarguments is respected.
Moreover, recall that ASPIC+ always satisfies this postulate.

Figure 7.3: The ASPIC+ defeat graph

The lesson that can be learned from this example is that in general the choice of
preference to resolve an attack depends on the structural nature of the attack, and the
problem with PAFs is that they cannot model the structural nature of attacks.

7.2 Bipolar argumentation frameworks

A second way in which argumentation frameworks have been extended at the abstract
level is by adding a support relation between arguments. This results in so-called Bipo-
lar argumentation frameworks (BAFs), which formally are a triple (A,D,S) where
A and D1 are defined as above and where S is a support relation on A. Cayrol and
Lagasquie-Schiex (2009) define a sequence of supports for argument B by argument
A as a sequence ASB1, . . .SBnSB. Often the semantics of BAFs is defined in terms
of constraints on the defeat relation given sets of defeat and support relations between
arguments, specifying which defeat relations should also hold given the initial defeat
and support relations. Arguments are then evaluated by applying a given Dung-style
semantics to AFs that contain all additional defeats induced by these constraints. The
following constraints are the most important ones that have been considered in the liter-
ature. Accordingly, we will call them the ‘standard semantics’ for BAFs . A semantics
of BAFs can use any subset of these constraints. Given a BAF = (A,D,S):

• there is a supported defeat from A to B iff there exists an argument C such that
there is a sequence of supports from A to C and (C,B) ∈ D;

• there is a secondary defeat from A to B iff there exists an argument C such that
there is a sequence of supports from C to B and (A,C) ∈ D;

• there is an extended defeat from A to B iff there exists an argument C such that
there is a sequence of supports from C to A and (C,B) ∈ D;

1Like in much other work on abstract approaches, the literature on BAFs usually speaks of an attack
relation, but for reasons explained above we will speak of defeat.
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• there is a mediated defeat from A to B iff there exists an argument C such that
there is a sequence of supports from B to C and (A,C) ∈ D.

The question arises which semantics is suitable or ‘good’. It turns out that for support
this issue is far more subtle than for defeat. For defeat the main intuitive constraints are
that if A defeats B than A and B cannot be accepted together, while, moreover, if the
choice is between A and B, then A must be accepted. From these basic intuitions the
notions of defence, conflict-freeness and admissibility naturally follow and these no-
tions are the essence of all semantics for AFs; although variations between semantics
are still possible, there differences do not depend on the nature of the defeat relation.
With support this is different, as we will see now.

Cohen et al. (2018) have carried out a systematic study of semantics for different
support relations in the context of ASPIC+, which we now briefly summarise. Cohen et
al. first define four ways in which ASPIC+ arguments can support each other. They are
illustrated below in Figure 7.4. The first is the ASPIC+ proper subargument relation
between arguments. The second notion of support is a notion of argument accrual: two
different argumentsA andB conclusion-support each other if they have the same final
conclusion. A third notion is premise support. Argument A premise-supports another
argument B if A’s final conclusion is a premise of B. Fourth, a variant of conclusion
support is intermediate support: if A conclusion-supports a proper subargument of an-
other argument B that does not equal a premise of B, then A intermediate-supports
B.

Cohen et al. then consider three semantics forBAFs in terms of theAF s generated
by three alternative sets of defeat constraints. General support adds all supported and
secondary defeats to the original defeat relation, deductive support adds all supported
and mediated defeats and necessary support adds all extended and secondary defeats
where, moreover, the underlying support relation is irreflexive and transitive. These
semantics are formally defined as follows.

Definition 7.2.1 [AFs associated with BAFs] For any BAF = (A,D,S), the AF
associated with BAF under semantics S is (A,D ∪D+) where:

1. D+ is the set of all supported and secondary defeats given BAF if S = general
support;

2. D+ is the set of all supported and mediated defeats given BAF if S = deductive
support;

3. D+ is the set of all extended and secondary defeats given BAF if S = necessary
support, where S is irreflexive and transitive.

Cohen et al. then investigate whether their four notions of support in ASPIC+ can
be related to these threeBAF semantics. They do this for each of the three ASPIC+ de-
feat relations separately. For simplicity they assume no preferences, so that all ASPIC+

attacks succeed as defeats. For each AF = (A,D) induced by an ASPIC+ instanti-
ation and a particular ASPIC+ attack relation (undermining, rebutting or undercutting
attack), they first consider the BAF = (A,D,Ss) where Ss is the support relation on
A according to ASPIC+ support type s (proper-subargument, conclusion, premise or
intermediate support). Then for each of the threeBAF semantics x (general, deductive
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Figure 7.4: Cohen et al.’s (2018) four kinds of support in ASPIC+.

or necessary) they consider BAFx = (A,Dx,Ss), where Dx adds to D all defeats in-
duced by the constraints of semantics x. They then compare for each ASPIC+-induced
BAF = (A,D,Ss) and each corresponding BAFx = (A,Dx,Ss) the sets D and Dx.
The semantics x is an abstraction of support type s just in case (A,D) and (A,Dx)
have the same extensions.

Cohen et al.’s findings on this question are largely negative. They identify only
one full correspondence, between ASPIC+ proper-subargument support and BAFs for
necessary support, regardless of the type of ASPIC+ defeat. The conclusion we can
draw from their findings is that the choice of semantics for BAFs to a large extent
depends on the nature of the support relation, so that whether a particular semantics is
appropriate in a particular context cannot be determined if that nature is not specified.

7.3 Gradual notions of argument acceptability

Another recent trend in the formal study of argumentation is the development of grad-
ual notions of argument acceptability. These notions are proposed as alternatives to
extension-based notions that are defined on top of the theory of abstract or bipolar ar-
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gumentation frameworks. The gradual notions are often motivated by a discontent with
the fact that extension-based notions of acceptability only allow for rather coarse dis-
tinctions between degrees of acceptability. Pollock (2002) was, to our knowledge, the
first who addressed this issue and proposed a formalisation of gradual “justification”.
The current developments arguably go back to Cayrol and Lagasquie-Schiex (2005)
and gained momentum with publications like Amgoud and Ben-Naim (2013).

Although the new developments are very interesting and the formal achievements
have been impressive, there are also reasons to take a step back. To start with, there
is a need to reflect on which notions or aspects of argument acceptability, or argument
strength, are modelled, and why proposed semantics or proposed sets of principles for
those semantics are good. What is needed is a conceptual or philosophical underpinning
of the formal ideas and constructs. Furthermore, almost all work builds on abstract
or bipolar argumentation frameworks and thus does not give explicit formal accounts
of the nature of arguments and their relations, while yet this may be relevant when
evaluating the formal proposals.

Below a classification of three aspects of argument strength is proposed based on
philosophical insights, in particular Aristotle’s distinction between logic, dialectic and
rhetoric. It is then argued that when developing or evaluating gradual accounts of ar-
gument strength it is essential to be explicit about which aspect of argument strength is
modelled and about the adopted interpretation of the arguments and their relations.

7.3.1 Kinds of argument strength

In classifying aspects of argument strength it is natural to take Aristotle’s famous dis-
tinction between logic, dialectic and rhetoric as starting point. Very briefly, logic con-
cerns the validity of arguments given their form, dialectic is the art of testing ideas
through critical discussion and rhetoric deals with the principles of effective persua-
sion (van Eemeren et al.; 2014, Section 1.4). Accordingly, we distinguish between
logical, dialectical and rhetorical argument strength, where logical argument strength
in turn divides into two aspects: inferential and contextual argument strength.

Inferential argument strength is about how well an argument’s premises support its
conclusion considering only the argument itself. Example criteria for argument strength
are that arguments with only deductive inferences are stronger than arguments with
defeasible inferences, or that arguments with only non-attackable premises are stronger
than arguments with attackable premises.

Contextual argument strength is about how well the conclusion of an argument is
supported in the context of a given set of arguments. Formal frameworks like Dung’s
theory of abstract argumentation frameworks and ASPIC+ formalise this kind of argu-
ment strength. The reader might wonder why contextual strength is not called dialec-
tical strength, since after all, determining an argument’s contextual strength as defined
here involves the comparison of argument and counterargument. Yet this is not truly
dialectical, since the just-mentioned formalisms do not model principles of critical dis-
cussion but define structural relations between (sets of) arguments on the basis of a
given body of information.



Support, preferences, graduality 123

Rhetorical argument strength looks at how capable an argument is to persuade
other participants in a discussion or an audience. Persuasiveness essentially is a psy-
chological notion; although principles of persuasion may be formalised, their validation
as principles of successful persuasion is ultimately psychological.

Dialectical argument strength looks at how challengeable an argument is in the
context of a critical discussion. In (Zenker et al.; 2020, pp. 657) this is formulated
as

(. . . ) the (un)availability of participant moves that constrain further in-
terlocutor moves. Minimally, argument strength thus is a function of the
(un)availability of non-losing future participant moves. In this sense, the
strongest proponent-argument leaves no further opponent-move except con-
cession (i.e., retraction of either a standpoint or of critical doubt), and
the weakest proponent argument constrains no opponent-move, given the
“move-space”.

Thus conceived, an important aspect of dialectical strength is the degree of vulnerability
of an argument in that how many attacks are allowed in a given state that decrease the
argument’s contextual status. This reflects an intuition that many decision makers are
aware of, namely, to justify one’s decisions as sparsely as possible, in order to minimise
the chance of successful appeal.

7.3.2 Be explicit about which aspects of argument strength are modelled

In developing a gradual argumentation semantics, it is important to be explicit about
which aspects of argument strength are modelled. The aspects serve different purposes,
so principles or definitions that are good for one aspect may not be good for another
aspect. Consider, for example, the two arguments A and B in Figure 7.5, where A

Figure 7.5: The ASPIC+ defeat graph

defeasibly infers q from p while B first defeasibly infers r from p and then defeasibly
infers q from r. Consider a definition of dialectical strength capturing that having fewer
attackable elements is dialectically better and a definition of rhetorical strength that
captures that a larger overlap of an argument’s elements with the audience’s beliefs is
rhetorically better. Even without formalising these notions it is obvious that argumentA
is dialectically stronger than argument B, since A has one attackable element less than
B. However, if the audience accepts that p defeasibly implies r and that r defeasibly
implies q but not that p defeasibly implies q, thenB is rhetorically stronger thanA since
it shares some elements with the background theory while A does not. This illustrates
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that while sparsely justifying one’s claims or decisions may be dialectically good, it
may at the same time make an argument less persuasive.

7.3.3 Be explicit about the nature of arguments and their relations

We next illustrate how the nature of arguments and their relations can be relevant for
the strength of arguments. We first consider support relations. Recall the four kinds
of support in ASPIC+ discussed in Section 7.2. Clearly, when support corresponds to
(proper) subargument support, it makes no sense to regard supporters as strengthening
the supported argument. Logically, the number of supports of an argument is then just
a measure of its inferential complexity while dialectically, having more supporters may
make an argument more vulnerable to attack and thus weaker. Similar observations hold
for premise support. This notion may be useful in debate contexts, where there usually
is no global knowledge base from which the debaters construct their arguments. In

Figure 7.6: Is having more supporters better?

such a context it might be argued that, everything else being equal, a premise-supporter
strengthens the supported argument. However, even then the nature of the arguments
and their relations matters. Consider Figure 7.6, with two bipolar frameworks in the
top row and two instantiations of these frameworks in the bottom row (in BAF1 and
BAF2 the dashed arguments depict support relations between arguments). According
to the idea that, everything else being equal, having more supporters is better, argument
C on the top right is better supported than argument A on the top left since C has
two premise-supporters while A has just one. However, as shown in the bottom row,
all of A’s premises (namely, q) are supported while only one of C’s two premises
is supported, so dialectically and perhaps also rhetorically A might just as well be
regarded as better supported than C. Or imagine that D does not premise-support C
on u but on v: then both A and C have all their premises supported, so there seems no
reason to prefer C over A. Concluding, even in applications in which it makes sense to
regard premise-supporters as, everything else being equal, strengthening the supported
argument in some sense, it is important to take the structure of arguments and the nature
of their relations into account.

We next illustrate the importance of being explicit about whether an argument is
attackable or not. Consider the Cardinality Precedence principle that having fewer
defeaters makes an argument stronger (Amgoud and Besnard; 2013) and consider AF1
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with A being defeated by B and AF2 with C being defeated by D and E (Figure 7.7;
in the AFs in Figures 7.7 and 7.8 the solid arrows depict defeat relations). According

Figure 7.7: Is having fewer defeaters better?

to Cardinality Precedence argument A is stronger than argument C. However, if B is
not attackable while D and E are attackable, then it is not obvious why this should
be the case. For example, from the point of view of dialectical strength C is arguably
dialectically stronger than A since C can still be made in by adding new arguments and
defeats while for A this cannot happen.

Another example of why the distinction between attackable and non-attackable ar-
guments matters concerns the principle that having more defenders makes an argument
stronger. (An argument A defends an argument B if A defeats a defeater of B.) Con-
sider the AFs displayed in Figure 7.8. According to the gradual semantics of Grossi

Figure 7.8: Is having more defenders better?

and Modgil (2015, 2019), A2 is justified to a higher degree than A1, since A2 has
two defenders (C2 and D2) while A1 has only one defender (C1). However, if C1 is
unattackable while C2 and D2 are attackable then it is not obvious why this has to be
so, whatever aspect of argument strength is modelled.

7.4 Exercises

EXERCISE 7.4.1 In Exercise 6.9.7 assume that d2 < d1 and d4 < d2 and apply the
last-link ordering.

1. Specify the resulting preference-based argumentation framework.

2. Verify the status of r according to preferred semantics.

3. What is the answer to (2) in ASPIC+?

EXERCISE 7.4.2 In Example 6.3.6 delete s2, assume that d2 < d5 and d5 < d3 and
apply the last-link ordering.

1. Specify the resulting preference-based argumentation framework.

2. Verify the status of r according to preferred semantics.

3. What is the answer to (2) in ASPIC+?
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EXERCISE 7.4.3 Consider the ASPIC+-style SAF in Figure 7.9, where all premises
are ordinary and there are no preferences, and in which only direct defeat relations are
considered (namely, the symmetric one between arguments B and H). Consider then

Figure 7.9: An ASPIC+-style SAF

the AF corresponding to the SAF , again with only direct defeat relations, where the
arguments are named with the capitals in the figure.

1. Construct for each of the four kinds of support relations defined in Section 7.2
for ASPIC+ the BAF by adding all support relations of that kind to the AF .

2. Specify for each of the fourBAFs constructed in your answer to (1) and for each
of the four constraints on D defined in Section 7.2 for BAFs which additional
defeat relations are induced by these constraints.

3. Construct for each of the four BAFs from your answer to (1) combined with
each of the three semantics for BAFs of Definition 7.2.1 the AF associated with
the BAF. So you have to construct 4× 3 = 12 AFs.

4. Determine the grounded labelling for each of the 12 AFs constructed in your
answer to (3).



Chapter 8

Dynamics of argumentation

8.1 Introduction

In this chapter aspects of the dynamics of argumentation are discussed while abstracting
from the procedural context in which argumentation takes place. For example, when
discussing methods for extending or revising argumentation frameworks, we disregard
the question whether such a change is allowed according to the rules of debate (for
example, whether certain types of evidence are admissible or whether claims made
earlier can be retracted). The procedural aspects of argumentation are discussed in
Chapter 9.

The study of information dynamics in argumentation concerns the nature and effects
of change operations on a given argumentation state. This work is motivated by several
application scenario’s, such as:

• Adjudication dialogues like in legal procedure, where two adversaries aim to
persuade an adjudicator of the dispute (judge or jury).

• Debates in parliament or similar bodies that have to vote on proposals, where
members try to persuade each other to vote for or against the various proposals.

• Any individual or group of individuals interested in a debate and wanting to eval-
uate it from his/her/their point of view.

In dynamic contexts, adding new arguments clearly makes sense but adding attacks or
defeats only seems to make sense when these attacks involve at least one new argument.
Deleting attacks or defeats makes sense when interpreted as applying preferences to de-
cide that a given attack relation does not succeed as defeat. Finally, deleting arguments
makes sense in contexts where elements of arguments can be retracted by a participant
or can be rejected by an adjudicator without stating a counterargument. An example
of rejection by an adjudicator is in legal dialogues, where a judge can, for example,
reject a factual premise since it has not been sufficiently backed by evidence and must
therefore be ignored by the rules of legal procedure.

Most current work on argumentation dynamics concerns abstract approaches to ar-
gumentation. In particular the following operations on abstract argumentation frame-
works have been studied:1 addition or deletion of (sets of) arguments (e.g. Baumann

1Note that most of the literature on argumentation dynamics uses the term ‘attack’ for what in this
reader (also in the present chapter) is called ‘defeat’.
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(2012); Baumann and Brewka (2010); Cayrol et al. (2010)) and addition or deletion of
(sets of) defeat relations (e.g. Modgil (2006); Baroni and Giacomin (2007); Bisquert
et al. (2013)). This work then studies preservation and enforcement properties. Preser-
vation is about the extent to which the current status of arguments is preserved under
change, while enforcement concerns the extent to which desirable outcomes can or will
be obtained by changing a framework.

The work on abstract argumentation dynamics disregards the structure of arguments
and the nature of their conflicts, which in dynamic settings is a serious limitation. For
example, abstract models of argumentation dynamics do not recognise that some argu-
ments are not attackable (such as strict-and-firm arguments in ASPIC+) or that some
defeats cannot be deleted (for example between arguments that were determined to be
equally strong), or that the deletion of one argument implies the deletion of other ar-
guments (when the deleted argument is a subargument of another), or that the deletion
or addition of one defeat implies the deletion or addition of other defeats (for exam-
ple, defeating an argument implies that all arguments of which it is a subargument are
also defeated). All this means that formal results on preservation and enforceability
are only relevant for very specific cases and do not cover many realistic situations in
argumentation.

Accordingly, the purpose of this chapter is twofold:

1. to introduce the current research on the dynamics of argumentation;

2. to warn against naive work at the abstract level.

8.2 Work on preservation properties: resolution semantics

The first work on preservation properties concerned so-called resolution semantics.
Here the focus is on deleting defeat relations as a way to express a preference of one
argument over another: that a defeat from A on B is deleted means that A is regarded
as inferior to B so that A’s attack on B does not succeed as defeat. This idea was in-
troduced for abstract argumentation by Modgil (2006) and further developed by Baroni
and Giacomin (2007).

8.2.1 Abstract resolution semantics

Given an abstract argumentation framework AF = (A,D) (where A is a set of argu-
ments and D a binary defeat relation on A), a resolution AF ′ = (A,D′) is such that D′
replaces one or more symmetric defeats in D by an asymmetric relation in D′. More
precisely:

Definition 8.2.1 [Resolutions] An argumentation framework AF ′ = (A,D′) is a reso-
lution of an argumentation framework AF = (A,D) iff for all arguments A and B:

1. If (A,B) ∈ D and (B,A) 6∈ D, then (A,B) ∈ D′;

2. If (A,B) ∈ D and (B,A) ∈ D, then (A,B) ∈ D′ or (B,A) ∈ D′;

3. If (A,B) ∈ D′, then (A,B) ∈ D.

A resolution AF ′ = (A,D′) is partial if there exist A,B ∈ A such that A 6= B and
(A,B) ∈ D′ and (B,A) ∈ D′; otherwise a resolution is full.
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Then properties can be studied concerning the relations between the original status of
an argument and its status in some or all resolutions. We will discuss some of these
properties for grounded and preferred semantics.

Property 8.2.2 [Left to Right Sceptical] IfX is a justified argument of AF = (A,D),
then X is a justified argument of every full resolution AF ′ = (A,D′) of AF .

This property holds for grounded semantics but not for preferred semantics. For
grounded semantics the intuition why the property holds is that arguments can only be
in the grounded extension if all conflicts on which they depend are fully resolved. For
a counterexample for preferred semantics let A = {A,B,C,D} such that A defeats
B, B defeats C, C defeats A and A and D defeat each other. Then the unique pre-
ferred extension is {D} but there exists a resolution with an empty preferred extension,
namely, when the defeats of D on A is deleted.

Property 8.2.3 [Right to Left Sceptical] If X is a justified argument of every full
resolution AF ′ = (A,D′) of AF = (A,D), then X is a justified argument of AF .

This property holds for preferred semantics but not for grounded semantics. For
preferred semantics the intuition why the property holds is that each preferred extension
is already implicitly a full resolution. For a counterexample for grounded semantics let
A = {A,B,C,D} such that A and B defeat each other, both A and B defeat C and
C defeats D. Then there are two full resolutions: one in which the defeat of A on B is
deleted and one in which the defeat of B on A is deleted. The first resolution yields the
grounded extension {B,D} while the second resolution yields the grounded extension
{A,D}. SoD is justified in all full resolutions. However, the initial grounded extension
is empty.

Other preservation properties can be formulated by replacing one or both occur-
rences of ‘justified’ with ‘defensible’ and/or replacing occurrences of ‘all’ with ‘some’.
For example:

Property 8.2.4 [Left to Right Credulous to Justified] If X is a defensible argument
of AF = (A,D), then X is a justified argument of some full resolution AF ′ = (A,D′)
of AF .

This property does not hold for grounded semantics. The counterexample to Right
to Left Sceptical also holds here.

8.2.2 Structured resolution semantics

When resolutions are intended to model the outcome of preference arguments, then
the above-defined abstract study of resolutions has limited applicability (cf. Modgil
and Prakken (2012)). Firstly, one must also account for the resolution of asymmetric
attacks, since many argumentation formalisms, including ASPIC+, apply preferences
to deny the success of asymmetric attacks as defeats. Furthermore, some formalisms
apply preferences so that both attacks in a symmetric attack fail to succeed as defeats.
Third, sometimes resolutions of symmetric attacks are impossible; for example when
two symmetrically attacking arguments are assigned equal strength.
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Resolutions can also be impossible for another reason: preference relations have
properties, so the addition of preferences to resolve one attack may imply further pref-
erences and thereby make resolutions based on conflicting preferences impossible. Fi-
nally, resolutions are impossible if some attacks succeed irrespective of preferences
(e.g., undercutters or contrary-underminers in ASPIC+).

Such subtleties can only be fully appreciated in a setting where the structure of ar-
guments and the nature of attack and the use of preference to define defeats is made
explicit. To this end Modgil and Prakken (2012) study resolutions in the ASPIC+

framework. They are interested in the case where given a (c-)SAF ∆ = (A, C,�) and
its defined defeat relation, what is the relationship, under different semantics, between
the justified arguments of ∆ and the justified arguments of ∆′ = (A, C,�′), where ∆′

is a resolution of ∆ obtained by extending’ � to the preference relation �′. They as-
sume that the preference relation on arguments is a partial preorder, that is, transitive
and reflexive. Note that the above-defined last- and weakest-link argument orderings
are special cases of a partial preorder with no symmetric relations between different
arguments.

Definition 8.2.5 Let � be a partial preorder over a set Γ. Then �′ extends � iff �⊆�′
and ∀X,Y ∈ Γ, X ≺ Y implies X ≺′ Y .
Let ∆ = (A, C,�) be a SAF. Then ∆′ = (A, C,�′) preference-extends ∆ iff �′ extends
�.

To motivate the definition of extends, recall that� is a partial preorder. Thus it does not
in general suffice to define extends in terms of the condition X ≺ Y implies X ≺′ Y
alone (although it does suffice for the weakest- and last-link ordering). To see why,
suppose X � Y and Y � X , which implies X ≈ Y ; that is they are effectively
assigned the same strength. Hence, it might be that �′ preserves the strict preferences
in �, but X � Y and Y � X . But we certainly want to preserve the assignment of
equal strength to X and Y . On the other hand, it does not suffice to define extends in
terms of the condition �⊆�′ alone. This is because given only X � Y and so X ≺ Y ,
we want that this strict preference be preserved in the extended argument ordering.
However, if X �′ Y and Y �′ X , then this strict preference would not be preserved.

It is straightforward to then show that if (A, C,�′) preference-extends (A, C,�),
and D′ and D are the defeat relations respectively defined by �′ and �, then D′ ⊆ D.

Now the notion of a preference-based resolution can be defined:

Definition 8.2.6 Let ∆′ = (A, C,�′) be a SAF that preference-extends ∆ = (A, C,�),
and let D′ and D be defeat relations respectively defined by �′ and �. Then

• ∆′ is a preference-based resolution of ∆ iff D′ ⊂ D.

• ∆′ is a full preference-based resolution of ∆ iff ∆′ is a preference-based resolu-
tion of ∆ and there exists no preference-based resolution ∆′′ = (A, C,�′′) with
induced defeat relations D′′ such that D′′ ⊂ D′.

Below we will assume that the argument ordering � is an elitist weakest- or last-link
ordering induced by partial preorders ≤ on Rd and ≤′ on Kp. Moreover, we will
only consider preference-based resolutions that extend≤ and≤′ in the sense of Defini-
tion 8.2.5.

Next the preservation properties for preference-based resolutions are restated as
follows:
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Property 8.2.7 [Left to Right Sceptical] IfX is a justified argument of ∆ = (A, C,�),
then X is a justified argument of every full preference-based resolution ∆′ = (A, C,�′)
of ∆.

Property 8.2.8 [Right to Left Sceptical] If X is a justified argument of every full
preference-based resolution ∆′ = (A, C,�′) of ∆ = (A, C,�), then X is a justified
argument of ∆.

Now it is crucial to note that the results on the abstract version of resolution seman-
tics are not inherited by these definitions in the context of ASPIC+, so they have to
be verified again. Modgil and Prakken (2012) prove that grounded semantics still fails
Right to Left Sceptical and that it still satisfies Left to Right Sceptical but the latter
only for or finitary frameworks. Moreover, they prove that preferred semantics still
fails Left to Right Sceptical but, remarkably, it now also fails Right to Left Sceptical,
while this property holds for abstract resolution semantics. We will not give their coun-
terexample here but only remark that it is due to the fact that some preferences entail
other preferences by the properties of partial preorders, so that not all resolutions that
are possible in abstract resolution semantics as defined in Modgil (2006); Baroni and
Giacomin (2007) are possible in preference-based resolution semantics as defined by
Modgil and Prakken (2012). This shows that the nature of attack and defeat is relevant
when defining resolution semantics.

8.3 Work on enforcement properties: expansions of argu-
mentation frameworks

We next discuss work on enforcement properties, and we do so in the context of the
theory of expansions of argumentation framework. This concerns contexts where new
arguments and possibly new defeats involving new arguments can be added. Almost all
current work on expansions and enforcement is in abstract argumentation. We will now
first review the abstract notion of expansions as introduced by Baumann and Brewka
(2010).

8.3.1 Abstract theory of expansions

Baumann and Brewka (2010) define expansions of AFs as follows.

Definition 8.3.1 [Expansions] An abstract argumentation frameworkAF ′ is an expan-
sion of an abstract argumentation framework AF = (A,D) iff AF ′ = (A∪A′,D∪D′)
for some nonemptyA′ disjoint fromA such that for all A,B ∈ A: if (A,B) ∈ D′ then
A ∈ A′ or B ∈ A′.
Thus expansions add new arguments and possibly new defeat relations2.

A central enforcement result of Baumann and Brewka (2010) is the following one
(restricted to the types of semantics considered in this reader).

Theorem 8.3.2 For T ∈ {complete, preferred, grounded, stable}, for any AF =
(A,D) and for any conflict-free C ⊂ A unequal to a T -extension of AF , there ex-
ists an expansion AF ′ of AF such that C ⊂ E for some T -extension E of AF ′, where
the expansion can be chosen such that E is the unique T -extension of AF ′.

2Baumann and Brewka (2010) call such expansions normal and also define other types of expansions.
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Their proof of this result shows how a single argument can be added that defeats all
arguments in AF outside C.

Now it is crucial to note that this proof depends on the implicit assumption that such
an expansion can always be constructed, but this may not be the case. For example, as
remarked above, in an ASPIC+ instantiation not all arguments may be attackable, and
in Section 8.3.2 below we will see that the result depends on more implicit assumptions.
For now we give a simple abstract example (also given by Baumann and Brewka), with
an AF consisting of two arguments A2 and A1 where A2 defeats A1. According to
Baumann and Brewka the AF can be expanded by adding some A3 defeating A2 but if
A2 is unattackable since it is a strict-and-firm ASPIC+ argument, then there will be no
such expansion.

For these reasons Prakken (2023) refines the above notion of an expansion, by mak-
ing expansions relative to a given background universal argumentation framework and
by distinguishing between expansions that are allowed and those that are not allowed.
Both refinements are useful for avoiding implicit assumptions at the abstract level that
are not always satisfied by instantiations.

Definition 8.3.3 [Argumentation frameworks in a universal AF] Given a universal
argumentation framework UAF = (Au,Du), an argumentation framework in UAF is
any AF = (A,D) such that A ⊆ Au and D ⊆ Du|A×A.

The fact thatD is not required to equalDu|A×A is to allow for instantiations with systems
like ASPIC+ that use preferences to resolve attacks, similar to in resolution semantics
(see Section 8.2).

The notion of a universal argumentation framework can be used for expressing,
for instance, whether an argument can be defeated. However, it cannot be used for,
for instance, ensuring that implied defeats are added. For such constraints we must
also distinguish between allowed and not allowed expansions. While expansions can
be disallowed for dialogical or procedural reasons, for present purposes it is especially
relevant that underlying structured accounts of argumentation may disallow expansions,
as we will see in Section 8.3.2 for ASPIC+.

Definition 8.3.4 [Expansions given a universal argumentation framework] LetAF
= (A,D) and AF ′ be two abstract argumentation frameworks in UAF . Then AF ′ is
an expansion of AF given UAF if AF ′ = (A ∪ A′,D ∪ D′) for some nonempty A′
disjoint from A such that for all A,B ∈ A: if (A,B) ∈ D′ then A ∈ A′ or B ∈ A′.

Let XUAF (AF ) be the set of all expansions of AF given UAF . Then the set of
allowed expansions of AF given UAF is some designated subset of XUAF (AF ).

8.3.2 Expansions in ASPIC+

In this section we instantiate Definitions 8.3.3 and 8.3.4 for ASPIC+. This requires
a specification of how the UAF can be generated by a universal structured argumen-
tation framework to which it corresponds. Since a SAF is in ASPIC+ determined by
an argumentation theory, we must also specify the notion of a universal argumentation
theory.
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Universal Structured Argumentation Frameworks

A UAF is now defined as corresponding to a universal structured argumentation frame-
work, which is in turn defined by a universal argumentation theory. Together, they de-
fine the space of possible knowledge bases, possible sets of inference rules and possible
argument orderings and thus define the space of possible argumentation frameworks.

Definition 8.3.5 [Universal Argumentation theories and universal structured AFs]
A universal argumentation theory is a tuple UAT = ((Lu,Rus ∪ Rud , nu),Kun ∪ Kup )
where all elements are defined as for ASPIC+ argumentation theories except that Kun
and Kup do not have to be disjoint. Then a universal structured argumentation frame-
work defined by UAT is a tuple USAF = (Au, Cu,�u) defined according to Defini-
tion 6.3.14, where �u is an empty preference ordering on Au. A UAF = (Au,Du)
that is the abstract argumentation framework corresponding to some given USAF is
denoted by sUAF .

Example 8.3.6 Consider a UAT with

Lu = {p,¬p, q,¬q, r,¬r, d,¬d, d′,¬d′},
Rus = ∅,
Rud = {p⇒ q;¬r ⇒ ¬q},
nu = {(p⇒ q, d), (¬r ⇒ ¬q, d′)},
Kun = {p},
Kup = Lu

Note that the setsRus andRud of a UAT are not required to contain all well-formed
strict, respectively, defeasible rules over Lu. This is to allow for instantiations where
the strict rules are defined by a logical interpretation of Lu and/or the defeasible rules
correspond to some recognised set of argument schemes. The limiting case where Rus
and Rud do contain all well-formed rules over L is suitable for applications where the
choice of strict and/or defeasible rules is fully free, as, for instance, in online debate
settings. For similar reasons Kup and Ku

p are not required but are allowed to equal
Lu. The reason why Kun and Ku

p can overlap is to allow that the type of a premise
is unspecified until determined when constructing an AT in UAT . Accordingly, to
keep the notion of an argument on the basis of a UAT well-defined, we now assume
that in Definition 6.3.5(1) it is explicitly indicated whether a premise is taken from
Kun or from Kup . Finally, the idea behind the choice of �u as the empty ordering is
that a universal SAF does not commit to any way to resolve preference-dependent
conflicts. Note that the empty ordering induces the greatest set of defeat relations in
that every attack succeeds as defeat. Commitments on how conflicts should be resolved
can be expressed in the specification of a SAF in a USAF , by adopting any nonempty
argument ordering. At the abstract level this was captured in Definition 8.3.3 in the use
of ⊆ instead of = in the requirement that D ⊆ Du|A×A. The structural counterpart of
this definition looks as follows.

Definition 8.3.7 [Argumentation theories and structured AFs in a universal AT]
An argumentation theory in a given UAT is an ASPIC+ argumentation theory AT =
((L,Rs ∪Rd, n),Kn ∪ Kp) where

• L ⊆ Lu;
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• R ⊆ {S ; ϕ ∈ Ru | S ⊆ L and ϕ ∈ L};

• Kn ⊆ Kun;

• Kp ⊆ Kup ;

• n = nu ∩ {(r, ϕ) | r ∈ Rd}.
An argumentation theory in UAT is is logic-based iff Rs = {S → ϕ ∈ Rus | S ⊆ L
and ϕ ∈ L}.

A structured argumentation framework in UAT is a structured argumentation frame-
work SAF = (A, C,�) defined by an AT in UAT for some ordering � on A.

Logic-based ATs are called thus since they accept all strict inference rules from UAT
that can be expressed over their language. Consider, for example, a UAT with L a
propositional language and Rs = {S → ϕ | S ⊆ L and S is finite and ϕ ∈ L and
S ` ϕ} where ` denotes propositional-logical consequence. Then all logic-basedAT ’s
in UAT allow for deductive reasoning with the full power of propositional logic over
their language.

Example 8.3.6 (Cont) Consider the following AT in the above UAT :

L = {p,¬p, q,¬q, r,¬r, d},
Rs = ∅,
Rd = Rud ,
n = nu,
Kn = ∅,
Kp = {p, r}

Combined with �= ∅ (or any argument ordering) the SAF defined by this AT contains
three arguments:

A1: p A2: A1 ⇒ q B: r

and no attack relations; see also Figure 8.1 below on the left. The corresponding AF
equals ({A1, A2, B},∅).

Allowed expansions

So far all we have done is instantiating the notion of anAF in a UAF for ASPIC+. The
next step is to define the allowed expansions of an AF that corresponds to a SAF in
a universal argumentation theory. The main task is to ensure that the result of such an
expansion still corresponds to a structured AF in the universal argumentation theory,
in order to respect the structural constraints imposed by ASPIC+. Since the idea of
expansions as originally proposed by Baumann and Brewka (2010) is that information
is only added and not deleted, a natural way to achieve this is to require that expansions
correspond to a SAF that expand (in a sense to be defined) the SAF to which the
expanded AF corresponds. This is directly stated by the following definition.

Definition 8.3.8 [Allowed expansions] Consider any AF in a given sUAF that corre-
sponds to a SAF = (A, C,�) in UAT defined by AT = ((L,R, n),K), and con-
sider any AF ′ in sUAF that expands AF . Then AF ′ is an allowed expansion of
AF given UAF iff AF ′ corresponds to a SAF ′ = (A′, C′,�′) in UAT defined by
AT ′ = ((L′,R′, n′),K′) such that:
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1. L ⊆ L′;

2. R ⊆ R′;

3. Kn ⊆ K′n and Kp ⊆ K′p;

4. for �′ it holds that

(a) �′ is of the same type as �;

(b) � ⊆ �′;
(c) A ≺′ B if A ≺ B;

5. if AT is logic-based then AT ′ is logic-based.

The first condition on �′ assumes that the argument ordering � of a SAF comes with
a definition of its type, such as, for example, the definitions of a weakest- or last link
ordering. The second and third condition together say that for arguments inAAF it can
only differ from � in that it turns undefined into defined relations; so it has to respect
the strict and equality relations in �. In this case we say that �′ extends �.

For specific application scenario’s further constraints on expansions can be defined.
For example, in knowledge-based applications (such as systems for medical diagno-
sis or crime investigation) the general knowledge can be required to be fixed across
expansions, which can only add specific observations (such as the results of medical
tests on a person who is ill, or of searches for evidence predicted by a crime scenario).
Moreover, in dialogical settings, the dialoge protocol may impose constraints, such as
admissibility of evidence or of types of arguments in legal procedures (for example,
in some systems of criminal law analogical applications of criminal provisions are not
allowed).

Example 8.3.6 (Cont) Suppose that someone wants to extend AT in a way that makes
B overruled. Then given UAT this can only be done by adding r to Kp and letting
�′= {(r,¬r)}. This results in

L′ = L,R′s = Rs,R′d = Rd, n′ = n, K′n = Kn,
K′p = {p, q,¬r}
�′=� ∪{(r,¬r)}

The arguments and direct attacks in the SAF’ defined byAT ′ are visualised in Figure 8.1
on the right. Combined with �′ the corresponding AF ′ is as visualised on the right of

Figure 8.1: SAF defined by AT and SAF’ defined by AT’

the figure. As regards the correspondingA’s, theAF corresponding toAT is visualised
on the left of the Figure 8.2. At first sight, it would seem that the addition of r to AT
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Figure 8.2: Allowed and not allowed abstract expansions

at the abstract level results in expanding with only argument C1 from Figure ?? and a
single defeat relation from C1 to B. This would yield AF ′ in Figure 8.2. However, this
expansion is not allowed: since the rule ¬r ⇒ ¬q is in AT ′, argument C2 must also
be added. Moreover, on the basis of �′, which contains no preference between C2 and
A2, a mutual defeat relation between A2 and C2 has to be added. The result is AF ′′

in Figure 8.2. Assuming � and �′ are of the same type, it is easy to see that AF ′′ is
an allowed expansion of AF . Note that if no preference was added, then the defeat
relation between B and C1 would also be mutual while, moreover, a defeat relation
from B to C2 would have to be added.

Example 8.3.6 further illustrates that purely abstract accounts of expansions like Bau-
mann and Brewka (2010) implicitly make assumptions that are not in general satisfied
by instantiations.

8.4 Properties

We next investigate some properties of the above definitions. To start with, it holds that
each allowed expansion adds at least one rule or one premise, otherwise it contains no
new arguments. Next, since an expansion that is allowed according to Definition 8.3.8
corresponds to a SAF , it by definition satisfies closure under argument construction,
under the subargument relation and under the constraints that ASPIC+ imposes on the
defeat relation. For example, it satisfies the constraint that if A defeats B and B is a
subargument of C, then A defeats C (in the literature on bipolar argumentation frame-
works called closure under secondary attacks; see Section 7.2 above).

Prakken (2023) proves some weaker counterparts of Theorem 8.3.2. However, for
present purposes it is more interesting to show why Theorem 8.3.2 does not hold in
general for the ASPIC+ instantiation. This is for various reasons.

Not all arguments are attackable In Section 8.2.2 we already observed that Theo-
rem 8.3.2 depends on the assumption that all arguments are attackable.

No conflict-free set of defenders Consider theAF inside the dotted box in Figure 8.3
based on an AT with Kn = ∅, Kp = {p,¬p}, Rs = {p→ ¬q;¬p→ ¬q}, Rd = {⇒
q}. Assume, furthermore, that on the basis of UAT only one defeater D: r → ¬p of B
and one defeater E: ¬r → p of C can be constructed, where r,¬r ∈ Kup , 6∈ Ku

n . Then
there is no expansion with a conflict-free set of defenders of A, since for any � it holds
that D defeats E or E defeats D. So A cannot be made justified or defensible in any
expansion.
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Figure 8.3: No conflict-free set of defenders.

All defenders imply a defeater Consider the example in Figure 8.4 based on an AT
with Kn = {q, s}, Kp = {p}, Rs = {s → ¬p; r → ¬p; r → ¬d2}, Rd = {q ⇒d1

r; s ⇒d2 ¬p} where the subscripts of ⇒ denote the rule names. The AF contains
A,B,C,D and all their subarguments, where both B and C defeat A and D defeats
C. Assume that A ≺ B and A ≺ C. Note that A is not in any T -extension for T =
grounded or complete or preferred, since it is defeated by B which is undefeated. The
question is whetherA can be made part of all T−extensions of some allowed expansion
of AF . All such expansions must add a defeater E of B’s subargument for r. Assume
that on the basis of UAT a single undefeated argument E exists that defeats B but no
defeater of C other than D exists. For instance, UAT could differ from AT only in
that it also contains a strict rule s → ¬q. Then any expansion defeating B contains
E so also D is strictly defeated (on its subargument for r). But then C is defended
and prevents A from being in any T -extension of the expansion. Hence no expansion
exists in which A is in any T -extension. Dung (1995) calls arguments like E, which

Figure 8.4: All defenders imply a defeater.

both defend and indirectly defeat an argument, controversial arguments. This example
illustrates another assumption underlying Theorem 8.3.2, namely, that a defeat from a
new to an old argument has no side effects in that the new argument also defeats other
old arguments that are relevant to the status of an argument in the set that should be in
an extension of the expansion. In other words, it is not the case in general that a set S′

can be found such that S ∪ S′ is admissible.

Further implicit assumptions underlying Theorem 8.3.2 are visualised in Figure 8.5,
where the dotted boxes contain AFs while the entire graphs are UAFs . For the three
abstract examples we leave it to the reader to verify that instantiations for ASPIC+ exist.
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Figure 8.5: Further assumptions underlying Theorem 8.3.2.

No undefeated defenders Figure 8.5(a) refutes the assumption that always an unde-
feated expansion can be found with an AF with A = {A,B,C}, where C defeats B
and USAF contains just one argument that defeats C, namely, D but which is defeated
by A. Then there is no expansion that makes {B} included in any extension.

No defenders Figure 8.5(b) refutes the assumption that always a defender of any
argument in S exists in UAF .

No allowed way to extend the argument ordering Another assumption underlying
Theorem 8.3.2 is that � can always be extended in any way. Counterexamples to this
assumption can be constructed for the same reason as in Modgil and Prakken (2012) for
resolution semantics in ASPIC+ (see Section 8.2.2 above): properties of the argument
ordering, such as transitivity, may make that adding explicit preferences to resolve a
conflict in a desired way implies the addition of implicit preferences that prevent re-
solving another conflict in the desired way.

Effects of implied arguments Finally, Figure 8.5(d) illustrates the possible effects of
implied arguments. Consider a logic-based AT with Kn = Kp = ∅, Rs = {¬d2 →
¬d1; q → ¬d2}, Rd = {⇒d1 p; ⇒d2 ¬d1} and where UAT has q ∈ Kup and
q → ¬d2 ∈ Rus . Consider then the AF in Figure 8.5(d) and assume that sUAF further
only contains q, C and D. No expansion can make {A} included in a T -extension for
any T , since adding C (the only defender ofA againstB) also addsD to the expansion,
which defeats A.

8.5 Conclusion

In this chapter we discussed two formal accounts of argumentation dynamics. Res-
olution semantics models and studies the addition of preferences to resolve conflicts
between arguments, while the theory of expansions models and studies the addition of
arguments and defeat relations to argumentation frameworks. We saw that both kinds
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of operations on argumentation frameworks model realistic argumentation phenomena,
but that their proper modelling must take the structure of arguments and the nature of
their relations into account, on the penalty of implicitly making assumptions that are
not always satisfied by instantiations of abstract approaches. In other words, abstrac-
tion does not imply generality. As we saw in Chapter 7, this observation is not confined
to resolution semantics or expansion theory but holds more generally for any way of
extending or modifying Dung’s theory of abstract argumentation frameworks in the
abstract.

8.6 Exercises

EXERCISE 8.6.1 Consider an AF such that A and B defeat each other, B defeats C
and C defeats A.

1. Is B justified in preferred semantics?

2. Is B justified in all full resolutions in preferred semantics?

EXERCISE 8.6.2 Consider again Exercise 4.8.11(a,b,e).

1. Is D is justified in some and/or in all full resolutions in grounded semantics?

2. Is D is justified in some and/or in all full resolutions in preferred semantics?

EXERCISE 8.6.3 Consider the following abstract argumentation framework AF :

1. Specify all full resolutions of AF , drawing them as graphs.

2. Give two full resolutions of AF in which B is a member of all stable extensions.

EXERCISE 8.6.4 Consider again Example 6.3.6 and its development until 6.3.25.
Does the status of r change in some resolutions? Answer this question both for the
elitist weakest- and for the elitist last-link ordering.

EXERCISE 8.6.5 let Rd = Kn = ∅, let Rs consist of all valid propositional infer-
ences from finite sets and let Kp = {p, q,¬(p ∧ q}. Assume that p <′ ¬(p ∧ q) and
p <′ q and apply the elitist weakest link ordering.

1. Is the argument A = ¬(p ∧ q) justified in grounded semantics?
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2. Is the argument A = ¬(p ∧ q) justified in all full preference-based resolutions in
grounded semantics?

EXERCISE 8.6.6 Create ASPIC+ instantiations of the examples in Figure 8.5(a,b,c).

EXERCISE 8.6.7 Consider the following abstract argumentation framework AF :

1. For T ∈ {complete, preferred, grounded, stable}, is there an expansion of AF
according to Definition 8.3.1 for which {B,C} is included in the unique T -
extension?

2. Consider the following ASPIC+ instantiation of this AF :

A: ⇒d2 ¬d1

B: A⇒d4 ¬d3

C: ⇒d1 p
D: ⇒d3 ¬p

where d1 < d3 and the last-link argument ordering is applied. Is there an allowed
expansion of AF in the sense of Definition 8.3.8 that only adds a defeater of A
and for which {B,C} is included in the unique T -extension?

EXERCISE 8.6.8 Consider the following abstract argumentation frameworksAF and
AF ′:

1. Is AF ′ an expansion of AF according to Definition 8.3.1 in the reader?

2. Suppose AF is an AF in a sUAF that corresponds to a SAF = (A, C,�) in
UAT defined by AT = ((L,R, n),K), where:

Lu = {p,¬p, q,¬q, r,¬r},
Rus = {p→ q; r → ¬p},
Kup = Lu,
Rud = Kun = ∅
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where

L = Lu,
Rs = Rus ,
Kp = {p},
Rd = Kn = ∅

and where �u = � = ∅.

Let A = p, B = p→ q, C = r → ¬p. Is AF ′ an allowed expansion of AF according
to to Definition 8.3.8 in the reader?

EXERCISE 8.6.9 Consider an AT with Kn = {p, s}, Kp = {u}, Rs = ∅, Rd =
{p ⇒r1 q; q ⇒r2 r; s ⇒r3 ¬r; q ⇒r4 t;u ⇒r5 ¬t;¬u ⇒r6 v} (the subscripts of⇒
denote the rule names in L), assume that r3 < r2 and r3 < r5 and let � be the elitist
weakest-link argument ordering.

1. Construct the AF corresponding to the SAF defined by AT and �.

2. Assume, furthermore, that Kun = Kn, Ku
p = {u,¬u},Rus = Rs andRud = Rd.

(a) Is an AF ′ which adds E : ¬u to AAF and ({D1, E), (E,D1) to DAF an
allowed expansion of AF ?

(b) Is there an allowed expansion of AF in which arguments for ¬r and t are
both justified in grounded semantics?





Chapter 9

Dialogue systems for agent
interaction with argumentation

This chapter is about formal dialogue systems for agent interaction with argumentation.
The main focus is on so-called persuasion dialogues, in which two or more participants
try to resolve a difference of opinion by arguing about the tenability of one or more
claims or arguments, each trying to persuade the other participants to adopt their point
of view. Dialogue systems for persuasion regulate what utterances the participants
can make and under which conditions they can make them, what the effects of their
utterances are on their propositional commitments, when a dialogue terminates and
what the outcome of a dialogue is. Good dialogue systems regulate all this in such a
way that conflicts of view can be resolved in a way that is both fair and effective.

The term ‘persuasion dialogue’ was introduced into argumentation theory by Dou-
glas Walton (Walton; 1984) as part of his influential classification of dialogues into six
types according to their goal (see also e.g. Walton and Krabbe (1995)). While persua-
sion aims to resolve a difference of opinion, negotiation tries to resolve a conflict of
interest by reaching a deal, information seeking aims at transferring information, de-
liberation wants to reach a decision on a course of action, inquiry is aimed at “growth
of knowledge and agreement” and quarrel is the verbal substitute of a fight. This clas-
sification is not meant to be exhaustive and leaves room for dialogues of mixed type,
such as a negotiation that can shift to an embedded persuasion if the negotiating agents
disagree about a relevant matter of fact.

The modern study of formal dialogue systems for persuasion probably started with
two publications by Charles Hamblin (Hamblin; 1970, 1971). Initially, the topic was
studied only within philosophical logic and argumentation theory. From the early
nineteen nineties the study of persuasion dialogues was taken up in several fields of
computer science. In Artificial Intelligence logical models of commonsense reason-
ing have been extended with formal models of persuasion dialogue as a way to deal
with resource-bounded reasoning. In artificial intelligence & law interest in dialogue
systems arose when researchers realised that legal reasoning is bound not only by the
rules of logic and rational inference but also by those of fair and effective procedure.
Persuasion was here seen as an appropriate model of legal procedures. Finally, in the
field of multi-agent systems dialogue systems have been incorporated into models of
rational agent interaction. To fulfill their own or joint goals, intelligent agents often
need to interact with other agents. When they pursue joint goals, the typical modes
of interaction are information seeking and deliberation and when they self-interestedly
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pursue their own goals, they often interact by way of negotiation. In all these cases
the dialogue can shift to persuasion. For example, in information-seeking a conflict of
opinion could arise on the credibility of a source of information, in deliberation the par-
ticipants may disagree about likely effects of plans or actions and in negotiation they
may disagree about the reasons why a proposal is in one’s interest; also, in all three
cases the participants may disagree about relevant factual matters.

To delineate the precise scope of this chapter, it is useful to discuss what is the sub-
ject matter of dialogue systems. According to Carlson (1983) dialogue systems define
the principles of coherent dialogue. In his words, whereas logic defines the conditions
under which a proposition is true, dialogue systems define the conditions under which
an utterance is appropriate. And the leading principle here is that an utterance is ap-
propriate if it furthers the goal of the dialogue in which it is made. So, for instance,
an utterance in a persuasion should contribute to the resolution of the conflict of opin-
ion that triggered the persuasion, and an utterance in a negotiation should contribute to
reaching agreement on a reallocation of scarce resources. Thus according to Carlson
the principles governing the meaning and use of utterances should not be defined at
the level of individual speech acts but at the level of the dialogue in which the utter-
ance is made. Carlson therefore proposes a game-theoretic approach to dialogues, in
which speech acts are viewed as moves in a game and rules for their appropriateness are
formulated as rules of the game. Virtually all work on formal dialogue systems for per-
suasion follows this approach and therefore the discussion in this chapter will assume
a game format of dialogue systems. It should be noted that the term dialogue system as
used in this chapter only covers the rules of the game, i.e., which moves are allowed;
it does not cover principles for playing the game well, i.e., strategies and heuristics for
the individual players. Of course, the latter are also important in the study of dialogue,
but they will be treated as being external to dialogue systems and instead of aspects of
models of dialogue participants.

This chapter is organised as follows. First in Section 9.1 an example persuasion
dialogue will be presented, to give a feel for what persuasion dialogues are and to
provide material for illustration and comparison in the subsequent discussions. Then
in Section 9.2 the general layout of dialogue systems is described and in Section 9.3
some common elements of dialogue systems for persuasion are discussed. Finally, in
Section 9.4 two particular dialogue systems for persuasion are discussed. Exercises can
be found at the end of the chapter.

9.1 An example persuasion dialogue

The following example persuasion dialogue exhibits some typical features of persua-
sion and will be used in this chapter to illustrate different degrees of expressiveness and
strictness of the various persuasion systems.

Paul: My car is safe. (making a claim)
Olga: Why is your car safe? (asking grounds for a claim)
Paul: Since it has an airbag, (offering grounds for a claim)
Olga: That is true, (conceding a claim) but this does not make your car safe. (stating
a counterclaim)
Paul: Why does that not make my care safe? (asking grounds for a claim)
Olga: Since the newspapers recently reported on airbags expanding without cause.
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(stating a counterargument by providing grounds for the counterclaim)
Paul: Yes, that is what the newspapers say (conceding a claim) but that does not prove
anything, since newspaper reports are very unreliable sources of technological infor-
mation. (undercutting a counterargument)
Olga: Still your car is still not safe, since its maximum speed is very high. (alternative
counterargument)
Paul: OK, I was wrong that my car is safe.

This dialogue illustrates several features of persuasion dialogues.

• Participants in a persuasion dialogue not only exchange arguments and coun-
terarguments but also express various propositional attitudes, such as claiming,
challenging, conceding or retracting a proposition.

• As for arguments and counterarguments it illustrates the following features.

– An argument is sometimes attacked by constructing an argument for the
opposite conclusion (as in Olga’s two counterarguments) but sometimes by
saying that in the given circumstances the premises of the argument do not
support its conclusion (as in Paul’s counterargument). This is the distinction
between rebutting and undercutting counterarguments.

– Counterarguments are sometimes stated at once (as in Paul’s undercutter
and Olga’s last move) and are sometimes introduced by making a counter-
claim (as in Olga’s second and third move).

– Natural-language arguments sometimes leave elements implicit. For ex-
ample, Paul’s second move arguably leaves a commonsense generalisation
‘Cars with airbags usually are safe’ implicit.

• As for the structure of dialogues, the example illustrates the following features.

– The participants may return to earlier choices and move alternative replies:
in her last move Olga states an alternative counterargument after she sees
that Paul had a strong counterattack on her first counterargument. Note that
she could also have moved the alternative counterargument immediately
after her first, to leave Paul with two attacks to counter.

– The participants may postpone their replies, sometimes even indefinitely:
by providing her second argument why Paul’s car is not safe, Olga post-
pones her reply to Paul’s counterattack on her first argument for this claim;
if Paul fails to successfully attack her second argument, such a reply might
become superfluous.

9.2 General layout of dialogue systems

In this section the general layout of dialogue systems is described. Dialogue systems
have a dialogue goal and at least two participants, who can have various roles. Di-
alogue systems have two languages, a topic language Lt governed by a logic, and a
communication language Lc wrapped around the topic language. The communica-
tion language defines which utterances, or speech acts can be made about elements of
subsets of the topic language. The heart of a dialogue system is formed by a protocol,
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specifying the allowed moves at each point in a dialogue, the effect rules, specifying the
effects of utterances on the participants’ commitments, and the outcome rules, defin-
ing the outcome of a dialogue. Two kinds of protocol rules are sometimes separately
defined, viz. turntaking and termination rules.

Some of these elements will now be defined formally in a generalisation of Defi-
nition 5.1.1. In the rest of this chapter this specification will be used when describing
systems from the literature; in consequence, their appearance in this text may differ
from their original presentation.

Definition 9.2.1 (Some elements of dialogue systems) Let Lc be a communication lan-
guage with Lt its topic language.

• The set of dialogues defined by Lc, denoted by M≤∞, is the set of all sequences
from Lc, and the set of finite dialogues, denoted by M<∞, is the set of all finite
sequences from Lc. For any dialogue d = m1, . . . ,mn, . . ., the subsequence
m1, . . . ,mi is denoted with di.

• A set of effect rules C for Lc specifies for each utterance ϕ ∈ Lc its effects on
the commitments of the participants. These rules are specified as functions

– Ca : M<∞ −→ Pow(Lt)

• A protocol Pr forLc specifies the allowed (or ‘legal’) moves at each stage of a di-
alogue. Formally, A protocol on Lc is a function Pr with as domain a nonempty
subset D of M<∞ taking subsets of Lc as values. That is:

– Pr : D −→ Pow(Lc)

such that D ⊆ M<∞. The elements of D are called the legal finite dialogues.
The elements of Pr(K, d) are called the moves allowed after d given K. If d is
a legal dialogue and Pr(K, d) = ∅, then d is said to be a terminated dialogue.
Pr must satisfy the following condition: for all finite dialogues d and moves m,
d ∈ D and m ∈ Pr(K, d) iff d,m ∈ D.

It is useful (although not strictly necessary) to explicitly distinguish elements of
a protocol that regulate turntaking and termination:

– A turntaking function is a function T : D −→ Pow(A). A turn of a dia-
logue is defined as a maximal sequence of moves in the dialogue in which
the same player is to move. Note that T can designate more than one player
as to-move next.

– Termination is above defined as the case where no move is legal. Accord-
ingly, an explicit definition of termination should specify the conditions
under which Pr returns the empty set.

Note that no relations are assumed between a participant’s commitments and beliefs.
Commitments are an agent’s publicly declared standpoints, which may or may not co-
incide with the agent’s internal beliefs. For instance, an accused in a criminal trial may
publicly defend his innocence while he knows he is guilty.
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Definition 9.2.2 (Some protocol types)

• A protocol has a public semantics iff the set of legal moves is always independent
from the agents’ belief bases.

• A protocol Pr is fully deterministic if Pr always returns a singleton or the empty
set. It is deterministic in Lc if the set of moves returned by Pr at most differ in
their content but not in their speech act type.

• A protocol is unique-move if the turn shifts after each move; it is multiple-move
otherwise.

Paul and Olga (ct’d): The protocol in our running example clearly is multiple-move.

9.3 Persuasion

We now discuss some common elements of systems for persuasion dialogue.

9.3.1 Communication languages and commitment rules for persuasion

As for the communication language and commitment rules of systems for persuasion
dialogue, some common elements can be found throughout the literature. We list the
most common speech acts, with their informal meaning and the various ways they are
named in the literature.1

• claim ϕ (assert, statement, ...). The speaker asserts that ϕ is the case.

• why ϕ (challenge, deny, question, ...) The speaker challenges that ϕ is the case
and asks for reasons why it would be the case.

• concede ϕ (accept, admit, ...). The speaker admits that ϕ is the case.

• retract ϕ (withdraw, no commitment, ..) The speaker declares that he is not
committed (any more) to ϕ. Retractions are ‘really’ retractions if the speaker
is committed to the retracted proposition, otherwise it is a mere declaration of
non-commitment (for example, in reply to a question).

• ϕ since S (argue, argument, ...) The speaker provides reasons why ϕ is the
case. Some protocols do not have this move but require instead that reasons be
provided by a claim ϕ or claim S move in reply to a why ψ move (where S is a
set of propositions). Also, in some systems the reasons provided for ϕ can have
structure, for example, of a proof three or a deduction.

• question ϕ (...) The speaker asks another participant’s opinion on whether ϕ is
the case.

Paul and Olga (ct’d): In this communication language our example from Section 9.1
can be more formally displayed as follows:

1To make this chapter more uniform, the present terminology will be used even if the original publica-
tion of a system uses different terms.



148 Dialogue systems for agent interaction with argumentation

P1: claim safe
O2: why safe
P3: safe since airbag
O4: concede airbag
O5: claim ¬ safe
P6: why ¬ safe
O7: ¬ safe since newspaper: “explode”
P8: concede newspaper: “explode”
P9: so what since ¬ newspapers reliable
O10: ¬ safe since high max. speed
P11: retract safe

As for the commitment rules, the following ones seem to be uncontroversial and can
be found throughout the literature. (Below pl denotes the speaker of the move and s
denotes the speech act performed in the move; effects on the other parties’ commitments
are only specified when a change is effected.)

• If s(m) = claim(ϕ) then Cpl(d,m) = Cpl(d) ∪ {ϕ}

• If s(m) = why(ϕ) then Cpl(d,m) = Cpl(d)

• If s(m) = concede(ϕ) then Cpl(d,m) = Cpl(d) ∪ {ϕ}

• If s(m) = retract(ϕ) then Cpl(d,m) = Cpl(d) − {ϕ}

• If s(m) = ϕ since S then Cpl(d,m) ⊇ Cpl(d) ∪ S

The rule for since uses⊇ since such a move may commit to more than just the premises
of the moved argument. For instance, in Prakken (2005) the move also commits to ϕ,
since arguments can also be moved as counterarguments instead of as replies to chal-
lenges of a claim. And in some systems that allow incomplete arguments, such as Wal-
ton and Krabbe (1995), the move also commits the speaker to the material implication
S → ϕ.
Paul and Olga (ct’d): According to these rules, the commitment sets of Paul and Olga
at the end of the example dialogue are

- CP (d11) ⊇ {airbag, newspaper: “explode”, ¬ newspapers reliable}
- CO(d11) ⊇ {¬ safe, airbag, newspaper: “explode”, high max. speed}

Speech act types often come with typical replies. Table 9.1 lists the typical replies
of the common speech acts listed above.
Paul and Olga (ct’d): In terms of this table our running example can now be displayed
as in Figure 9.1, where the boxes stand for moves and the links for reply relations.

A table like the above one induces another distinction between dialogue protocols.

Definition 9.3.1 A dialogue protocol is unique-reply if at most one reply to a move is
allowed throughout a dialogue; otherwise it is multiple-reply.

Of course, this distinction can be made fully precise only for systems that formally
incorporate the notion of replies.
Paul and Olga (ct’d): The protocol governing our running example is multiple-reply,
as illustrated by the various branches in Figure 9.1.
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Table 9.1: Locutions and typical replies

Locutions Replies
claim ϕ why ϕ, claim ϕ, concede ϕ
why ϕ ϕ since S (alternatively: claim S), retract ϕ
concede ϕ
retract ϕ
ϕ since S why ψ (ψ ∈ S), concede ψ (ψ ∈ S), ϕ′ since S
question ϕ claim ϕ, claim ϕ, retract ϕ

9.3.2 Types of protocol rules

According to their subject matter, several types of protocol rules can be distinguished.
Some rules regulate a participant’s consistency. This can be about dialogical consis-
tency, such as a rule that each move must leave the speaker’s commitments consistent
or a rule that upon demand a speaker must resolve such an inconsistency. Or it can
be about a participant’s internal consistency, such as the use of so-called assertion and
acceptance attitudes (see Sections 9.3.3 and 9.4.1 below). For instance, a protocol rule
could say that a participant may claim or accept a proposition only if his belief base
contains a justified argument for the claim.

Other rules are about dialogical coherence, such as the rules that require a non-
initial move to be an appropriate reply to some earlier move (see e.g. the table above).
Yet other rules are about the dialogical structure, such as the termination rules and the
rules that make the protocol a unique- or multiple move protocol, a unique- or -multiple
reply protocol, or an immediate- or non-immediate-response protocol.

9.3.3 Assertion and acceptance attitudes

Sometimes so-called ‘assertion and acceptance attitudes’ are incorporated into persua-
sion protocols, which specify how an agent must choose between various otherwise
legal moves given the information that the agent has available. We discuss the attitudes
defined in Parsons et al. (2003), generalising them to any argument-based logic. In par-
ticular, we define them relative to an implicitly assumed argumentation theory AT as
defined in Chapter 6, assuming that each argument has a conclusion, and also assuming
a preference ordering on arguments. The idea is thatAT contains all arguments that can
be constructed on the basis of the information with which an agent reasons internally.

Definition 9.3.2 (Assertion and acceptance attitudes) An agent can have one of the
following three assertion attitudes.

• A confident agent can assert any proposition for which he can construct an argu-
ment.

• A careful agent can assert any proposition p for which he can construct an argu-
ment and cannot construct a stronger argument for −p2.

• A thoughtful agent can assert any proposition for which he can construct a justi-
fied argument.

2Here −p is a contradictory of p in the sense of Definition 6.3.1
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Figure 9.1: Reply structure of the example dialogue.

An agent can have one of the following three acceptance attitudes.

• A credulous agent can accept any proposition for which he can construct an ar-
gument.

• A cautious agent can accept any proposition p for which he can construct an
argument and cannot construct a stronger argument for −p.

• A skeptical agent can accept any proposition for which he can construct a justified
argument.

It can be debated whether such attitudes must be part of a protocol or of a partici-
pant’s heuristics. According to one approach, a dialogue protocol should only enforce
coherence of dialogues; according to another approach, it should also enforce rational-
ity of the agents engaged in a dialogue. The second approach allows protocol rules to
refer to an agent’s internal belief base and therefore such protocols do not have a public
semantics (in the sense defined above in Section 9.2). The first approach does not allow
such protocol rules and instead studies assertion and acceptance attitudes as an aspect
of dialogical behaviour of agents.
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9.3.4 Roles of commitments

Commitments can serve several purposes in dialogue systems (though particular sys-
tems may not use all of them). One role is in enforcing a participant’s dialogical con-
sistency, for instance, by requiring him to keep his commitments consistent at all times
or to make them consistent upon demand. Another role is to enlarge the hearer’s means
to construct arguments. For instance, in Parsons et al. (2003)’s use of assertion and
acceptance attitudes, they are applied relative to the agents’ internal beliefs plus the
other participant’s commitments (see further Section 9.4.1 below). A third role of com-
mitments is to determine termination and outcome of a dialogue, such as in the above
definition of pure persuasion. For example, in two-party pure persuasion the proponent
wins as soon as the opponent concedes his main claim while the opponent wins as soon
as the proponent has retracted his main claim. Finally, commitments can determine
certain ‘dialectical obligations’, as in a protocol rule that a participant’s commitments
must be consistent, or in a protocol rule that a commitment must be supported with an
argument when it is challenged.

9.3.5 The role of the logic

The logic of most philosophical persuasion-dialogue systems is monotonic (usually
standard propositional logic), while of most AI & Law and MAS-systems it is non-
monotonic. The logic of a persuasion-dialogue system can serve several purposes
(though again particular systems may not use all of them). Firstly, it can be used in
determining consistency of a participant’s commitments. For this purpose a monotonic
logic must be used. Secondly, it can be used to determine whether the reasons given
by a participant for a challenged proposition indeed imply the proposition. When the
logic is monotonic, the sense of ‘imply’ is obvious; when the logic is nonmonotonic,
‘imply’ means ‘being an argument’ in argument-based logics and (roughly) ‘being a
nonmonotonic consequence from the premises alone’ in other nonmonotonic logics.
Not all protocols require the reasons to be ‘valid’ in these senses. For instance, Walton
and Krabbe (1995) allow the moving of incomplete arguments (but this still commits
the speaker to the material implication premises→ conclusion).

Note that this second use of a nonmonotonic logic does not yet exploit the non-
monotonic aspects of the logic. In argument-based terms, it only focuses on how argu-
ments can be constructed, not on how they can be attacked by counterarguments. This
is different in a third use of the logic, viz. to determine whether a participant respects
his assertion or acceptance attitude: as we have just seen, most of these attitudes are
defined in terms of counterarguments and/or defeasible consequence.

However, even if the full power of a nonmonotonic logic is used, it is still possible
to distinguish between internal and external use of the logic. In Parsons et al. (2003)
the nonmonotonic aspects of their (argument-based) logic are only used in verifying
compliance with the assertion and acceptance attitudes; as we will see in Section 9.4.1,
no other protocol rule refers to the notion of a counterargument. In particular, there
is no rule allowing the attack of a moved argument by a counterargument. Also, the
logic is not used in defining the outcome of a dialogue. Consequently, (if the attitudes
are regarded as heuristics and therefore external to a dialogue system), in these systems
defeasible argumentation takes place only within an agent and not between agents. By
contrast, in the system of Prakken (2005) (See Section 9.4.2) the moving of counterar-
guments in dialogues is allowed.
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One external use of argumentation logics is to formulate dialogical notions of sound-
ness and completeness. For example:

• A protocol is sound if whenever at termination p is accepted, p is justified by the
participants’ joint knowledge bases.

• A protocol is weakly complete if whenever p is justified by the participants’ joint
knowledge bases, there is a legal dialogue at which at termination p is accepted.

• A protocol is strongly complete if whenever p is justified by the participants’ joint
knowledge bases, all legal dialogues terminate with acceptance of p.

Similar notions can be defined relative to the joint theory constructed during a dia-
logue, while the notions can also be made conditional on particular agent strategies and
heuristics.

9.4 Two systems

To illustrate the general discussion and some of the main design options, now two
persuasion protocols will be discussed and applied to our running example.

9.4.1 Parsons, Wooldridge & Amgoud (2003)

In a series of papers Parsons, Wooldridge & Amgoud have developed an approach to
specify dialogue systems for various types of dialogues. We base our discussion on
Parsons et al. (2003), focusing on their system for persuasion dialogue.

The system is for dialogues between two players called White (W ) and Black (B)
on a single topic. The player who starts a dialogue is its proponent and the other player
must, depending on her acceptance attitude, declare at her first move whether she is
negative or doubtful towards the topic or wants to concede it. The participants have
their own, possibly inconsistent belief base Σ. The players are assumed to adopt an
assertion and an acceptance attitude, which they must respect throughout the dialogue.
The attitudes are defined relative to their internal belief base (which remains constant
throughout a dialogue) plus the commitment set of the other player (which may vary
during a dialogue). The communication language Lc consists of claims, challenges,
and concessions; it has no explicit reply structure but the protocol largely conforms to
Table 9.1. Claims can concern both individual propositions and sets of propositions.

The logic of Lt is a special case of the ASPIC framework of Chapter 63 with Lt
being a propositional language, with only strict rules, being the set of all classically
valid inferences from finite sets, and with only ordinary premises. Moreover, arguments
must have consistent premises. Defeat relations are defined according to the weakest-
link principle in terms of a global total priority relation on Lt. Defeasible inference is
then defined with grounded semantics.

In dialogues, arguments cannot be moved as such but only implicitly as claim S
replies to challenges of another claim ϕ, such that S is consistent and S ` ϕ. The logic
is used to verify this condition and whether the players comply with their assertion and
acceptance attitudes. The logic is not used externally. Finally, the commitment rules

3In fact, there are some minor differences, but for ease of explanation and comparison we replace the
logic adopted by Parsons et al. (2003) with the one described here.
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are standard and commitments are only used to enlarge the player’s belief base with the
other player’s commitments; they are not used to constrain move legality or to define
the dialogue’s outcome.

The use of preferences involves some subtleties when applied to verify an assertion
or acceptance attitude. As noted above, at any stage in a dialogue an agent a must
reason with his own belief base Σa plus the commitments Ca(d) that the other party
has in d. So W must define a total ordering on ΣW ∪ CB(d) while B must define a
total ordering on ΣB ∪ CW (d). In practice these orderings may well be different but
Parsons et al. (2003) still assume that the players agree on the ordering on Lt. This may
be justified by regarding the ordering on which the players agree as composed from
their individual orderings. Several ways exist to define an overall preference ordering
in terms of individual orderings (for example, pi is overall preferred to pj just in case
both players prefer pi to pj , otherwise pi and pj are equal) but below we will abstract
from such ways and simply assume that there is a unique ordering on Lt on which the
agents agree.

We now present the formal definition of the persuasion protocol, which in fact de-
fines a state transition diagram.

Definition 9.4.1 (PWA persuasion protocol) A move is legal iff it does not repeat a
move of the same player, and satisfies the following procedure:

1. W claims ϕ (assuming W ’s assertion attitude allows it).

2. B concedes ϕ if its acceptance attitude allows, if not B claims −ϕ if
its assertion attitude allows it, or otherwise challenges ϕ.

3. IfB claims−ϕ, then goto 2 with the roles of the players reversed and
−ϕ in place of ϕ.

4. If B has challenged, then:

(a) W claims S, an argument for ϕ;
(b) Goto 2 for each s ∈ S in turn.

5. B concedes ϕ if its acceptance attitude allows, or the dialogue termi-
nates.

Dialogues terminate as specified in condition 5, or when the move required by the
procedure cannot be made, or when the player-to-move has conceded all claims made
by the hearer.

No explicit win and loss functions are defined, but the possible outcomes are defined in
terms of the propositions claimed by one player and conceded by the other.

To comment on this protocol, note first that in (4b) it is ambiguous in the case where
S contains more than one premise, since it is unclear whether the turn shifts as soon as
the first premise has been replied to or not. In the latter case, the protocol is multi-move,
since a player may reply to each premise in turn. However, for simplicity we will below
assume that the turn shifts after the first reply to a claim S move; in this interpretation
the protocol is unique move, except that after one premise is conceded, the next premise
may immediately be replied to. Also, in both interpretations the protocol is unique-
reply except that each element of a claim S move can be separately challenged or
conceded. The protocol is deterministic in Lc but not fully deterministic, since if a
player can construct more than one argument for a challenged claim, he has a choice
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which argument to play. Finally, the semantics of the protocol is not public, since
agents have to comply with their assertion and acceptance attitudes, and these are partly
defined in terms of their internal beliefs.

Let us first consider some simple dialogues that fit this protocol.

Example 9.4.2 First, let ΣW = {p} and ΣB = ∅. Then the only legal dialogue is:

• W1: claim p, B1: concede p.

B1 is B’s only legal move, whatever its acceptance attitude, since after W1, B must
reason from ΣB ∪CW (d1) = {p} so that B can construct the trivial argument ({p}, p).
Here the dialogue terminates.

This example illustrates that the fact that the players must reason with the commitments
of the other player makes that they can learn from each other. However, the following
example illustrates that the same mechanism sometimes makes them learn too easily.

Example 9.4.3 Assume ΣW = {q, q ⊃ p} and ΣB = {¬q}, where all formulas are of
the same preference level.

• W1: claim p.

Now whatever her acceptance attitude, B has to concede p since she can construct
the trivial argument ({p}, p) for p while she can construct no argument for ¬p. Yet
B has a defeater for W ’s only argument for p, namely, ({¬q},¬q), which defeats
({q, q ⊃ p}, p). So even though p is not justified on the basis of the agents’ joint
knowledge, W1 can win a dialogue about p.

This example thus illustrates that if the players have to reason with the other player’s
commitments, one player can sometimes ‘force’ an opinion onto the other player by
simply making a claim. A possible solution to this problem is to restrict the information
with which agent reason to their internal belief bases plus their own commitments. The
following example illustrates another reason why this may be better.

Example 9.4.4 Consider next ΣW = {q, q ⊃ p} and ΣB = {¬p}, where q and q ⊃ p
are preferred over ¬p. Let W be thoughtful and skeptical and B careful. Then:

• W1: claim p.

Since B must now reason with p, the continuation depends on the preference level of
p. In fact, the protocol turns out to be problematic here. Since the players agree on
the preference ordering, it seems reasonable to give p the same level as the level of the
support of the strongest argument that can be constructed for p. However, the problem
is that at this point in the dialogue B does not know which arguments W can construct
for p. Let us sidestep this problem for the moment and let us first assume that p is
preferred over ¬p. Then B must concede p whatever her acceptance attitude is. If,
by contrast ¬p is preferred over p, then a credulous agent must still concede p but a
cautious and skeptical agent must instead proceed by claiming ¬p:

• B1: claim ¬p.
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Now W must apply clause (2) of the protocol, with ϕ = ¬p. Note that W must now
reason with ΣW ∪ {¬p}. He finds that he cannot accept ¬p since his counterargument
({q, q ⊃ p}, p) is acceptable since it is preferred over its only attacker ({¬p, q ⊃
p},¬q). Therefore, clause (2) requires him to assert p. However, the non-repetition
rule makes this impossible, so that the dialogue terminates without agreement.

This example also illustrates that even if a proposition is defeasibly implied by
ΣW ∪ ΣB , it may not be agreed upon by the players (note that p is justified on the
basis of this information). In fact, it also illustrates that sometimes there are no legal
dialogues that agree upon such an implied proposition.

Paul and Olga (ct’d): Finally, our running example can be modelled in this approach
as follows. Let us give Paul and Olga the following beliefs:

ΣW = {airbag, airbag ⊃ safe, ¬(newspaper ⊃ ¬ safe)}
ΣB = {newspaper, high-speed, newspaper ⊃ ¬ safe, high-speed ⊃ ¬ safe}

(Note that Paul’s undercutter must now be formalised as the negation of Olga’s material
implication.) Assume that all these propositions are equally preferred. We must also
make some assumptions on the players’ assertion and acceptance attitudes. Let us first
assume that Paul is thoughtful and skeptical while Olga is careful and cautious, and that
they only reason with their own beliefs and commitments.

P1: claim safe O2: claim ¬ safe

Olga could not challenge Paul’s main claim as in the example’s orginal version, since
she can construct an argument for the opposite claim ‘¬ safe’, while she cannot con-
struct an argument for ‘safe’. So she had to make a counterclaim. Now since players
may not repeat moves, Paul cannot make the move required by the protocol and his as-
sertion attitude, namely, claiming ‘safe’, so the dialogue terminates without agreement.

Let us now assume that the players must also reason with each others commitments.
Then the dialogue evolves as follows:

P1: claim safe O2: concede safe

Olga has to concede, since she can use Paul’s commitment to construct the trivial ar-
gument ({safe}, safe), while her own argument for ‘¬ safe’ is not stronger. So here
the dialogue terminates with agreement on ‘safe’, even though this proposition is not
acceptable on the basis of the players’ joint beliefs.

So far, neither of the players could develop their arguments. To change this, assume
now that Olga is also thoughtful and skeptical, and that the players reason with each
others commitments. Then:

P1: claim safe O2: why safe

Olga could not concede, nor could she state her argument for ¬ safe since it is not
preferred over its attacker ({safe},safe). So she had to challenge.

P3: claim {airbag, airbag ⊃ safe}
Now Olga can create a (trivial) argument for ‘airbag’ by using Paul’s commitments, but
she can also create an argument for its negation by using her own beliefs. Neither of
these arguments is acceptable, so she must challenge again. Likewise for the second
premise, so:
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O4: why airbag
P5: claim {airbag} O6: why airbag ⊃ safe
P7: claim {airbag ⊃ safe}

Here the nonrepetition rule makes the dialogue terminate without agreement. Note
that only Paul could develop his arguments. To give Olga a chance to develop her
arguments, let us make her careful and skeptical while the players still reason with each
others commitments. Then:

P1: claim safe O2: claim ¬ safe

In the new dialogue state Paul’s argument for ‘safe’ is not acceptable any more, since it
is not preferred over its attacker ({¬ safe}, ¬ safe). So he must challenge.

P3: why ¬ safe O4: claim {newspaper, newspaper ⊃ ¬ safe }
Although Paul can construct an argument for Olga’s first premise, namely,
({¬(newspaper ⊃ ¬ safe’}, safe), it is not acceptable since it is not preferred over
its attacker based on Olga’s second premise. So he must challenge.

P5: why newspaper O6: claim {newspaper}
Olga had to reply with a (trivial) argument for her first premise, after which Paul cannot
repeat his challenge, so here the nonrepetition rule again makes the dialogue terminate
without agreement. In this dialogue only Olga could develop her arguments (although
she could not state her second counterargument).

In conclusion, the PWA persuasion protocol leaves little room for choice and ex-
ploring alternatives. Also, it induces one-sided dialogues in that at most one side can
develop their arguments for a certain issue. The above examples also suggest that if a
claim is accepted, it is accepted in the first ‘round’ of moves (but this should be for-
mally verified). On the other hand, the strictness of the protocol induces short dialogues
which are guaranteed to terminate, which is good for efficiency reasons. Also, without
the requirement to respect the assertion and acceptance attitudes the protocol would be
much more liberal while still enforcing some coherence.

9.4.2 Prakken (2005)

In Prakken (2005) a framework for specifying two-party persuasion dialogues about a
single dialogue topic is presented, which is then instantiated with some example proto-
cols. The participants have proponent and opponent role, and their beliefs are irrelevant
to the protocols. The framework largely abstracts from the communication language,
except for an explicit reply structure. It also largely abstracts from the logical language
and the logic, except that the logic is assumed to conform to the format of the frame-
work of this reader’s Chapter 6 with Dung (1995)’s grounded semantics. The logic is
used to verify whether a moved argument is logically constructible, to allow for explicit
counterarguments, and to verify whether these arguments defeat their targets.

A main motivation of the framework is to ensure focus of dialogues while yet al-
lowing for freedom to move alternative replies and to postpone replies. This is achieved
with two main features of the framework. Firstly, an explicit reply structure on Lc is
assumed, where each move either attacks or surrenders to its target. An example Lc
of this format is displayed in Table 9.2. This enables the second feature of the frame-
work, namely, an ‘any-time’ notion of winning that is defined in terms of a notion of
dialogical status of moves.
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Table 9.2: An example Lc in Prakken’s framework

Acts Attacks Surrenders
claim ϕ why ϕ concede ϕ
argue A why ϕ (ϕ ∈ Prem(A)) concede ϕ (ϕ ∈ Prem(A))

argue B (B defeats A) concede ϕ (ϕ = Conc(A))
why ϕ argue A (ϕ = Conc(A)) retract ϕ
concede ϕ
retract ϕ

Accordingly, particular communication languages must satisfy the following for-
mat.

Definition 9.4.5 (Dialogues) The set Lc of moves is defined as N× {P,O} × Lc ×N,
where the four elements of a move m are denoted by, respectively:

• id(m), the identifier of the move,

• pl(m), the player of the move,

• s(m), the speech act performed in the move,

• t(m), the target of the move.

When t(m) = id(m′) we say that m replies to m′ in d and that m′ is the target of
m in d. Abusing notation we sometimes let t(m) denote a move instead of just its
identifier. When s(m) is an attacking (surrendering) reply to s(m′) we also say that m
is an attacking (surrendering) reply to m′.

All protocols are further assumed to satisfy the following basic conditions for all
moves mi and all legal finite dialogues d. Note that these protocol rules only state
necessary conditions for legality of moves; they can be completed in many ways with
further conditions.

If m ∈ Pr(d), then:

R1: t(m) = 0 iff m = m1.

R2: If t(m) 6= 0 then t(m) = i for some mi preceding m in d.

R3: pl(m) ∈ T (d).4

R4: If t(m) 6= 0 then s(m) is a reply to s(t(m)) according to Lc.

R5: If m replies to m′, then pl(m) 6= pl(m′).

R6: If there is an m′ in d such that t(m) = t(m′) then s(m) 6= s(m′).

R7: For any m′ ∈ d that surrenders to t(m), m is not an attacking counterpart of m′.

R8: If d = d0 then s(m) is of the form claim ϕ or argue A.

4Recall that T (d) denotes the player(s) whose turn it is to move in d.
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R1 gives the first move a ‘dummy’ target; together withR2 it says that all moves except
the first reply to some earlier move in the dialogue. Rule R3 says that the player of a
move must be to move according to the turntaking function. R4 says that a replying
move must pick the reply to its target from Table 9.2. R5 says that a player can only re-
ply to the other player’s moves. R6 makes sure that a new reply to the same target has a
different content. Rule R7 says that once a move is surrendered, it may not be attacked
any more (an attacking counterpart of a surrendering move is any attacking move that
replies to the same target as the surrendering move). Finally, R8 says that each dia-
logue begins with a claim or argument. The claim or conclusion of the argument is the
dialogue’s topic.

To define the dialogical status of a move first the notion of a surrendered move must
be defined. A complication here is that surrendering to a premise of an argument does
not yet mean that the argument is surrendered, since if the argument is defeasible; it
can still be attacked with a counterargument even if all of its premises are conceded.
Therefore, the notion of a surrendered move is defined as follows.

Definition 9.4.6 A move m in a dialogue d is surrendered in d iff

• if m is an argue A move then it has a concede ϕ reply in d, where ϕ = Conc(A);

• else m has a surrendering reply in d.

The dialogical status of a move is now recursively defined as follows, exploiting
the reply structure of dialogues.

Definition 9.4.7 [Dialogical status of moves] All attacking moves in a finite dialogue
d are either in or out in d. Such a move m is in iff

1. m is surrendered in d; or else

2. all attacking replies to m are out

Otherwise m is out.

We can now define an ‘anytime’ outcome function for dialogues (whether or not they
are terminated).

Definition 9.4.8 [The current winner of a dialogue]

• The status of the initial movem1 of a dialogue d is in favour of P (O) and against
O(P ) iff m1 is in (out) in d. We also say that m1 favours, or is against p.

• wt(d) = p (i.e., player p currently wins dialogue d on topic t) iff m1 of d favours
p. Furthermore, lt(d) = p iff wt(d) = p.

The framework defined thus far allows for a structural notion of relevance that en-
sures focus while yet leaving the desired degree of freedom: a move is relevant just in
case making its target out would make the speaker the current winner.

Definition 9.4.9 [Relevance] An attacking move in a dialogue d is relevant iff it changes
the dialogical status of d’s initial move. A surrendering move is relevant iff its attacking
counterparts are relevant.
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Note that, if not surrendered, an irrelevant target can become relevant again later
in a dialogue, viz. if a player returns to a dialogue branch from which s/he has earlier
retreated.

To illustrate these definitions, consider Figure 9.2 (where + means in and - means
out). The dialogue tree on the left is the situation after P7. The tree in the middle shows
the dialogical status of the moves when O has continued after P7 with O8, replying to
P5: this move does not affect the status of P1, so O8 is irrelevant. Finally, the tree on
the right shows the situation where O has instead continued after P7 with O′8, replying
to P7: then the status of P1 has changed, so O′8 is relevant.

P5 

O4

P3

O2
+

- -

+

+

+

-

-

+

-

+

+

-

O6 O4

O8’ is relevant

O8’

P7

O6

P5 

P3

O2

O8 is irrelevant

O8

P7

O6

P5

O4

P3

O2

P7

P1

-

-

+

+

P1

-

-

+

+

+

-

+

P1

Figure 9.2: Dialogical status and relevance.

As for dialogue structure, the framework allows for all kinds of protocols. The
instantiations presented in Prakken (2005) are all multi-move and multi-reply. One of
them has the communication language of Table 9.2 and has one additional protocol rule,
viz. that each move be relevant, while the turn shifts as soon as the player-to-move has
succeeded in becoming the current winner. Protocols with this protocol and turntaking
rule are called protocols for relevant dialogue. Together, these rules imply that each
turn consists of zero or more surrenders followed by one attacker. Within these limits
postponement of replies is allowed, sometimes even indefinitely.

We next discuss some examples in terms of a logic within the framework of Chap-
ter 6 combined with grounded semantics. The connective ; is governed by defeasible
modus ponens as in Section 6.4.1 above. We assume that the logic supports arguments
about preferences, so that the definition of an overall preference ordering on the basis
of the players’ individual preferences is in fact the result of the dialogue. The example
below should speak for itself so no formal definitions about the logic will be given.
Consider two agents with the following belief bases (rule connectives are tagged with
a rule name, which is needed to express rule priorities in the object language)

ΣP = {q, q ;r1 p, q ∧ s;r3 r1 > r2}
ΣO = {r, r ;r2 ¬p}.

Then the following is a legal dialogue:5

5From now on we will, when the internal structure of the reasoning within an argument does not matter,
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• P1: claim p, O1: why p, P2: p since q, q ; p, O2: concede q ; p, O3: why q.

At this point P has four allowed moves, viz. retracting p, retracting q, giving an argu-
ment for q or giving a second argument for p. Note that the set of allowed moves is not
constrained by P ’s belief base. If the dialogue terminates here since P withdraws from
it then O has won since P1 is out.

The dialogue may also evolve as follows. The first three moves are as above and
then:

• O2: ¬p since r, r ; ¬p
P3: r1 > r2 since q, s, q ∧ s; r1 > r2

P3 is a priority argument which in the underlying logic makes P2 strictly defeat O2

(note that the fact that s is not in P ’s own knowledge base does not make the move
illegal). At this point, P1 is in; the opponent has various allowed moves, viz. chal-
lenging or conceding any premise of P2 or P3, moving a counterargument to P3 or a
second counterargument to P2, conceding one of these two arguments, and conceding
P ’s initial claim.

This example shows that the participants have much more freedom in this system
than in the one of Parsons et al. (2003). The downside of this is that dialogues can
be much longer, and that the participants can prevent losing by simply continuing to
challenge premises of arguments of the other participant. One way to tackle such ‘fil-
ibustering’ is to introduce a third party who may reverse the burden of proof after a
challenge: the challenger of ϕ then has to provide an argument for ϕ.

Another drawback of Prakken’s approach is that not all dialogues that can be found
in natural language conform to an explicit reply structure. For instance, in legal cross-
examination dialogues the purpose of the cross-examiner is to reveal an inconsistency
in the testimony of a witness. Typically, questions by cross-examiners do not indicate
from the start what they are aiming at, as in

Witness: Suspect was at home with me that day.
Prosecutor: Are you a student?
Witness: Yes.
Prosecutor: Was that day during summer holiday?
Witness: Yes.
Prosecutor: Aren’t all students away during summer holiday?

Paul and Olga (ct’d): Let us finally model our running example in this protocol. Fig-
ure 9.3 displays the dialogue tree, where moves within solid boxes are in and moves
within dotted boxes are out. As can be easily checked, this formalisation captures all
aspects of our original version, except that arguments have to be complete and that
counterarguments cannot be introduced by a counterclaim. (But other instantiations of
the framework may be possible without these limitations.)

9.5 Conclusion

In this chapter we have discussed two systems for persuasion dialogue in terms of a
formal specification of the main elements of such systems. In the literature a number of

write argue A moves as ϕ since S, where ϕ is A’s conclusion and S are A’s premises.
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Figure 9.3: The example dialogue in Prakken’s approach.

interesting dialogue-game protocols for persuasion have been proposed, some of which
have been applied in insightful case studies or applications. However, a consensus on
many issues is stil lacking. As a consequence, there is still little work on formally relat-
ing the various systems or on a general framework for designing persuasion protocols,
and a formal metatheory of systems is still in its early stages. These are some of the
main issues that should be tackled in future research. Some other issues are the study
of strategies and heuristics for individual participants and how these interact with the
protocols to yield certain properties of dialogues, a similar study of varying degrees of
cooperativeness of participants, and the integration of persuasion systems with systems
for other types of dialogues. Perhaps the main challenge in tackling all these issues
is how to reconcile the need for flexibility and expressiveness with the aim to enforce
coherent dialogues. The answer to this challenge may well vary with the nature of the
context and application domain, and a precise description of the grounds for such vari-
ations would provide important insights in how dialogue systems for persuasion can be
applied.

9.6 Exercises

9.6.1 On Parsons, Wooldridge & Amgoud (2003)

EXERCISE 9.6.1 Let ΣW = {q, q ⊃ p} and ΣB = {¬p, q ⊃ p}. Let the preference
ordering � on formulas be:

Σ1 = {q}
Σ2 = {p,¬p,¬(q ⊃ p)}
Σ3 = {q ⊃ p}
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Finally, assume that both players are thoughtful and skeptical and that these attitudes
are verified relative to the speaker’s beliefs and the hearer’s commitments.

1. What is the dialectical status of p, ¬p and q ⊃ p on the basis of ΣW ∪ ΣB and
�?

2. Produce all legal dialogues on topic p. Determine the commitment sets of the
players at termination. Are these sets consistent? And what is for each player the
dialectical status of p and ¬p on the basis of their internal beliefs plus their own
commitments?

3. Assume now that the assertion and acceptance attitudes are verified relative to
the speaker’s beliefs and his own commitments, and answer again the previous
question.

EXERCISE 9.6.2 Let ΣW = {q, q ⊃ p} and ΣB = {q ⊃ p} and let all formulas be of
the same preference level. Assume thatW is thoughtful and cautious whileB is careful
and skeptical and that both players reason with their own beliefs only.

1. Produce all legal dialogues on topic p.

2. Think of an acceptance attitude that allows a player to learn from the other agent
but that avoids the problems as illustrated by Example 9.4.3.

EXERCISE 9.6.3 Let ΣW = {p, p ⊃ q, q ⊃ r} and ΣB = {s, s ⊃ ¬q}. Let all
formulas be of the same preference level. Assume that W is thoughtful and cautious
while B is careful and skeptical and that both players reason with their own beliefs
and with their commitments incurred by concessions. Assume finally that the players
also apply the attitude that you defined in your answer to Exercise 9.6.2(2). Produce
all legal dialogues on topic r if clause (4b) of the PWA protocol is applied in a depth-
first fashion, i.e., if after each response to an element from S the other player may first
respond to that response before the first player responds to the next element from S.

EXERCISE 9.6.4 Assume both players are thoughtful and skeptical.

1. Assume that these attitudes are verified relative to the speaker’s beliefs and the
hearer’s commitments. Prove or refute:

If W and B agree on preference ordering � and at termination of
dialogue d on topic t bothCW (d) ` t andCB(d) ` t, then t is justified
on the basis of ΣW ∪ ΣB and �.

2. Assume now that the assertion and acceptance attitudes are verified relative to the
speaker’s beliefs and commitments, and that the players also apply the attitude
that you defined in your answer to Exercise 9.6.2(2). Answer the same question.

EXERCISE 9.6.5 Consider two agentsW andB with knowledge bases ΣW = {p, p ⊃
q} and ΣB = {¬p}. Let all formulas be of equal preference, and assume that the
agents are both thoughtful and skeptical and that these attitudes are verified relative to
the speaker’s knowledge base only. If W starts a dialogue with claim q, will W and B
reach agreement on q?
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9.6.2 On Prakken (2005)

EXERCISE 9.6.6 Prove that for each finite dialogue d there is a unique dialogical
status assignment. Give a counterexample for infinite dialogues. (Hint: use results
stated in Chapter 4.)

EXERCISE 9.6.7 Explain that a reply to a surrendered move is never relevant.

EXERCISE 9.6.8 Answer the following questions about Figure 9.3.

1. What are the relevant targets for O after P7?

2. What are the relevant targets for P after O8?

3. Assume at P9 that P does not retract safe but instead moves another argument
for safe in reply to O2. What are then the relevant targets for O after P9?

EXERCISE 9.6.9 Assume an instance of the dialogue framework of Prakken (2005)
with the same argumentation logic as the dialogue system of Parsons, Wooldridge &
Amgoud, with the communication language of Table 9.2, and with a protocol for rele-
vant dialogue. Give a terminated dialogue starting with claim q and won by O in which
at least three different arguments constructible from the knowledge base Σ = {p, p ⊃
q, r, r ⊃ ¬p} are moved, where all formulas are of equal preference.

EXERCISE 9.6.10 Assume an instance of the dialogue framework of Prakken (2005)
with the same argumentation logic as the dialogue system of Parsons, Wooldridge &
Amgoud, with the communication language of Table 9.2, and with a protocol for rele-
vant dialogue. Give a terminated dialogue starting with claim q and won by O in which
at least three different arguments constructible from the knowledge base K = Kn ∪Kp
are moved, where Kn = ∅ and Kp = {p ∧ q,¬p} and where p ∧ q <′ ¬p.





Chapter 10

Legal argumentation with cases

10.1 Introduction

In this chapter several legal applications of argumentation formalisms will be discussed.
These applications partly use formalisms introduced in earlier chapters, such as abstract
argumentation frameworks and ASPIC+, and partly use formalisms especially designed
for legal argumentation with cases. The focus will especially be on formal models of
legal case-based argumentation.

The law is both a rich test bed and and important application field for AI research.
As a test bed, the law provides real, documented examples instead of artificial toy ex-
amples, and as an application field it may result in AI applications from which society
as a whole, not just industry or consumers, can benefit. At first sight, one might think
that such testing and application boils down to the use of techniques for knowledge rep-
resentation and automated deduction. Once a legal text and a body of facts have been
clearly represented in a formal language, the legal conclusions would follow from that
representation as a matter of deduction. However, this view is too simplistic. For one
thing it ignores that law is not just a conceptual or axiomatic system but has social ob-
jectives and social effects, which may require that a legal rule is overridden or changed.
Moreover, legislators can never fully predict in which circumstances the law has to be
applied, so legislation has to be formulated in general and abstract terms, such as ‘duty
of care’, ‘misuse of trade secrets’ or ’intent’, and qualified with general exception cat-
egories, such as ‘selfdefence’, ‘force majeure’ or ’unreasonable’. Such concepts and
exceptions must be interpreted in concrete cases, which creates uncertainty and room
for disagreement. This is reinforced by the fact that legal cases often involve conflict-
ing interests of opposing parties. The prosecution in a criminal case wants the accused
convicted while the accused wants to be acquitted. The plaintiff in a civil law suit wants
to be awarded compensation for damages, while the defendant wants to avoid having
to pay. The tax authority in a tax case wants to receive as much tax as possible, while
the tax payer wants to pay as little as possible. All these aspects of the law, i.e., its
orientation to future and not fully anticipated situations, the tension between the gen-
eral terms of the law and the particulars of a case, and the adversarial nature of legal
procedures, make that legal reasoning goes beyond the literal meaning of the legal rules
and involves appeals to precedent, principle, policy and purpose, and involves the at-
tack as well as the construction of arguments. A central notion then in the law is that
of argumentation. Indeed, the formal and computational study of argumentation is an
area of AI where AI-and-law researchers have not just applied AI techniques but where
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they have also contributed significantly to their development.
A legal case has various aspects, each with their own modes of reasoning: determin-

ing the facts, classifying the facts under legal concepts or conditions, and deriving legal
consequences from the thus classified facts. When determining the facts, the modes of
reasoning are often probabilistic and may involve reasoning about causation and about
mental attitudes such as intent. Classifying the facts under legal concepts involves inter-
pretation of these legal concepts. Here the prevailing modes of reasoning are analogy,
appeals to precedent or policy, and the balancing of interests. Finally, when deriving
legal consequences from the classified facts, the main modes of reasoning are deduc-
tive but with room for nonmonotonic techniques to deal with exceptions to rules, either
statutory or based on principle and purpose, and to choose between conflicting rules on
the basis of the general hierarchy of legal systems, with rules from different sources.

10.2 Legal case-based argumentation for classification and
interpretation

The concepts in the conditions of legal rules are often interpreted by referring to past
cases in which these rules were applied. Case-based reasoning forms can be found in
their most explicit form in common-law jurisdictions, in which judicial precedents can
be legally binding beyond the decided case, so that court decisions legally constrain
the decision in new cases. This leads to reasoning forms where interpretation rules are
formulated by courts in the context of particular cases and are constantly refined and
modified to fit new circumstances that were not taken into account in earlier decisions.
These reasoning forms can to a lesser extent also be found in civil-law jurisdictions,
since interpretations of the law by higher civil-law courts, even though strictly speaking
not binding beyond the decided case, still tend to be followed by lower courts.

Much AI & law work on the interpretation of legal concepts centers around the
notion of a factor, an idea going back to the HYPO system of Ashley (1990) and the
CATO system of Aleven (2003). Factors are abstractions of fact patterns that favour
(pro factors) or oppose (con factors) a conclusion. Factors are thus in an intermediate
position between the specific facts of a case and the legal predicates to which such facts
may be relevant. For example, in CATO, which like HYPO argues about misuse of
trade secrets, some factors pro misuse are that a non-disclosure agreement was signed,
that the plaintiff had made efforts to maintain secrecy and that the copied product was
unique; and some factors con misuse are that disclosures were made by the plaintiff in
negotiations and that the information was reverse-engineerable.

The HYPO and CATO systems are meant to model how lawyers make use of past
decisions when arguing a case. They do not compute an ‘outcome’ or ‘winner’ of a
dispute; instead they are meant to generate debates as they could take place between
‘good’ lawyers. HYPO generates disputes between a plaintiff and a defendant of a legal
claim concerning misuse of a trade secret. Each move conforms to certain rules for
analogizing and distinguishing precedents. These rules determine for each side which
are the best cases to cite initially, or in response to the counterparty’s move, and how
the counterparty’s cases can be distinguished. A case is represented as a set of factors
for a decision and a set of factors against that decision, plus the decision that resolves
the conflict between the competing factors. A case is citable for a side if it has the
decision wished by that side and shares with the Current Fact Situation (CFS) at least
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one factor which favors that decision. Thus citable cases do not have to exactly match
the CFS, which is a way of coping with the case-specific nature of case law decisions.
A citation can be countered by a counterexample, that is, by producing a citable case
that has the opposite outcome. A citation may also be countered by distinguishing,
that is, by indicating a factor in the CFS that is absent in the cited precedent and that
supports the opposite outcome, or a factor in the precedent that is missing in the CFS
and that supports the outcome of the cited case. HYPO also allows for multi-valued
factors, called dimensions, to vary the degree to which a factor promotes a certain
outcome. For example, a dimension is the number of people to which a trade secret
has been disclosed, or the extent to which security measures were taken. A boolean
factor is then a specific value of a dimension. Dimensions allow an additional way
to distinguish a precedent, namely, on a shared pro-decision factor that more strongly
favours the decision in the precedent than in the CFS.

CATO added to this a ‘factor hierarchy’, which expresses expert knowledge about
the relations between the various factors: more concrete factors are classified according
to whether they are a reason for or against the more abstract factors to which they are
linked; links are given a strength (weak or strong), which can be used to solve certain
conflicts. Thus the factor hierarchy can be used to explain why a certain decision was
taken, which in turn facilitates debate on the relevance of differences between cases.

For instance, the hierarchy positively links the factor Security measures taken to the
more abstract concept Efforts to maintain secrecy. Now if a precedent contains the first
factor but the CFS lacks it, then not only can a citation of the precedent be distinguished
on the absence of Security measures taken, but also this distinction can be emphasized
by saying that thus no efforts were made to maintain secrecy. However, if the CFS
also contains a factor Agreed not to disclose information, then the factor hierarchy
enables downplaying this distinction, since it also positively links this factor to Efforts
to maintain secrecy: the party that cited the precedent can say that in the current case,
just as in the precedent, efforts were made to maintain secrecy. The factor hierarchy
is not meant to be an independent source of information from which arguments can be
constructed. Rather it serves as a means to reinterpret precedents: initially cases are
in CATO, as in HYPO, still represented as one-step decisions; the factor hierarchy can
only be used to argue that the decision was in fact reached by one or more intermediate
steps.

While HYPO- and CATO-style work mainly focuses on rhetoric (modelling per-
suasive debates), other work addresses the logical question how precedents constrain
decisions in new cases. An important idea here is that precedents are sources of pref-
erences between factor sets and that these preferences are often justified by balancing
underlying legal or societal values. This work has recently been extended to dimen-
sions.

10.2.1 Factor-based models: basic notation and concepts

Consider a ‘case base’ (CB) with a large number of decided cases. A new case arises,
which may be unlike any case in CB. How can the CB still be used in the new case?

Suppose that the new case and a given precedent share at least some similarities
favouring the precedent’s outcome. Then the following situations can arise.

• The new case and the precedent have exacty the same set of factors: ⇒ unique
answer (assuming ‘consistency’ of the CB).
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• All differences between the new case and the precedent favour the precedent’s
outcome: ⇒ unique answer (assuming ‘consistency’ of the CB) = a fortiori rea-
soning.

• Some differences between the new case and the precedent favour the opposite
outcome than in the precedent. ⇒ analogy, plus debate about whether the simi-
larities or the differences should be decisive.

For modelling this kind of reasoning, the following is needed:

• knowledge about what are the relevant factors and whose side they favour;

• a language for representing cases;

• ways to cite precedents in support of a decision in a new case;

• ways to cite differences between a precedent and a new case.

The notation for the fist two of these elements is as follows. Let o and o′ be two out-
comes and Pro and Con be two disjoint sets of atomic propositions called, respectively,
the pro- and con factors, i.e., the factors favouring, respectively, outcome o and o′. The
variable s (for ‘side’) ranges over {o, o′} and s denotes o′ if s = o while it denotes o if
s = o′. We say that a set F ⊆ Pro ∪ Con favours side s (or F is pro s) if s = o and
F ⊆ Pro or s = o′ and F ⊆ Con . For any set F of factors the set F s ⊆ F consists of
all factors in F that favour side s. A fact situation is any subset of Pro ∪ Con .

A case can then be represented as a triple (pro(c), con(c), outcome(c)) where
outcome(c′) ∈ {o, o′}. Moreover, if outcome(c) = o then pro(c) ⊆ Pro and
con(c) ⊆ Con and if outcome(c) = o′ then pro(c) ⊆ Con and con(c) ⊆ Pro.
Given all this, a case base CB is a set of cases. Elements of CB are called precedents.

10.2.2 Formalising persuasive debates with cases

HYPO generates dialogues between a plaintiff and a defendant, in which all moves cite
or distinguish a case, assuming that o is that the plaintiff wins (π), so there was a misuse
of a trade secret, and o′ is that the defendant wins (δ), so there was no misuse of a trade
secret. Below the variable p ranges over {π, δ}.

Definition 10.2.1 [Citable cases, counterexamples, distinguishing] Given a case base
CB and a fact situation F :

1. a case c ∈ CB is citable by player p iff outcome(c) = p and pro(c) ∩ F 6= ∅;

2. a case c′ is a counterexample to a case c ∈ CB iff c and c′ have opposite out-
comes;

3. a case c ∈ CB is distinguishable on factor f iff f ∈ pro(c) \ pro(f) or f ∈
con(f) \ con(c).

Then HYPO employs the following simple debate protocol.
Given a fact situation F :

1. The plaintiff starts with citing a citable precedent with outcome π;
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2. The defendant cites all citable counterexamples to and distinguishes the prece-
dent cited by plaintiff in all possible ways;

3. The plaintiff distinguishes each counterexample cited by defendant, after which
the debate terminates.

HYPO has limited ways to compare precedents and define outcomes of a terminated-
debate. First, given a fact situation, a precedent c1 is more on point than a precedent c2

if all factors that c2 shares with the new case also occur in c1 and c1 shares additional
factors with the new case.

Definition 10.2.2 [On-pointness] Let F be a fact situation and c1 and c2 two prece-
dents. Then c1 is more on point than c2 given F (c1 >F c2) iff pro(c2)∪con(c2)∩F ⊂
pro(c1) ∪ con(c1) ∩ F .

The debate protocol could be refined by requiring that the participants cite the most on
point cases that are citable for them. Other ways to compare cases are possible and will
be defined later on.

Given the definition of on-pointness, HYPO has two limited definitions of an out-
come of a debate. A relative outcome is if the most on point precedent citable for side 1
is more on point than the most on point precedent citable for side 2: then side 1 has the
‘better case’ (but the court could still rule for the other side). An absolute outcome is
that if one of the sides can make an ‘a fortiori’ argument, this side wins (assuming that
the CB is ‘consistent’. This is since in that case the other side can neither distinguish
nor cite a counterexample. This notion is further explored in theories of precedential
constraint, to be discussed below.

CATO includes HYPO but CATO adds background knowledge about why factors
are pro or con a decision (the factor hierarchy). This yields two additional debate moves
for emphasising and downplaying a distinction between cases.

The factor hierarchy is a tree of factors with

• the root is the ultimate decision misuse of trade secrets;

• a link between two nodes is in the direction of the root and is labelled either pro
or con, where if the link is pro, the two factors favour the same side and if the
link is con, the two factors favour different sides;

• the leaves are the original HYPO factors.

Figure 10.1, taken from publications on CATO, displays a snapshot of the CATO factor
hierarchy plus a part of the CATO case base.

Definition 10.2.3 [Emphasising and downplaying a distinction] Consider a case base
CB and a fact situation F .

1. Suppose precedent c1 with decision p is distinguishable on pro p factor f , i.e.,
f ∈ pro(c) but f 6∈ F .

(a) Then the distinction can be emphasised by citing a more abstract factor g
in the factor hierarchy with a path from f with only pro links (arguing that
thus g is also lacking in F ).
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Figure 10.1: CATO case base and partial factor hierarchy.
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(b) And the distinction can be downplayed by pointing at a pro p factor f ′ in F
with a path to pro p factor g with only pro links (thus arguing that g is still
present in F ). In this case we say that f ′ substitutes f .

2. Suppose c1 with decision p is distinguishable on con p factor f , i.e., f ∈ F but
f 6∈ con(c).

(a) Then the distinction can be emphasised by citing a more abstract pro p
factor g in the factor hierarchy with a con link from f to g (arguing that
thus the more abstract pro p factor g is also lacking in F ).

(b) And the distinction can be downplayed by pointing at a pro p factor f ′ in
F with a path to g with only pro links (thus arguing that g is still present in
F ). In this case we say that f ′ cancels f .

Consider the factor hierarchy in Figure 10.1. If the plaintiff cites a precedent containing
F4 but the new case lacks F4, then the defendant can not only distinguish the citation
of F4 but also emphasise the distinction by saying that thus the more abstract factors
F122, F102 and F101 are also missing in the new case. If the new case contains the new
factor F6, then the plaintiff can downplay this distinction by saying that F6 substitutes
F4 so that the new case still contains F102 and F101.

Consider next a citation by the plaintiff where the new case contains F4 while the
cited precedent lacks it but where the defendant distinguishes on the new pro-defendant
factor F1. The defendant can emphasise the distinction by saying that thus F122, F102
and F101 are missing in the new case. Then the plaintiff can downplay by saying that F4
cancels the negative effect of F1 so that the new case still contains these more abstract
factors.

10.2.3 Factor-based precedential constraint

We next summarise a factor-based model of precedential constraint originally intro-
duced by Horty (2011).

Definition 10.2.4 [Preference relation on fact situations.] Let X and Y be two fact
situations. Then X ≤s Y iff Xs ⊆ Y s and Y s ⊆ Xs.

X <s Y is defined as usual as X ≤ Y and Y 6≤ X . This definition says that Y is at
least as good for s as X iff Y contains at least all pro-s factors that X contains and Y
contains no pro-s factors that are not in X .

Definition 10.2.5 [Precedential constraint with factors: result model.] Let CS be a
case base and F a fact situation. Then, given CB, deciding F for s is forced iff there
exists a case c = (X,Y, s) in CB such that X ∪ Y ≤s F . Moreover, deciding F for s
is allowed iff deciding F for s is not forced.

This definition models a fortiori reasoning in that an outcome in a focus case is forced
if a precedent with the same outcome exists such that all their differences make the
focus case even stronger for their outcome than the precedent. Note that it can happen
that both deciding F for s and for s is forced. This indicates a kind of inconsistency of
the case base; see further below.

As our running example we use a small part of the US trade secrets domain of the
HYPO and CATO systems. We assume the following six factors along with whether
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they favour the outcome ‘misuse of trade secrets’ (π for ‘plaintiff’) or ‘no misuse of
trade secrets’ (δ for ‘defendant’): the defendant had obtained the secret by deceiving
the plaintiff (π1) or by bribing an employee of the plaintiff (π2), the plaintiff had taken
security measures to keep the secret (π3, the product is not unique (δ1), the product is
reverse-engineerable (δ2) and the plaintiff had voluntarily disclosed the secret to out-
siders (δ3). We assume the following precedents:

c1(π): deceivedπ1, measuresπ3, not-uniqueδ1, disclosedδ3
c2(δ): bribedπ2, not-uniqueδ1, disclosedδ3

Clearly, deciding a fact situation F for π is forced iff it has at least the π-factors
{π1, π3} and at most the δ-factors {δ1, δ3} (by precedent c1), since then we have
{π1, π3} ⊆ F π and F δ ⊆ {δ1, δ3}. Likewise, deciding a fact situation for δ is forced
iff it has at least the δ-factors {δ1, δ3} and at most the π-factor {π2} (by precedent c2).

Consider next the following fact situation:

F1: bribedπ2, measuresπ3, reverse-engδ2, disclosedδ3

Comparing F1 with c1 we must check whether {π1, π3, δ1, δ3} ≤π {π2, π3, δ2, δ3}.
This is not the case, for two reasons. We have {π1, π3} 6⊆ F π1 = {π2, π3} and we have
F δ1 = {δ2, δ3} 6⊆ {δ1, δ3}. Next, comparing with precedent c2 we must check whether
{π2, δ1, δ3} ≤δ {π2, π3, δ2, δ3}. This is also not the case for two reasons. We have
{δ1, δ3} 6⊆ F δ1 = {δ2, δ3} and we have F π1 = {π2, π3} 6⊆ {π2}. So neither deciding F1

for π nor deciding F1 for δ is forced. Henceforth we will assume it was decided for π.
An alternative charactisation of precedential constraint is possible. The following

definition says that a case decision expresses a preference for any pro-decision set con-
taining at least the pro-decision factors of the case over any con-decision set containing
at most the con-decision factors of the case. This allows a fortiori reasoning from a
precedent adding pro-decision factors an/or deleting con-decision factors.

Definition 10.2.6 [Preferences from cases.] Let (pro(c), con(c), s) be a case, CB a
case base and X and Y sets favouring s and s, respectively. Then

1. Y <c X iff Y ⊆ con(c) and X ⊇ pro(c);

2. Y <CB X iff Y <c X for some c ∈ CB.

Definition 10.2.7 [(In)consistent case bases.] Let C be a case base with <CB the de-
rived preference relation. Then CB is inconsistent if and only if there are factor sets X
and Y such that X <CB Y and Y <CB X . And CB is consistent if and only if it is
not inconsistent.

The final definition says that deciding a case for a particular outcome is forced if that is
the only way to keep the updated case base consistent.

Definition 10.2.8 [Precedential constraint with factors: reason model.] Let CB be a
case base and F = F s ∪ F s a fact situation. Then, given CB, deciding F for s is
allowed iff CB ∪ {(F s, F s, s)} is consistent. Moreover, deciding F for s is forced iff
CB ∪ {(F s, F s, s)} is inconsistent.

It can be shown that (for consistent case bases) Definitions 10.2.5 and 10.2.8 are (for
forced decisions) equivalent.
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In terms of these models of precedential constraint, formal definitions can be given
of three concepts that are important in the common-law theory of precedent. Given
a case base containing precedent c and a new case f such that pro(c) ⊆ pro(f), a
decision of f follows precedent c if it is the same decision as in c, it distinguishes
precedent c if it is the opposite decision as in c and following the precedent c is allowed
but not forced; and the decision in the new case overrules precedent c if if it is the
opposite decision as in c and following the precedent c is forced. Note that following
a precedent can change the law in that the next time the same fact situation arises, the
decision is forced.

We next define a similarity relation on a case base given a focus case and prove
a correspondence with the above factor-based model of precedential constraint. The
similarity relation is defined in terms of the relevant differences between a precedent
and the focus case. These differences are the situations in which a precedent can be
distinguished in a HYPO/CATO-style approach with factors, namely, when the new
case lacks some factors pro its outcome that are in the precedent or has new factors con
its outcome that are not in the precedent.1

Definition 10.2.9 [Differences between cases with factors.] Let c be a case with fact
situation C and outcome s and f a case with fact situation F . The set D(c, f) of
differences between c and f is defined as Cs \ F s ∪ F s \ Cs.

Consider again our running example and consider first any focus case f with a fact
situation that has at least the π-factors {π1, π3} and at most the δ-factors {δ1, δ3}. Then
D(c, f) = ∅. Likewise with any focus case f with a fact situation that has at least the
δ-factors {δ1, δ3} and at most the π-factor {π2}. Next, let f be a focus case with fact
situation F1 and outcome π. We have

D(c1, f) = {deceivedπ1, reverse-engδ2}
D(c2, f) = {measuresπ3, not-uniqueδ1}

The following result, which yields a simple syntactic criterion for determining
whether a decision is forced, is proven by Prakken (2021a).

Proposition 10.2.10 Let CB be a case base CB and f a focus case with fact situation
F . Then deciding F for s is forced given CB iff there exists a case c with outcome s
in CB such that D(c, f) = ∅.

Clearly every case c such that D(c, f) = ∅ is citable for its outcome. Another result is
that for any two cases with opposite outcomes that both have differences with the focus
case, their sets of differences with the focus case are mutually incomparable (as with c1

and c2 in our running example).

Proposition 10.2.11 Let CB be a case base, f a focus case and c and c′ two cases with
opposite outcomes and with non-empty sets of differences with f . Then D(c, f) 6⊆
D(c′, f) and D(c′, f) 6⊆ D(c, f).

1The definition below is a simplification of but equivalent to a definition in Prakken (2021a) and is due
to Wijnand van Woerkom (personal communication).
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10.2.4 Dimension-based precedential constraint

In this section the above approach is adapted to dimensions, following Horty (2019).
Formally, a dimension is a tuple d = (V,≤o,≤o′) where V is a set (of values) and ≤o
and ≤o′ two partial orders on V such that v ≤o v′ iff v′ ≤o′ v. Given a dimension d, a
value assignment is a pair (d, v), where v ∈ V . The functional notation v(d) denotes
the value of dimension d. Then given a set D of dimensions, a fact situation is an
assignment of values to all dimensions in D, and a case is a pair c = (F, outcome(c))
such that F is a fact situation and outcome(c) ∈ {o, o′}. Then a case base is as before
a set of cases, but now explicitly assumed to be relative to a set D of dimensions in that
all cases assign values to a dimension d iff d ∈ D. As for notation, F (c) denotes the
fact situation of case c and v(d, c) denotes the value of dimension d in case c. Finally,
v ≥s v′ is the same as v′ ≤s v.

Note that the set of value assignments of a case is unlike the set of factors of a case
not partitioned into two subsets pro and con the case’s outcome. The reason is that
unlike with factors, with value assignments it is often hard to say in advance whether
they are pro or con the case’s outcome. All that can often be said in advance is which
side is favoured more and which side less if a value of a dimension changes, as captured
by the two partial orders ≤s and ≤s′ on a dimension’s values.

In HYPO two of the factors from our running example are actually dimensions.
Security-Measures-Adopted has a linearly ordered range, below listed in simplified
form (where later items increasingly favour the plaintiff so decreasingly favour the
defendant):

• Minimal-Measures, Access-To-Premises-Controlled, Entry-By-Visitors-Restricted,
Restrictions-On-Entry-By-Employees

(For simplicity we will below assume that each case contains exactly one security mea-
sure; generalisation to multiple measures is straightforward by defining the orderings
on sets of measures.). Moreover, disclosed has a range from 1 to some high number,
where higher numbers increasingly favour the defendant so decreasingly favour the
plaintiff. For the remaining four factors we assume that they have two values 0 and
1, where presence (absence) of a factor means that its value is 1 (0) and where for the
pro-plaintiff factors we have 0 <π 1 (so 1 <δ 0) and for the pro-defendant factors we
have 0 <δ 1 (so 1 <π 0).

Accordingly, we change our running example as follows, where if a factor that is
now a two-valued dimension is not mentioned, its value equals 0.

c1(π): deceivedπ1, measures = Entry-By-Visitors-Restricted,
not-uniqueδ1, disclosed = 10

c2(δ): bribedπ2, measures = Minimal,
not-uniqueδ1, disclosed = 5

F1: bribedπ2, measures = Access-To-Premises-Controlled,
reverse-engδ2, disclosed = 20

In the dimension-based result model of precedential constraint a decision in a fact
situation is forced iff there exists a precedent c for that decision such that on each
dimension the fact situation is at least as favourable for that decision as the precedent.
This idea is formalised with the help of the following preference relation between sets
of value assignments.
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Definition 10.2.12 [Preference relation on dimensional fact situations.] Let F and F ′

be two fact situations with the same set of dimensions. Then F ≤s F ′ iff for all
(d, v) ∈ F and all (d, v′) ∈ F ′ it holds that v(d) ≤s v′(d).

In our running example we have for any fact situation F ′ that F (c1) ≤π F ′ iff F ′ has π1

but not δ3 and v(F ′,measures) ≥π Entry-By-Visitors-Restricted and v(F ′,disclosed) ≥π
20 (so ≤ 20). Likewise, F (c2) ≤δ F ′ iff F ′ has δ1 but not π1 and v(F ′,measures) =
Minimal and v(F ′,disclosed) ≥δ 10 (so ≥ 10).

Then adapting Definition 10.2.5 to dimensions is straightforward.

Definition 10.2.13 [Precedential constraint with dimensions.] Let CS be a case base
and F a fact situation given a set D of dimensions. Then, given CB, deciding F for s
is forced iff there exists a case c = (F ′, s) in CB such that F ′ ≤s F .

In our running example, decidingF1 for π is not forced, for two reasons. First, v(c1, deceived) =
1 while v(F1, deceived) = 0 and for deceived we have that 0 <π 1. Second, v(c1,measures) =
Entry-By-Visitors-Restricted while v(F1,measures) = Access-To-Premises-Controlled
and Access-To-Premises-Controlled <π Entry-By-Visitors-Restricted. Deciding F1 for
δ is also not forced, since v(c2,measures) = Minimal while v(F1,measures) = Access-
To-Premises-Controlled and Minimal <δ Access-To-Premises-Controlled.

We next adapt Definition 10.2.9 to dimensions. Unlike with factors, there is no need
to indicate whether a value assignment favours a particular side, since we have the ≤s
orderings.

Definition 10.2.14 [Differences between cases with dimensions.] Let c = (F (c), outcome(c))
and f = (F (f), outcome(f)) be two cases. The set D(c, f) of differences between c
and f is defined as D(c, f) = {(d, v) ∈ F (c) | v(d, c) 6≤s v(d, f).

Let c be a precedent and f a focus case. Then this definition says that any value assign-
ment in the precedent such that the value for the same dimension in the focus case is
not at least as favourable for the outcome as in the precedent is a relevant difference. In
our running example, we have:

D(c1, F1) = {(deceived , 1), (reverse-eng,0), (measures , Entry-By-Visitors-Restricted),
(disclosed , 10) }
D(c2, F1) = {(not-unique,1), (measures,Minimal)}

The following counterpart of Proposition 10.2.10 is proven by Prakken (2021a).

Proposition 10.2.15 Let, given a set D of dimensions, CB be a case base and f a
focus case with fact situation F . Then deciding F for s is forced given CB iff there
exists a case in CB with outcome s such that D(c, f) = ∅.

10.2.5 Reasoning about factors: purpose and value

The work on precedential constraint does not explain why factors are factors pro or con
a decision. This question is addressed in a body of work initiated by Bench-Capon
Bench-Capon (2002), who was inspired by Berman & Hafner Berman and Hafner
(1993), who argued that often a factor can be said to favour a decision by virtue of
the purposes served or values promoted by taking that decision because of the factor.
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A choice in case of conflicting factors is then explained in terms of a preference order-
ing on the purposes, or values, promoted or demoted by the decisions suggested by the
factors. Cases can then be compared in terms of the values at stake rather than on the
factors they contain.

The role of purpose and value is often illustrated with some well-known cases from
Anglo-American property law on ownership of wild animals that are being chased. In
Pierson plaintiff was hunting foxes for sport on open land when defendant shot the
chased fox and carried it away. The court held for defendant. In Keeble a pond owner
placed a duck decoy in his pond with the intention to sell the caught ducks for a living.
Defendant used a gun to scare away the ducks, for no other reason than to damage
plaintiff’s business. Here the court held for plaintiff. Finally, in Young both plaintiff
and defendant were fishermen fishing in the open sea. Just before plaintiff closed his
net, defendant came in and caught the fishes with his own net.

Let us assume that the task is to argue for a decision in Young on the basis of
Pierson and Keeble. If cases are only compared on the factors they contain, then no
ruling precedent can be found. Pierson shares with Young that plaintiff was on open
land and that he had not yet caught the animal. Of these two factors, Keeble only
shares the latter with Young, but in addition Keeble shares with Young that plaintiff was
pursuing the animals for a living.

However, Berman & Hafner convincingly argue that skilled lawyers do not confine
themselves to factor-based comparisons, but often frame their arguments in terms of
the values that are at stake.2 Let us apply this view to the above cases and assume that
three values are at stake in these cases, viz. economic benefit for society (Eval), legal
certainty (Cval), and the protection of property (Pval). Then a key idea is to specify
how case decisions advance values.

- Deciding for a side because that side was hunting for a living advances Eval.
- Deciding for a side because that side was hunting on his own land advances Pval.
- Deciding for a side because that side had caught the animal advances Pval.
- Deciding for a side because the other side had not caught the animal advances
Cval.

We can then say that Pierson was decided for defendant to promote legal certainty and
since no values are served by deciding for plaintiff: he was not hunting for a living so
economic benefit would not be advanced, and he had not yet caught the fox and was
hunting on open land, so there are no property rights to be protected. Further, we can
say that Keeble was decided for plaintiff since the value of economic benefit and the
protection of property are together more important than the value of certainty. Thus
Keeble also reveals part of an ordering of the values. Finally, in this interpretation of
Pierson and Keeble, Young should be decided for defendant: the value of economic
benefit does not support plaintiff since defendant was also fishing for his living, the
value of protecting property does not apply since plaintiff had not yet caught the fish
and was not on his own land, so the only value at stake is certainty, which is served by
finding for the defendant. We now give a semiformal analysis of this analysis in the
ASPIC+ framework, leaving the logical language formally undefined and instead using
streamlined natural language for expressing the premises and conclusions of the argu-
ments. Recall that argument schemes are in ASPIC+ modelled as defeasible inference
rules. The first idea is that the specification of how case decisions advance values can

2Below we will use ‘values’ to cover also purposes, policies, interests etc.
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be used in the following argument scheme.

Argument scheme from case decisions promoting values
Deciding Current Pro promotes set of values V1

Deciding Current Con promotes set of values V2

V1 is preferred over V2

Therefore (presumably), Current should be decided Pro.

Here Pro and Con are variables ranging over {Plaintiff ,Defendant}. Another idea is
that whether a set of values is preferred over another set of values, can be derived from
a precedent (as in our example from Keeble).

Argument scheme from preference from precedent
Deciding Precedent Pro promotes set of values V1

Deciding Precedent Con promotes set of values V2

Precedent was decided Pro
Therefore (presumably), V +

1 is preferred over V −2

Here the notation V +
1 denotes any superset of V1 of values while V −2 denotes any subset

of V2. This notation captures a fortiori reasoning in that if in a new case deciding Pro
promotes at least V1 and possibly more values, while deciding Con promotes at most
V2, then the new case is even stronger for Pro than the precedent.

If it is also given that a proper superset of values is always preferred over a proper
subset, then the first scheme directly applies to Young, since deciding Young for the de-
fendant promotes {Pval ,Eval}while deciding Young for the plaintiff promotes {Eval}.
However, imagine another new case in which deciding for the plaintiff promotes {Pval ,Eval}
or a superset thereof, while deciding for the defendant promotes {Cval}: then the sec-
ond scheme is needed to infer the preference of the first value set over the second (for
instance, from Keeble), after which the first scheme can be applied to conclude that the
plaintiff should win.

10.2.6 Arguing about rule change

What we have in fact done in the previous subsection is modelling legal case-based
reasoning as what philosophers call practical reasoning, that is, reasoning about what
to do. In particular, in both cases use is made of a variant of argument schemes of
good and bad consequences of decisions for action. While in the previous section we
applied this approach to factor-based reasoning, it can also be applied to other legal
interpretation problems. In this subsection we illustrate this for the question whether a
legal rule has to be modified by making an exception or not. In civil-law legal systems,
in which rules are mainly created by legislation, this question can arise in parliamentary
debate, where the debate will be about the good and bad consequences of enacting a
rule, or about the legal, social or moral values promoted or demoted by enacting the
rule. In common-law systems, where traditionally rules are gradually developed in a
series of case-law decisions, the question arises in judicial decision-making in concrete
cases, where the question is whether to follow or to distinguish a common-law rule.
However, the types of arguments are often the same as in parliamentary settings.

We illustrate this with an American common law of contract case, the Olga Monge
v. Beebe Rubber Company case, decided by the Supreme Court of New Hampshire
(USA), February 28, 1974. In brief, the facts were that Olga Monge, according to the
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court “a virtuous mother of three”, was employed at will (that is, for an indefinite period
of time) by Beebe Rubber Company. The relevant common law rule at that time said
that every employment contract that specifies no duration is terminable at will by either
party, which means that the employee can be fired for any reason or no reason at all.
At some point, Olga Monge was fired for no reason by her foreman. Olga claimed that
this was since she had refused to go out with him and she claimed breach of contract,
arguing that the common law rule does not apply if the employee was fired in bad faith,
malice, or retaliation. The court accepted that she was fired was that reason and was
then faced with the problem whether to follow the old rule and decide that there was
no breach of contract, or to distinguish the rule into a new rule by adding an exception
in case the employee was fired in bad faith, malice, or retaliation, in order to decide
that there was breach of contract. Here it is relevant that according to one common law
theory of precedential constraint, courts can distinguish an old rule by adding an extra
condition as long as the new rule still gives the same outcome in all precedent cases as
the old rule.

The court decided to distinguish the old rule, on the following grounds:

In all employment contracts, whether at will or for a definite term, the
employer’s interest in running his business as he sees fit must be balanced
against the interest of the employee in maintaining his employment, and
the public’s interest in maintaining a proper balance between the two.

(. . . )

We hold that a termination by the employer of a contract of employment
at will which is motivated by bad faith or malice or based on retaliation
is not in the best interest of the economic system or the public good and
constitutes a breach of the employment contract.

We now reconstruct this reasoning as practical reasoning with a variant of the above
argument scheme from cases promoting values.

Argument scheme from decisions promoting values
Adopting Proposal 1 promotes set of values V1

Adopting Proposal 2 promotes set of values V2

V1 is preferred over V2

Therefore (presumably), Current should be decided Pro.

The two alternative decision options are to follow the old rule (proposal 2) or to
distinguish it into the new rule by adding a condition ‘unless the employee was fired
in bad faith, malice, or retaliation’ (proposal 1). In the present interpretation the court
stated that following the old rule promotes the employer’s interest in running his busi-
ness as he sees fit (the single value in V2) while it stated that distinguishing the old rule
by adopting the new rule promotes the interest of the economic system and the public
good (the two values comprising V1). The court’s decision to adopt the new rule then
expresses a preference for V1 over V2. Note that the court does not give an explicit
reason for this preference. The new rule is then applied with defeasible modus ponens
to the facts of the case, leading to the final decision.
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10.3 Exercises

Many exercises below are about Figure 10.1, in particular the case base Group 1 of
Table 1 and the factor hierarchy.

10.3.1 Exercises on HYPO and CATO

EXERCISE 10.3.1 Consider Figure 10.1 and consider a new case with:

Pro-plaintiff factors: F2, F4, F15, F21
Pro-defendant factors: F16, F23

1. Which precedents are citable for the plaintiff?

2. Give all citable counterexamples for the defendant against Emery.

3. Give a counterexample from question 2 which can be distinguished by the plain-
tiff, and list the factors on which it can be distinguished.

4. Give a case that is citable for the plaintiff and then distinguishable for the de-
fendant, after which the plaintiff can downplay the distinction. Show how the
plaintiff can downplay it.

10.3.2 Exercises on precedential constraint

EXERCISE 10.3.2 For question 10.3.1, which of the citable precedents give rise to a
preference with Definition 10.2.6 that can be used to argue that deciding for the plaintiff
in the new case is forced?

EXERCISE 10.3.3 Consider the issue whether a child is allowed to watch TV after
dinner (W). Assume the following factors:

Pro-W factors: Done homework (D), at least 10 years old (T), Healthy (H)
Con-W factors: Not-D, not-T, Not-H.

Assume the following precedent: Albert is 12 years old, he has done his homework but
he has the flu. He was not allowed to watch TV after dinner.

1. Assume a new case with Betsy who is 9 years old, has done her homework and
is healthy. Is the decision to let her watch TV after dinner allowed and/or forced
by the precedent? And is the opposite decision allowed and/or forced by the
precedent?

2. Assume a second new case with Carla who is 7 years old, has done her homework
but is not healthy. Is the decision to let her watch TV after dinner allowed and/or
forced by the precedent? And is the opposite decision allowed and/or forced by
the precedent?

3. Imagine a third new case of Derek who is 15 years old, has done his homework
but has a cold. Is the decision to let him watch TV after dinner allowed and/or
forced by the precedent? And is the opposite decision allowed and/or forced by
the precedent?
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4. (Continuing 3) can you think of ways to distinguish Derek’s case from the prece-
dent?

EXERCISE 10.3.4 Express your answer to Question 10.3.3(1-3) in the reader with
Definition 10.2.5. Identify for all new cases the relevant differences with the precedent,
assuming they have the same outcome as the precedent.

EXERCISE 10.3.5 This question is about the table and figure on CATO in Sec-
tion 10.2.2. Consider the following precedent and new case:

Case Pro-plaintiff factors Pro-defendant factors Outcome
Prec F2, F15, F21 F23 Plaintiff
New case F2, F4, F21 F1, F25 ?

1. Consider the factor hierarchy in Figure 4 in the reader. Find a way for the de-
fendant to distinguish the precedent after which the plaintiff can downplay the
distinction.

2. Verify whether deciding the new case Pro is forced, allowed but not forced, or not
allowed. Express your answer with both Definition 10.2.5 and Definition 10.2.8.

3. Identify the relevant differences between the precedent and the new case, assum-
ing they have the same outcome.

EXERCISE 10.3.6 Consider in the example on page 174 a new case

F2: deceivedπ1, measures = Access-To-Premises-Controlled,
not-uniqueδ1,reverse-engδ2, disclosed = 15

1. Determine whether deciding F2 for π or δ is forced on the basis of CB =
{c1, c2}.

2. List the relevant differences between the precedents and the new case, assuming
for each precedent that the new case has the same outcome.

EXERCISE 10.3.7 Model the problem domain of Question 10.3.3 of the reader with
dimensions. Then answer questions (1-3) again, including the relevant differences be-
tween the precedent and the new cases.

EXERCISE 10.3.8 Consider the issue whether the fiscal domicile of a Dutch per-
son who moved abroad for some time has changed, with the outcomes changed and
not changed. Consider the following dimensions relevant to that issue, where home is
whether the tax payer kept or gave up his Dutch home while being abroad, employer is
whether during his stay abroad the tax payer had a Dutch or foreign employer or was
self-employed, duration is the duration of the stay abroad in months, and earnings is
the percentage of the tax-payer’s income that was earned abroad during the stay:

home, with V = {given up, kept} and kept <changed given up;
employer, with V = {Dutch, self-employed, foreign} and

Dutch <changed self-employed, Dutch <changed foreign;
duration, with V = the natural numbers and x <changed y iff x < y;
earnings, with V = {0, . . . , 100} and x <changed y iff x < y.
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Consider furthermore the following case base:

c1: home = kept; employer = self-employed; duration = 16; earnings = 60.
c2: home = gave up; employer = Dutch; duration = 12; earnings = 80.

where Outcome(c1) = changed and Outcome(c2) = not changed. Consider finally the
following fact situation

F : home = kept; employer = foreign; duration = 18; earnings = 60.

Is deciding F for changed forced, is deciding F for not changed forced, or are both
decisions allowed? In your answer, specify the relevant differences between F and the
two precedents.





Chapter 11

Answers to exercises from
Chapters 3-10

11.1 Answer to exercise Chapter 3

EXERCISE 3.2.1

1. B and D are justified. B is reinstated by D.

2. A,C andE are justified. No argument is reinstated byD, sinceD is not justified.
A and C are reinstated by E.

11.2 Answers to exercises Chapter 4

EXERCISE 4.8.1

(a): C is justified since it has no defeaters. B is not justified, since it is defeated
by a justified argument, viz. by C. Therefefore, A is justified, since its only defeater,
which is B, is not justified.
(b): The status of A and B cannot be determined: A is justified if and only if its only
defeater, which is B, is not justifed. But B is not justified just in case A, which is its
only defeater, is justified. Thus we enter a loop. And since the status of C depends on
the status of its only defeater, which is B, the status of C cannot be determined either.

EXERCISE 4.8.2 Consider an arbitrary argument A. By assumption, there is an argu-
ment B such that B defeats A. So A ∈ F (∅) iff there is a C ∈ ∅ such that C defeats
B. However, no such C exists, so A 6∈ F (∅). Since A was chosen arbitrarily, we can
conclude that no argument is in F (∅). 2.

EXERCISE 4.8.3
a: b: c: d:
F 0 = ∅ F 0 = ∅ F 0 = ∅ F 0 = ∅
F 1 = {A} F 1 = F 0 F 1 = {C} F 1 = {A,E}
F 2 = {A,D} F 2 = {C,B} F 2 = {A,E,C}
F 3 = F 2 F 3 = F 2 F 3 = F 2

183
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The grounded extensions are the fixed points of these sequences.

So the grounded extension is {A,D}.

EXERCISE 4.8.4

1. To show that F (X) = G2(X), for every set of arguments X , it turns out that
it is easier to show that the complements of the two sets are equal. This has to
do with quantifying over arguments. Thus, suppose x /∈ G2(X). By definition
of G this means that there exists a y ∈ G(X) defeating x, i.e., x ← y. Since
y ∈ G(X), the argument y is not defeated by a member of X . Hence y shows
that x /∈ F (X). Conversely, suppose that x /∈ F (X). Then x is defeated by a y
that is not defeated by a z ∈ X . Thus x is defeated by a y ∈ G(X), and hence
x /∈ G2(X).

2. The result that G is anti-monotonic follows from the fact that, if an argument is
not defeated by a member of B, then it surely cannot be defeated by a member
of any subset A ⊆ B.

3. Suppose A ⊆ B. Since G is anti-monotonic, it follows that G(B) ⊆ G(A).
Again by anti-monotonicity of G, we obtain G2(A) ⊆ G2(B), which is equal to
the expression F (A) ⊆ F (B).

4. If {Gi}i≥0 with G0 =Def ∅ and Gi =Def G(Gi−1), then in particular

G0 ⊆ G1 and G0 ⊆ G2. (11.1)

Now apply the anti-monotonicity of G to (11.1) repeatedly, to obtain the chain of
inclusions desired.

EXERCISE 4.8.5
- (a): justified: A,D; overruled: B,C; defensible: none.
- (b): justified: none; overruled: none; defensible: all.
- (c): justified: B,C; overruled: A,D; defensible: none.
- (d): justified: A,C,E; overruled: B,D; defensible: none.

EXERCISE 4.8.6
⇒:
Consider any stable extension E, and consider first any argument A not defeated by
E. Then A ∈ E. Consider next any argument B defeated by E. Then, since E is
conflict-free, B 6∈ E. So E = {A | A is not defeated by E}.2
⇐:
Let E = {A | A is not defeated by E}. Clearly, E is conflict-free. Furthermore, for all
A, if A 6∈ E, then E defeats A. So E is a stable extension.2

EXERCISE 4.8.7

• Example 4.1.3: There is just one status assignment, which is maximal:

- S1 = ({A,C}, {B})

• Example 4.1.4: There are three status assignments:
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- S1 = (∅,∅)

- S2 = ({A}, {B})
- S3 = ({B}, {A})

Only S2 and S3 are maximal.

• Example 4.3.8: There is just one status assignment, which is maximal:

- S1 = (∅,∅)

EXERCISE 4.8.8

1. Consider any A ∈ Out . Then there is a B ∈ In defeating A. But also B ∈ In ′,
so that A ∈ Out ′. So Out ⊆ Out ′.

2. Consider any argument C such that C 6∈ In but C ∈ In ′.
(i) Since C 6∈ In , there exists a B 6∈ Out such that B defeats C.
(ii) Consider next any such B that defeats C and is not in Out . Any such B must
be in Out ′, otherwise C would not be in In ′.
Hence (from i and ii) there exists an argument that is in Out ′ but not in Out .
Together with (1) this gives us that Out is a proper subset of Out ′.

EXERCISE 4.8.9

- A is defensible iff is in in some but not all preferred status assignments, and A
is overruled if A is out in all preferred status assignments. This leaves open that
there are arguments that neither justified, nor defensible, nor overruled. Cf. Ex-
ample 4.3.8.

- A is defensible iff is in in some but not all preferred status assignments, and A is
overruled if there is no status assignment in which A is in. With this definition all
arguments are either justified, Xor defensible, Xor overruled.

EXERCISE 4.8.10: The empty set, which is maximally admissible.

EXERCISE 4.8.11

1. (a) Preferred: {A,D}, also stable.

(b) Preferred: {B,D,E}, also stable; {A,E}, also stable.

(c) Preferred: ∅, no stable extensions.

(d) Preferred: {A,C,E}, also stable.

(e) (with slightly detailed explanation)
(1) Preferred extensions:

- E1 = {A,B,D}
- E2 = {C}

(2) Stable extensions. BothE1 andE2 are also stable extensions, since both
sets defeat all arguments outside them. Furthermore, by Proposition 4.4.1
there are no other stable extensions.

2. (a) for preferred and stable semantics: A,D justified, B,C overruled.
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(b) for preferred and stable semantics: E justified, C overruled, A,B,D de-
fensible.

(c) for preferred semantics: neither is justified, defensible or overruled. For
stable semantics: all are both justified and overruled.

(d) For preferred and stable semantics: A,C,E justified, B,D overruled.

(e) For preferred and stable semantics: all defensible

EXERCISE 4.8.12: The grounded extension is empty, while there are two preferred
extensions, viz. {B,D} and {A,C}. Note that one preferred extension concludes that
Larry is rich, while the other concludes that Larry is not rich, so in bothsemantics no
conclusion about Larry’s richness is justified. Yet it may be argued that the conclusion
that Larry is not rich is the intuitively justified conclusion, since all arguments for the
opposite conclusion have a strict defeater. Anyone who adopts this analysis, will have
to conclude that this example presents a problem for both grounded and preferred se-
mantics. However, see Exercise 6.9.9 for a solution when the structure of arguments is
made explicit.

EXERCISE 4.8.13

1. AF (∆3) contains five arguments:

- A = ∅
- B = :p

¬p
- C = :q

q

- D = :p
¬p ,

:q
q

- E = :q
q ,

:p
¬p

The defeat graph is as follows:

A

C

B

D

E

There is no stable extension, while there is one preferred extension, viz. {A,C}.

2. Since it recognizes that A and C should come out as justified, since they have no
defeaters.

EXERCISE 4.8.14

1.

(a) A = :b
a ,

a:c∧d
c , c:bb

(b)

- B = :e
e ,

e:¬a
¬d

- C = :¬a
¬a ,

:b
a
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(c) Yes, for instance of {A}. Note that A defeats both B and C. Another
admissible set is {A,A′}, where

- A′ = :b
a

Note that A′ also defeats both B and C.

(d) Yes, by (c) and the fact that every admissible set is contained in a preferred
extension (see the proof of Proposition 4.3.13).

(e) No: the grounded extension is empty, since there is no undefeated argu-
ment. In particular, A′ is defeated by C.

EXERCISE 4.8.15

Suppose A is finite and failed. Then In(A) ∪ Out(A) 6= ∅, so ϕ ∈ In(A) for some
ϕ ∈ Out(A). But then A defeats A.

11.3 Exercises Chapter 5

EXERCISE 5.5.1

1. The defeat graph is:

2. We are asked to list all strategies of P an O. There are two strategies for P (“?”
indicates an unfortunate move, “‡” indicates the move that leads to a loss for the
other party):
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There are two strategies for O:

EXERCISE 5.5.2

1.

2.

3.

EXERCISE 5.5.3

(1a) P has winning strategies for A and D, but not for B:
- A winning strategy for A consists of putting forward A, after which O cannot respond
because A has no defeaters.
- A winning strategy forB does not exist, because O can reply toB withA, after which
P cannot move.
- A winning strategy for D is simple: put forward D; the only responses to D are B
and C, which can both be countered with A, after which O cannot move.

(3) We make the comparison for the proof of A in graph (a):

F 0 = ∅
F 1 = {A}
F 2 = {A,D}

Compared to a won dialogue on D, the order of stating A and D is reversed. With
F , we start with the undefeated arguments and at each iteration add the arguments rein-
stated by the arguments added at the previous iteration. In a dialectical proof, P starts
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Figure 11.1: P ’s winning strategies (first attempt)

with an argument from F i where imay be greater than 1, and at each next turn P moves
an argument from F i−1 that can reinstate the argument of the previous move.

EXERCISE 5.5.4 The argument A == :b
a ,

a:c∧d
c , c:bb is not provably justified, since O

can reply with C = :¬a
¬a ,

:b
a , after wich P has no strictly defeating reply.

EXERCISE 5.5.5 P successively moves A1, A3, . . . , A2i−1, A2i+1, . . . and O succes-
sively moves A2, A4, . . . , A2i, A2i+2, . . . so they wil never repeat their own argument.
And P always uses ‘odd’ arguments while O always uses ‘even’ arguments, so they
will never repeat each other’s argument. Finally, since the defeat chain is infinite, they
will always have a new move.

EXERCISE 5.5.6 The simplest example is with two arguments A and B such that
A defeats itself and there are no other defeat relations. B is provable since O has no
reply if P starts with B, but this argumentation framework has no stable extensions.

EXERCISE 5.5.7

(1a): All arguments except argument C are provable. Figure 11.1 contains a first at-
tempt to display the winning strategies for P (where all moves reply to the previous
move). However, these trees are not yet strategies, since they do not contain all possi-
ble backtracking replies of O as children of a P move. (Note that a strategy is not a
tree of dispute lines but a tree of disputes, so that a next move in a branch of a strategy
may well reply not to the previous move but to an earlier move in the branch.) So the
correct winning strategy for A is a lot more complex.

Let us illustrate this with a simpler example, viz. the graph of Exercise 4.8.11(a).
At first sight, a winning strategy for D would look as in Figure 11.2. However, the
correct winning strategy is as displayed in Figure 11.3 (where the replied-to move is
indicated between brackets).
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Figure 11.2: P ’s seeming winning strategy for D in 4.8.11(a)

Figure 11.3: P ’s correct winning strategy for D in 4.8.11(a)

(1b): We show that D is not provable. In general, to show that an argument is not
provable, it suffices to show one strategy for O in which P cannot win. Here, such a
strategy is the one in which O replies to D with A; then P ’s only legal reply is B, to
which O replies with C and P has run out of moves, so O wins.

(1c): Argument c is not provable, since O has a winning strategy beginning with m.
Then P can only reply with l after which O moves k and the game terminates with a
win by O since P cannot repeat O’s move m.

(2): For question 1a these are the games in Figures 11.1 and 11.2.

11.4 Exercises Chapter 6

EXERCISE 6.9.1

1. The following argument for Ra can be created.

A1: ∀x(Px ⊃ Qx)
A2: Pa
A3: A1, A2 → Qa
A4: ∀x(Qx ⊃ Rx)
A5: A3, A4 → Ra
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2. Prem(A) = {Pa,∀x(Px ⊃ Qx), ∀x(Qx ⊃ Rx)}
Conc(A) = Ra
Sub(A) = {A1, A2, A3, A4, A5}
DefRules(A) = ∅
TopRule(A) = Qa,∀x(Qx ⊃ Rx)→ Ra

3. The argument is strict and plausible.

EXERCISE 6.9.2.

1. We again use the G-game. The following argument for t can be created.

A1: p
A2: q
A3: A1, A2 ⇒ r
A4: A3 → r ∨ s
A5: A4 ⇒ t

A5 has one attacker, namely, the following underminer on A2:

B1: u
B2: B1 ⇒ v
B3: ¬(q ∧ v)
B4: B2, B3 → ¬q

Since the argument ordering is simple, we have that A2 ≈ B4, so B4 success-
fully undermines A5 on A2 and thus defeats A5. Argument B4 in turn has two
attackers. Firstly, B4 is undermined by the following argument for ¬u:

C1: w
C2: C1 ⇒ ¬u

Again since the argument ordering is simple, C2 successfully undermines B4

on B1, so C2 strictly defeats B4. (Note that this is strict defeat since B4 does
not even attack C2.) However, we also have that B1 rebuts C2 and since the
argument ordering is simple, we have that B1 defeats C2, so the opponent can
reply to C2 with B1. Then the game ends with a win by the opponent, since we
have C2 ≈ B1 so there is no strict defeater of B1.

The proponent can also defeat B4 with the following rebuttal of B2:

D1: q
D2: ¬(q ∧ v)
D3: D1, D2 → ¬v

However, D3 is not a strict defeater of B4, since B4 in turn defeats D3 on D1.
So the proponent cannot move D3 in reply to B4.

To see whether A5 is defensible or overruled, note that the only defeater of A5 is
B4 but the proponent does not have a winning strategy for B4: it is defeated by
C2, which has no strict defeater. Hence B4 is not justified, so A5 is defensible,
which makes t defensible also.
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2. t is now justified, since argument B4 does not defeat argument A2, so A5 has no
defeaters. To see this, observe that LastDefRules(A2) = ∅while LastDefRules(B4) =
{u⇒ v} 6= ∅, so LastDefRules(B4) /Eli LastDefRules(A2), so B4 ≺ A2.

3. Now t is not justified. Note that Premp(A2) = {q} while Premp(B4) = {u} and
since q <′ u we have that Premp(A2) /Eli Premp(B4). Then despite the fact that
DefRules(B4) /Eli DefRules(A2) we have that B4 6≺ A2, so B4 defeats A2

and thus B4 also defeats A5.

Next we have to verify whether any attack on B4 succeeds as defeat. Con-
sider first C2. We have that Premp(C2) = {w} while Premp(B1) = {u} and
w <′ u, so we have that Premp(C2) /Eli Premp(B1). Moreover, we have that
DefRules(B1) = ∅ and DefRules(C2) = {w ⇒ ¬u} so DefRules(C2) /Eli
DefRules(B1). So C2 ≺ B1 so C2 does not defeat B1.

Consider next D3. We must first verify whether D3’s attack on B2 succeeds. We
have that DefRules(B2) = {u⇒ v} and DefRules(D3) = ∅, so DefRules(B2)/Eli
DefRules(D3). However, we also have that Premp(D3) /Eli Premp(B2). Since
D3 is strict but not firm and B2 is neither strict nor firm, we have to apply clause
(3) of Definition 6.3.24. But then D3 6≺ B2 and B2 6≺ D3, so D3 defeats B2,
so D3’s attack on B2 succeeds. Next we must verify whether B4’s attack on D1

succeeds. We have to make the same comparisons, so B4 defeats D1. But then
B4 also defeats D3, so D3 does not strictly defeat B4. But then, as under (1),
the proponent has no legal reply to B4 in the G-game, so the proponent does not
have a winning strategy for A5.

EXERCISE 6.9.3.

1. The following argument for t can be created.

A1: s
A2: A1 ⇒ t

A2 is rebutted by the following argument for ¬t:

B1: p
B2: B1 ⇒ q
B3: B1, B2 ⇒ r
B4: B2, B3 → q ∧ r
B5: (q ∧ r) ⊃ ¬t
B6: B4, B5 → ¬t

(Note that since B6 is strict, A2 does not in turn rebut B6.) We have that
LastDefRules(A2) = {d3}while LastDefRules(B6) = {d1, d2}. Since d2 <
d3 we have that LastDefRules(B6) /Eli LastDefRules(A2), so B6 ≺ A2.
Hence B6 does not defeat A2. Since A2 has no other defeaters, we can concude
at this point that A2 will be in in all preferred status assignments, which makes it
justified. Then t is a justified conclusion.

It is interesting to verify the status of argument B6 for ¬t. Since the present
argumentation theory is well defined, it is to be expected that this conclusion is
not justified. This turns out to be indeed the case. First of all, A2 can be extended
to a rebuttal of B3:
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A3: (q ∧ r) ⊃ ¬t
A4: A2, A3 → ¬(q ∧ r)
A5: p
A6: A5 ⇒ q
A7: A4, A6 → ¬r

We have that LastDefRules(A7) = {d1, d3} while LastDefRules(B3) =
{d2}. Since < is transitive we have d2 < d1 so {d2} /Eli {d1, d3} and B3 ≺ A7.
Hence A7 successfully rebuts and thus strictly defeats B3. But then A7 also
defeats B4, B5 and B6.

Yet another relevant argument can be constructed, which starts in the same way
as A7:

A3: (q ∧ r) ⊃ ¬t
A4: A2, A3 → ¬(q ∧ r)
A5: p
A6: A5 ⇒ q
A8: A5, A6 ⇒ r
A9: A4, A8 → ¬q

A9 rebuts B2 (and not vice versa). We have LastDefRules(A9) = {d2, d3}
while LastDefRules(B2) = {d1}. Since d2 < d1 so A9 < B2 we have that A9

does not defeat B2. Since A6 = B2 we also have that A9 does not defeat A6.
Finally, A7 rebuts A8. Recall that LastDefRules(A7) = {d1, d3}; moreover,
LastDefRules(A8) = {d2} and we have seen that {d2} /Eli {d1, d3} so A8 ≺
A7, for which reason A7 strictly defeats A8.

Now to evaluate the status of the arguments, A7 and all its subarguments can be
made in since they have no defeaters. Since A7 strictly defeats A8 and thus also
A9, the latter two arguments can be made out. Moreover since A7 strictly defeats
B3 and thus also B4, B5 and B6, the latter four arguments can also be made
out. No alternative status assignments are possible, while moreover the present
assignment is complete. So B6 is out in all preferred status assigments, which
makes ¬t an overruled conclusion.

2. • Prem(A1) = {s}, Conc(A1) = s, Sub(A1) = {A1}, DefRules(A1) = ∅
and TopRule(A1) = undefined.

• Prem(A2) = {s}, Conc(A2) = t, Sub(A2) = {A1, A2}, DefRules(A2) =
{d3}, LastDefRules(A2) = {d3} and TopRule(A2) = d3.

• Prem(A3) = {(q∧r) ⊃ ¬t}, Conc(A3) = (q∧r) ⊃ ¬t, Sub(A3) = {A3},
DefRules(A3) = ∅, LastDefRules(A3) = ∅ and TopRule(A3) = un-
defined.

• Prem(A4) = {s, (q ∧ r) ⊃ ¬t}, Conc(A4) = ¬(q ∧ r), Sub(A4) =
{A1, A2, A3, A4}, DefRules(A4) = {d3}, LastDefRules(A4) = {d3}
and TopRule(A4) = (q ∧ r) ⊃ ¬t, t→ ¬(q ∧ r).

• Prem(A5) = {p}, Conc(A5) = p, Sub(A5) = {A5}, DefRules(A5) = ∅
and TopRule(A5) = undefined.

• Prem(A6) = {p}, Conc(A6) = q, Sub(A6) = {A5, A6}, DefRules(A6) =
{d1}, LastDefRules(A6) = {d1} and TopRule(A6) = d1.
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• Prem(A7) = {s, p, (q∧r) ⊃ ¬t}, Conc(A7) = ¬r, Sub(A7) = {A1, A2, A3,
A4, A5, A6, A7}, DefRules(A7) = {d1, d3}, LastDefRules(A7) = {d1, d3}
and TopRule(A7) = ¬(q ∧ r), q → ¬r.

• Prem(A8) = {p}, Conc(A8) = r, Sub(A8) = {A5, A6, A8}, DefRules(A8) =
{d1, d2}, LastDefRules(A8) = {d2} and TopRule(A8) = d2.

• Prem(A9) = {s, p, (q∧r) ⊃ ¬t}, Conc(A9) = ¬q, Sub(A9) = {A1, A2, A3,
A4, A5, A6, A8, A9}, DefRules(A9) = {d1, d2, d3}, LastDefRules(A9) =
{d2, d3} and TopRule(A9) = ¬(q ∧ r), r → ¬q.

• B1, B2, B3 equal A5, A6, A8.

• Prem(B4) = {p}, Conc(B4) = q ∧ r, Sub(B4) = {B1, B2, B3, B4},
DefRules(B4) = {d1, d2}, LastDefRules(B4) = {d1, d2} and TopRule(B4) =
q, r ⊃ q ∧ r.

• B5 equals A3.

• Prem(B6) = {p, (q∧ r) ⊃ ¬t}, Conc(B6) = ¬t, Sub(B6) = {B1, B2, B3,
B4, B5, B6}, DefRules(B6) = {d1, d2}, LastDefRules(B6) = {d1, d2}
and TopRule(B6) = q ∧ r, (q ∧ r) ⊃ ¬t→ ¬t.

EXERCISE 6.9.4.

1. It can be verified that there is no status assignment that assigns a status to A2 or
A3.

Firstly, to make A2 in, its defeater A3 must be out. To make A3 out, one of its
defeaters must be in. However, the only defeater of A3 is A3 itself (by under-
cutting its subargument A2) and A3 cannot be both in and out. So A2 cannot be
made in.

Next, to make A2 out, it must have a defeater that is in. Its only defeater is A3.
To make A3 in, all its defeaters must be out. However, A3 defeats itself and A3

cannot be both in and out. So A2 cannot be made out.

So there is only one preferred status assignment, in which A1 is in, since A1 has
no defeaters. Moreover, this set is also the grounded extension.

2. Add Says(John, “StabbedWithKnife(Suspect ,Victim)”) to Kp. Then the
following argument can be constructed:

B1: Says(John, “StabbedWithKnife(Suspect ,Victim)”)
B2: StabbedWithKnife(Suspect ,Victim)

This argument is undercut by A3. Since, as we have seen, no status assign-
ment assigns a status to A3, argument B2 cannot have a status either. Then
E = {A1, B1} is the only preferred and grounded extension of the extended
argumentation framework. Then according to preferred semantics B2 is neither
justified, nor defensible, nor overruled while according to grounded semantics it
is defensible.
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EXERCISE 6.9.5.

1. We have the following arguments:

A1: injury B1: medicalTests1
A2: appendicitis B2: B1 ⇒ badCirculation
A3: A2 ⇒ ¬ riskyOperation B3: B2 ⇒ riskyOperation
A4: A1, A3 ⇒ negligence
A5: A1, A4 ⇒ compensation C1: medicalTests2

C2: C1 ⇒ ¬ badCirculation

Their attack relations are shown in Figure 11.4.

Figure 11.4: Abstract attack graph

2. • Prem(A1) = {f1}, Conc(A1) = injury , Sub(A1) = {A1}, DefRules(A1) =
∅ and TopRule(A1) = undefined.

• Prem(A2) = {f2}, Conc(A2) = appendicitis , Sub(A2) = {A2}, DefRules(A2) =
∅ and TopRule(A2) = undefined.

• Prem(A3) = {f2}, Conc(A3) = ¬riskyOperation , Sub(A3) = {A2, A3},
DefRules(A3) = {r3} and TopRule(A3) = r3.

• Prem(A4) = {f1, f2}, Conc(A4) = negligence, Sub(A4) = {A1, A2, A3, A4},
DefRules(A4) = {r2, r3} and TopRule(A4) = r2.

• Prem(A5) = {f1, f2}, Conc(A5) = compensation , Sub(A5) = {A1, A2, A3, A4, A5},
DefRules(A5) = {r1, r2, r3} and TopRule(A5) = r1.

• Prem(B1) = {f3}, Conc(B1) = medicalTests1 , Sub(B1) = {B1}, DefRules(B1) =
∅ and TopRule(B1) = undefined.

• Prem(B2) = {f3}, Conc(B2) = badCirculation , Sub(B2) = {B1, B2},
DefRules(B2) = {r5} and TopRule(B2) = r5.

• Prem(B3) = {f3}, Conc(B3) = riskyOperation , Sub(B3) = {B1, B2, B3},
DefRules(B3) = {r4, r5} and TopRule(B3) = r4.

• Prem(C1) = {f4}, Conc(C1) = medicalTests2 , Sub(C1) = {C1}, DefRules(C1) =
∅ and TopRule(C1) = undefined.
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• Prem(C2) = {f4}, Conc(C2) = ¬badCirculation , Sub(C2) = {C1, C2},
DefRules(C2) = {r6} and TopRule(C2) = r6.

3. We have that LastDefRules(A3) = {r3} while LastDefRules(B3) = {r4}
and since r3 < r4 we have that LastDefRules(A3) /Eli LastDefRules(B3),
so A3 ≺ B3, so B3 strictly defeats A3.

Moreover, we have that LastDefRules(B2) = {r5}while LastDefRules(C2) =
{r6} and since r5 < r6 we have that LastDefRules(B2)/EliLastDefRules(C2),
so B2 ≺ C2, so C2 strictly defeats B2.

The other attack relations succeed as defeats. The resulting defeat relations are
shown in Figure 11.5.

Figure 11.5: Abstract argumentation framework with grounded and unique preferred
labelling

4. Figure 11.5 shows the grounded labelling: the arguments that are in are coloured
gray, the arguments that are out are coloured white. The grounded extension
consists of all arguments that are labelled in.

5. Since the abstract argumentation theory depicted in Figure 11.5 is finite and has
no cycles, all semantics give the same result. But we also have DefRules(A3) =
{r3}while DefRules(B3) = {r4, r5}. Since the priority relation between r3 and
r5 is undefined, we have that the preference relation between DefRules(A3) and
DefRules(B3) is also undefined. So the grounded extension is also the unique
preferred (and stable) extension.

6. We now also have that Premp(A3) = ∅ while Premp(B3) = {f3} so we have
that Premp(B3) /Eli Premp(A3). But we also have DefRules(A3) = {r3}
while DefRules(B3) = {r4, r5}. Since the priority relation between r3 and
r5 is undefined, we have that the preference relation between DefRules(A3) and
DefRules(B3) is also undefined. Then we have that A3 6� B3 and B3 6� A3 so
A3 and B3 now defeat each other.

Moreover, we now also have that Premp(B2) = {f3} while Premp(C2) = {f4},
so since f4 <

′ f3, we have that Premp(C2) /Eli Premp(B2). Then we have that
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B2 6� C2 and C2 6� B2 so B2 and C2 now also defeat each other. So the defeat
relations now equal the attack relations as displayed in Figure 11.4. Then there
are three preferred labellings: the original one displayed in Figure 11.5 and two
new ones displayed in, respectively Figure 11.6 and Figure 11.7. The two new
preferred extensions consist, respectively, of the sets of argument labelled in in
these two preferred labellings.

The grounded labelling now makes A1, A2, B1 and C1 in and the remaining ar-
guments undecided. So the grounded extension is {A1, A2, B1, C1}.

Figure 11.6: Abstract argumentation theory with a second preferred labelling

Figure 11.7: Abstract argumentation theory with a third preferred labelling
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EXERCISE 6.9.6: see Figure 11.8.

Figure 11.8: Abstract argumentation theory for Figure 6.4

EXERCISE 6.9.7.

1. The following argument for r can be constructed.

A1: p
A2: A1 ⇒ q
A3: A1, A2 → r

We verify the status of r with the P -game. Argument A3 has one defeater,
namely the following undercutter of A2.

B1: s
B2: B1 ⇒ t
B3: B2 → ¬d1

Argument B3 has one attacker, rebutting B3 on B2:

C1: u
C2: C1 ⇒ v
C3: C2 ⇒ ¬t

We are in case (3) of Definition 6.3.24. First, since u <′ s, we have that
Premp(C3)/EliPremp(B2). Next,B2 uses one defeasible rule, namely, d2, while
C3 uses two defeasible rules, namely, d3 and d4. Since d3 < d2 we have that
DefRules(C3) /Eli DefRules(B2). So C3 ≺ B2, so B2 strictly defeats C3 and
C3 does not defeat B3. Moreover, B3 is in in all preferred labellings since it has
no defeaters, so A3 is out in all preferred labellings and is therefore overruled.
Since there are no other arguments for r, this also makes r overruled.
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2. Now r is justified. First, since both arguments are defeasible, the premise order-
ing is now irrelevant. Next, since arguments B2 and C3 are now compared on d2

and d4 and since d2 < d4, we have LastDefRules(B2)/EliLastDefRules(C3).
So B2 ≺ C3 and C3 strictly defeats both B2 and B3. Moreover, there are no de-
featers of C3, so the proponent now has a winning strategy forA3 in the P -game.

EXERCISE 6.9.8

1. Kp consists of:

∀x(BornInNL(x) ; Dutch(x))
∀x(NorwegianName(x) ; Norwegian(x))
∀x((Dutch(x) ∨ Norwegian(x)) ; LikesIceSkating(x))
BorninNL(b)
NorwegianName(b)
∀x¬(Dutch(x) ∧ Norwegian(x))

The following relevant arguments can be constructed:

A1: BorninNL(b)
A2: ∀x (BornInNL(x) ; Dutch(x))
A3: A2 → BornInNL(b) ; Dutch(b)
A4: A1, A3 ⇒ Dutch(b)
A5: A4 → Dutch(b) ∨ Norwegian(b)
A6: ∀x((Dutch(x) ∨ Norwegian(x)) ; LikesIceSkating(x))
A7: A6 → (Dutch(b) ∨ Norwegian(b)) ; LikesIceSkating(b)
A8: A5, A7 ⇒ LikesIceSkating(b)

B1: BorninNL(b)
B2: ∀x (BornInNL(x) ; Dutch(x))
B3: B2 → BornInNL(b) ; Dutch(b)
B4: B1, B3 ⇒ Dutch(b)
B5: ∀x¬(Dutch(x) ∧ Norwegian(x))
B6: B4, B5 → ¬Norwegian(b)

C1: NorwegianName(b)
C2: ∀x (NorwegianName(x) ; Norwegian(x))
C3: C2 → NorwegianName(b) ; Norwegian(b)
C4: C1, C3 ⇒ Norwegian(b)
C5: C4 → Dutch(b) ∨ Norwegian(b)
C6: ∀x((Dutch(x) ∨ Norwegian(x)) ; LikesIceSkating(x))
C7: C6 → (Dutch(b) ∨ Norwegian(b)) ; LikesIceSkating(b)
C8: C5, C7 ⇒ LikesIceSkating(b)

D1: NorwegianName(b)
D2: ∀x (NorwegianName(x) ; Norwegian(x))
D3: D2 → NorwegianName(b) ; Norwegian(b)
D4: D1, D3 ⇒ Norwegian(b)
D5: ∀x¬(Dutch(x) ∧ Norwegian(x))
D6: D4, D5 → ¬Dutch(b)
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(If the example is formalised in a propositional language, then the steps A7 and
C7 must be omitted.)

2. Note first that if no preference relation is specified, it does not hold. Then the
relevant defeat relations are as follows:

- B6 defeats C4 and thus also C5 − C8

- D6 defeats B4 and thus also B5 and B6

- D6 defeats A4 and thus also A5 −A8

- B6 defeats D4 and thus also D5 and D6

Let us first concentrate on B6 and D6. Since they defeat each other and have no
other defeaters, it is possible to assign no status to them. Then in the grounded
status assignments they have no status. But then the same holds for the argu-
ments defeated by one of them. This includes A8 and C8. Hence the conclusion
LikesIceSkating(b) only has defensible arguments and is therefore itself de-
fensible.

(The same answer in terms of the fixpoint definition: Since B6 and D6 defeat
each other and have no other defeaters, they are in no F i. But then the arguments
defeated by one of them also are in no F i. )

3. Let us again first concentrate on B6 and D6. Argument B6 can be made in by
making D6 out and vice versa. Then there is a preferred status assignment in
which B6 is in and D6 is out. In this status assignment also C4 − C8 are out and
A1 − A8 are in. So an argument for the conclusion LikesIceSkating(b) is in,
namely, A8. Conversely, there is also a preferred status assignment in which D6

is in and B6 is out. In this status assignment also A4 − A8 are out and C1 − C8

are in. So again an argument for the conclusion LikesIceSkating(b) is in but
this time it is not A8 but C8. So both A8 and C8 are defensible, so the conclusion
LikesIceSkating(b) is also defensible.

4. Since both preferred extensions contain an argument for the conclusion
LikesIceSkating(b), this conclusion is f -justified, even though there is no jus-
tified argument for it.

EXERCISE 6.9.9 The following formalisation is based on the intuition that the conclu-
sion that Larry is not rich is justified. The undercutters in the example are based on the
principle that statistical defaults about subclasses have priority over statistical defaults
about superclasses.

Rs consists of all valid propositional and first-order inferences.

Rd consists of:

d1. Lawyer(x)⇒ Rich(x)
d2. LivesInHollywood(x)⇒ Rich(x)
d3. PublicDefender(x)⇒¬ Rich(x)
d4. RentsinHollywood(x)⇒¬ Rich(x)
d5. PublicDefender(x)⇒¬d1(x)
d6. RentsinHollywood(x)⇒¬d2(x)

Kp consists of
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p1. PublicDefender(L)
p2. RentsInHollywood(L)

Kn consists of

n1. ∀x(PublicDefender(x) ⊃ Lawyer(x))
n2. ∀x(RentsInHollywood(x) ⊃ LivesInHollywood(x))

The following relevant arguments can be constructed:

A1: PublicDefender(L)
A2: ∀x(PublicDefender(x) ⊃ Lawyer(x))
A3: A1, A2 → Lawyer(L)
A4: A3 ⇒ Rich(L)

B1: PublicDefender(L)
B2: B1 ⇒ ¬Rich(L)

C1: RentsInHollywood(L)
C2: ∀x(RentsInHollywood(x) ⊃ LivesInHollywood(x))
C3: C1, C2 → LivesInHollywood(L)
C4: C3 ⇒ Rich(L)

D1: RentsInHollywood(L)
D2: B1 ⇒ ¬Rich(L)

E1: PublicDefender(L)
E2: E1 ⇒ ¬d1(L)

F1: RentsInHollywood(L)
F2: F1 ⇒ ¬d2(L)

Let us apply preferred semantics (but in grounded semantics the outcome is the same).
Note first that E2 undercuts A4 and F2 undercuts C4. Moreover, neither E2 nor F2

has a defeater, so both of them are in all preferred extensions. But then A4 and C4 are
not in any preferred extension, so that B2 and D2 are in all these extensions. So the
conclusion ¬Rich(L) is justified.

EXERCISE 6.9.10.

1. Cltp(Rs) = Rs ∪ {−q → −p; − r → −p; p,−s→ −r; r,−s→ −p}.

2. Yes.

3. No.

EXERCISE 6.9.11. The point of this exercise is that closure under contraposition does
not imply closure under transposition.

1. No: Rs contains p→ q but not ¬q → ¬p.

2. Yes. We have:

{p} ` q and {¬q} ` ¬p
{p} ` ¬r and {r} ` ¬p
{¬r} ` q and {¬q} ` r
{¬q} ` r and {¬r} ` q

So an argumentation theory withRs satisfies contraposition.
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EXERCISE 6.9.12.

(a): A2 = [[q ⇒ t]⇒ s],¬r ∨ ¬t→ ¬r.

(b). Overruled. Argument A2 for ¬r is rebutted on its subargument A1 for t by
argument B2 = [p ⇒ r],¬r ∨ ¬t → ¬t. We have that DR(B2) = {d1} while
DR(A1) = {d2, d3}. Since d2 < d1, we have that DR(A1) < DR(B2), so A1 ≺ B2,
so B2 strictly defeats A2 on B1. Since B2 has no defeaters, O has a winning strategy in
the G-game, so A2 is not justified. Moreover, for the same reasons B2 is justified. So
A2 is overruled. Since there are no other arguments for ¬r, we have that ¬r is overruled
as well. (Note that the argument that can be constructed for r does not attack A2).

(c) Now we have that LDR(A1) = {d3} while LDR(B2) = {d1}. Since d3 < d1,
we have that LDR(B2) < LDR(A1), so B2 ≺ A1, so A2 has no defeaters, so A2 is justi-
fied, so ¬t is justified.

EXERCISE 6.9.13.

1. The arguments (shown in Figure 11.9, with their conclusions at the bottom) are:

A′ = a,

A = A′ ⇒ p,

B1 = ∼ s,
B′1 = B1 ⇒ t,

B2 = r,

B′2 = B2 ⇒ q,

B = B′1,

B′2 → ¬p,

C = [¬r].

A' : a

d 3

A : p

B   : 

d 1

1     ~ s

B  ' : 1   t

B   : 

d 2

2  r

B  ' : 2   q

   

B :  ¬ p

C :  ¬ r

Figure 11.9: ASPIC+ arguments and their conclusions, with dashed and solid lines
respectively representing application of defeasible and strict inference rules.

2. B rebuts A on A, C undermines B and B′2 on B2, and C and B2 undermine each
other. Note that A does not rebut B since B has a strict top rule.
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3. We have that LastDefRules(B) = {d1, d2} and LastDefRules(A) = {d3}
and since d2 < d3, we have that LastDefRules(B) /Eli LastDefRules(A).
So B does not defeat A. Moreover, we have that Premp(C) = {¬r} while
Premp(B2) = {r} and ¬r <′ r, so we also have that Premp() /Eli Premp(B2).
So C ≺ B2 so B2 strictly defeats C.

4. The transpositions are p, t→ ¬q and p, q → ¬t. This yields two new arguments:

D = A,B′1 → ¬q,

E = A,B′2 → ¬t.

D rebuts B′2 while E rebuts B′1.

We have that LastDefRules(D) = {d1, d3} and LastDefRules(B′2) = {d2}
and since d1 6< d2 and d2 6< d1, we have that these sets are incomparable in the
/Eli ordering. So D defeats B′2.

Moreover, we have that LastDefRules(E) = {d2, d3} and LastDefRules(B′1) =
{d1} and since d1 6< d2 and d2 6< d1, we have that these sets are incomparable
in the /Eli ordering. So E defeats B′1.

EXERCISE 6.9.14.

1. The arguments are

A1: ∼ a
A2: A1 → b
A3: A2 ⇒ ¬c

B1: ⇒ c
B2: B1 ⇒ a

Argument B2 contrary-undermines A1, A2 and A3 on A1. Argument A3 rebuts
B1 and B2 on B1. Finally, B1 rebuts A3 on A3.

2. The attack of B2 on A1, A2 and A3 succeeds since contrary undermining is a
preference-independent form of attack. Moreover, we have that DefRules(B1) =
{d2} and DefRules(A3) = {d1} and since d2 < d1, we have that DefRules(B1)/Eli
DefRules(A3), so B1 ≺ A3. So A3 strictly defeats B1 and B2.

3. The grounded extension is empty, since there are no undefeated arguments.

4. There are two preferred extensions: the first is {A1, A2, A3} while the second is
{B1, B2}.
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EXERCISE 6.9.15.

1. C2 rebuts D2 and not vice versa. Since both arguments use defeasible rules and
no preference relations hold between them, C2 successfully rebuts and therefore
defeats D2. Argument C2 in turn has two defeaters: its subarguments A2 and
B2 defeat each other and thus also defeat C2. Since there are no undefeated
arguments that defeat A2 or B2, none of A2, B2, C2 and D2 are in the grounded
extension. (In terms of status assignments: it is possible to give none of them
a status so in the grounded extension, which maximises undecidedness, none
of them have a status.) However, none of these arguments are defeated by an
argument that is in the grounded extension, so they are all defensible.

2. Note that A2 can be made in if B2 is made out and vice versa. Then at least
one preferred status assignment makes A2 in and B2 out, since such assignments
minimise undecidedness. But since A2 defeats C2, this assignment also makes
C2 out. But then it makes D2 in, since its only defeater is C2. Conversely, a
second preferred status assignment makes B2 in and A2 out so it also makes C2

out and D2 in. Since there are no other preferred status assignments, in all such
assigments C2 is out and D2 is in. But then C2 is overruled and D2 is justified.

EXERCISE 6.9.16.

1. No. We explain this with the G-game. There is an argument for guilty , namely

A = murder , murder ⊃ guilty → guilty .

Argument A has two strict defeaters, namely:

B = ¬ab,¬ab ⊃ ¬guilty ,murder ⊃ guilty → ¬murder

C = ¬ab,¬ab ⊃ ¬guilty ,murder → ¬(murder ⊃ guilty)

Since Kp is minimally inconsistent (i.e., taking any element out makes Kp con-
sistent), both B and C have underminers on any of their premises: these under-
miners can be formed by replacing the attacked premise with the remaining one.
Since the argument ordering is simple, all these undermining attacks succeed as
defeats. For example, B is defeated on ¬ab by

D = murder ,¬ab ⊃ ¬guilty ,murder ⊃ guilty → ab

In the same way, any further argument moved in a G-game has defeaters, so
the proponent does not have a winning strategy for A.

2. Any argument ordering in which ¬ab is inferior to all other formulas in Kp will
do, since then neitherB not C defeatsA, so the proponent wins theG-game after
moving A.

3. Move all formulas except ¬ab to Kn. Then argument A has no attackers since
all its premises are necessary.
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EXERCISE 6.9.17.

1. p is not justified. The following relevant arguments can be created

Argument Preference
A1 :⇒ p (1)
A2 :⇒ ¬p ∨ ¬q (2)
A3 : A1 ⇒ q (3)
A4 : A1, A2 → ¬q (1)
A5 : A1, A3 → ¬(¬p ∨ ¬q) (1)
A6 : A2, A3 → ¬p (2)

The numbers in the second column are proxy’s for preference relations, where
Ai ≤ Aj iff Ai’s number is i and Aj’s number is j and i ≤ j. These are
established by listing the preference level of the weakest element of the relevant
sets of LDR. The contents of these sets are specified below.

There is just one argument for p, namely, A1. We play the G-game about A1. It
has one attacker, namely, A6. We must compare

LDR(A1) = {⇒ p} with LDR(A6) = {⇒ ¬p ∨ ¬q; p⇒ q}

Since both elements of LDR(A6) are strictly preferred over ⇒ p, we have that
LDR(A1) /Eli LDR(A6), so A6 defeats A1 and is a legal move by the opponent.
To verify whether the proponent can then find a strict defeater of A6, we check
all attackers of A6.

A6 is rebutted on A1 by A6, and as we have just seen, this attack succeeds as de-
feat. However, then A6 defeats itself so A6 is not a legal move for the proponent,
who must move strict defeaters.

A6 is rebutted on A3 by A4. We must compare

LDR(A3) = {p⇒ q} with LDR(A4) = {⇒ p; ⇒ ¬p ∨ ¬q}

Since p⇒ q has the highest preference level, we have that LDR(A4)/EliLDR(A3),
so A4 does not defeat A3.

Finally, A6 is rebutted on A2 by A5. We must compare

LDR(A2) = {¬p ∨ ¬q} with LDR(A5) = {⇒ p; p⇒ q}

Since ⇒ p is the weakest defeasible rule, we have that LDR(A5) /Eli LDR(A2),
so A5 does not defeat A2.

In sum, the grounded game terminates after the opponent’s reply to A1 with A6,
so A1 is not provable in the G-game, so argument A1 is not justified. Since its
only defeater A6 is self-defating, it is easy to see that A1 is not overruled either.
So it is defensible.

2. Argument A6 is an inconsistent argument so it is not part of the c-SAF. Then
there is a unique extension E containing {A1, A2, A3, A4, A5} as a subset in any
semantics, since no attack relation succeeds as defeat. In particular, A5 does not
defeatA2 andA4 does not defeatA3. So the grounded extension containsA1, A2

and A4, which violates indirect consistency, since q,¬p ∨ ¬q → ¬p ∈ Rs. For
the same reason and since A6 6∈ E, this also violates strict closure.
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11.5 Exercises Chapter 7

Exercise 7.4.1:

1. We have the same arguments as in Exercise 6.9.7. Argument B2 attacks C3 and
since C3 ≺ B2 by the last-link ordering, B2 also defeats C3. Moreover, B3

attacks A2 and A3 by directly undercutting A2. However, since d2 < d1 we have
in the last-link ordering that B3 ≺ A2 and B3 ≺ A3. Hence B3 does not defeat
A2 or A3. So the only defeat relation in the PAF is that B2 defeats C3.

2. A3 has no defeaters so r is justified.

Exercise 7.4.2:

1. We have the argumentsA1, A2, A3, B1, B2, B3, C1, C2, D3, D4 from Example 6.3.6.
We have the following attack and defeat relations.

B2 and D4 attack each other. Since d2 < d5 we have that B2 ≺ D4 so D4

strictly defeats B2.
D4 attacks B3 (by directly attacking B2). Since d5 < d3 we have that D4 ≺ B3

so D4 does not defeat B3.
B3 attacks A2 and A3 (by undercutting A2). Since the priority relation between
d1 and d3 is undefined, the preference relation between these arguments is also
undefined. So B3 defeats A2 and A3.

2. The argument A3 for r has an undefeated defeater, namely, B3, so r is overruled.

3. In ASPIC+ we have that D4 strictly defeats B3 since it strictly defeats its subar-
gument B2. Then A3’s only defeater has an undefeated defeater, so clearly r is
justified.

Exercise 7.4.3:

1. See Figure 11.10, where the support relations are displayed with dashed arrows.
The BAF with subargument support leaves the transitive closure of support im-
plicit.

2. See the following table for the added defeats.

Secondary Extended Supported Mediated
Subargument support I → B G→ B, A→ H B → G, H → A

A→ I

Premise support F → H , F → I H → F

Conclusion support B → E B → E

Intermediate support B → F

3. See the following table for the added defeats.
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Figure 11.10: BAFs for the ASPIC+ SAF

General Deductive Necessary
Subargument support G→ B, A→ H G↔ B, A↔ H , B ↔ I

A→ I A→ I

Premise support F → H F ↔ H

Conclusion support B → E not definable
Intermediate support B → F B → F

The reason why for conclusion support the semantics of necessary support is not
definable is that in the example the conclusion-support relation cannot be both
irreflexive and transitive.

4. See the following table.

in out undecided
Subargument + general: A,C,D,E, F,G B,H, I

Subargument + deductive: C,D,E, F A,B,G,H, I

Subargument + necessary: A,C,D,E, F,G B,H, I

Premise + general: A,B,C,D,E, F,G, H, I

Premise + deductive: A,C,D,E,G, B, F,H, I

Premise + necessary: A,C,D,E, F,G B,H, I

Conclusion + general: A,C,D,E, F,G, B,H, I

Conclusion + deductive: A,C,D,E, F,G B,H, I

Conclusion + necessary: − − −
Intermediate + general: A,C,D,E,G B,F,H, I

Intermediate + deductive: A,C,D, F,G B,H, I

Intermediate + necessary: A,C,D,E,G B,F,H, I
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11.6 Exercises Chapter 8

Exercise 8.6.1:

1. Yes, since there is just one preferred extension, namely, {B}.

2. No. if the defeat from B to A is deleted, then the preferred extension is empty.

Exercise 8.6.2:

1. In (a) D is justified in all full resolutions. One full resolution deletes the defeat
from B to C and another full resolution deletes the defeat from C to B. In both
cases the grounded extension is {A,D}.
In (b)D is justified in some but not all full resolutions. Any full resolution which
deletes the defeat from A to D makes D a member of the grounded extension.
But a full resolution that deletes the defeats from D to A and B to A makes
instead A a member of the grounded extension.

In (e) D is also justified in some but not all full resolutions. If the defeat from C
to B is deleted, then D is in the grounded extension but if the defeat from B to
C is deleted then instead C is in the grounded extension.

2. All answers are the same for preferred semantics.

Exercise 8.6.3:

a:
A defeats A, B defeats A, B defeats C
A defeats A, B defeats A, C defeats B
A defeats A, A defeats B, B defeats C
A defeats A, A defeats B, C defeats B

b: the first one (which has one stable extension) and any of the other three, since these
have no stable extensions.

Exercise 8.6.4: Nothing changes. With the elitist last-link ordering the attack of B3

on A2 is preference independent. Moreover, no preference can change the preference
relation between B1 and C3 since LDR(C3) 6= ∅ while LDR(B1) = ∅. Finally, the
preference relation between B2 and D4 depends on d2 and d5 but it is already given
that d2 < d5 so no further preference can change this. With elitist weakest-link two
comparisons are relevant. The first is between {d2} and {d4, d5} for B2 versus D4,
where d4 < d2 is already given and determines the preference between B2 and D4,
which a preference extension cannot change. The second comparison is between u and
s for C3 versus B1, where u <′ s is already given, so again no further preference can
change this.

Exercise 8.6.5:

1. Yes. A is undermined by B = p, q → (p∧ q). We have Premp(A) = {¬(p∧ q)}
while Premp(B) = {p, q} and since p <′ ¬(p ∧ q) but the relation between q
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and ¬(p ∧ q) is undefined, we have that Premp(B) /Eli Premp(A). So B ≺ A,
so B does not defeat A. Since A has no other defeaters, B is in the grounded
extension.

Note that we have the following orderings between the various premise sets:

{p, q} /Eli {¬(p ∧ q)}
{p} /Eli {q,¬(p ∧ q)}
{p,¬(p ∧ q)} /Eli {q}

2. There are three ways to extend ≤: with q <′ ¬(p ∧ q), with ¬(p ∧ q) <′ q and
with q ≈′ ¬(p ∧ q). In all three cases the above orderings between the various
premise sets does not change. So the set D of defeat relations does not change,
so there exists no full preference-based resolution. So the answer is ’yes’.

Exercise 8.6.6:

For (a) consider a UAT with Lu = {p,¬p, d1,¬d1, d2,¬d2, d3,¬d3}, with Ku =
{¬d1}, withRus = ∅ and withRd consisting of the rules in the following arguments:

A : ¬d1

B : ⇒d2 p
C : ⇒d3 ¬d2

D : ⇒d1 ¬d3

For (b) one of the many examples is with Lu = {p,¬p, q,¬q}, with Kun = {¬p} and
Kup = {p, q}, and withRus = Rd = ∅. Then

A : p
B : ¬p
C : q

For (c), one example is with the language and rules as specified in the following argu-
ments:

A : ⇒d1 p B : ⇒d2 ¬d1 F : ⇒d3 ¬d2

C : ⇒d4 q D : ⇒d5 ¬d4 G : ⇒d6 ¬d5

E : ⇒d7 ¬d6

Exercise 8.6.7:

1. Yes, for instance, adding E as strict defeater of A.

2. No, since any defeater of A also defeats B, So if A is out then B is out.

Exercise 8.6.8:

1. Yes. AF does not delete arguments and defeat relations, D 6= ∅ and the new
defeat relation involves one new argument.
(b): No, since adding C to A involves adding r to Kp which induces a new
argumentD = r (it also involves adding a preferenceA ≺ C but that is irrelevant
here). Moreover, an indirect defeat relation from C to B must be added.
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Exercise 8.6.9:

1. There are seven arguments:

A1: p A2: A1 ⇒r1 q A3: A2 ⇒r2 r
B3: A2 ⇒r4 t

C1: s C2: C1 ⇒r3 ¬r
D1: u D2: D1 ⇒r5 ¬t

A3 and C2 defeat each other;
B3 and D2 defeat each other.

2.

(a) No, since also an argument F : ¬u ⇒ v and an indirect defeat relation
(E,D2) must be added.

(b) No. Note first that all allowed expansions have to add ¬u to K′p since
expansions have to contain at least one new argument. Moreover, to change
defeat relations also rule preferences must be added. Making the argument
for ¬r justified requires r1 < r3 and making the argument for t justified
requires r5 < r1 and r5 < r4. These preferences cannot all be added
together since �′ has to remain a weakest-link ordering and r1 < r3 and
r3 < r5 together imply r1 < r5.

11.7 Exercises Chapter 9

EXERCISE 9.6.1

1. - p is overruled. It has one argument, viz. A1 = ({q, q ⊃ p}, p), which has two
attackers, viz. A2 = ({¬p, q ⊃ p},¬q) and A3 = ({q,¬p},¬(q ⊃ p)). We have
that A2 does not defeat A1 on q since q ⊃ p < q. However, A3 strictly defeats
A1 on q ⊃ p since q ⊃ p < q and q ⊃ p < ¬p. Next, A3 has two attackers,
viz. A1 and A2. We have that A1 does not defeat A3 on ¬p since q ⊃ p < ¬p.
Moreover, A2 does not defeat A3 on q since q ⊃ p < q. So neither A1 nor A2

defeats A3. Since A3 has no other attackers, A3 is justified and A1 is overruled.
Since p has no other arguments besides A1, p is also overruled.

- ¬p is justified. The argument A4 = ({¬p},¬p) has one attacker, viz. A1, but
A1 ≺ A4 since q ⊃ p < ¬p, so A1 does not defeat A4. So A4 has no defeaters
and is justified, which makes ¬p justified.

- q ⊃ p is defensible. It has one argument, viz. A5 = ({q ⊃ p}, q ⊃ p), which
has one attacker, viz. A3. We have that A5 ≺ A3 since q ⊂ p < ¬p, so A3

strictly defeats A5. Since we saw under (1) that A3 is justified, A5 is overruled
so q ⊃ p is overruled.

2. There is just one legal dialogue, viz.

W1: claim p B1: why p
W2: claim {q, q ⊃ p} B2: concede q; B3: why q ⊃ p
W4: claim {q ⊃ p}
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Let us explain why. At his first move, W must reason with ΣW , which contains
a justified argument for p (it has no attackers on the basis of ΣW ). Then B at
her first move must reason with ΣB ∪ {p}. Then B cannot concede p: although
she can construct an argument for p, viz. A6 = ({p}, p), it is not justified: B can
construct A4 = ({¬p},¬p), which symmetrically defeats A6 since p ≈ ¬p and
is not defeated by other arguments on the basis of ΣB ∪ {p}. Can B claim ¬p?
No, since her only argument for ¬p is A4, which is defeated by A6 and since
these arguments have no other attackers on the basis of ΣB ∪ {p}, they are both
defensible on the basis of ΣB ∪ {p}. So B must challenge p.

After W ’s reply with W2 the information with which B must reason is ΣB ∪
{p, q, q ⊃ p}. On this basisB’s only argument for ¬q isA2 = ({¬p, q ⊃ p},¬q)
but A7 = ({q}, q) is also constructible on this basis and A7 strictly defeats A2

since ¬p < q and q ⊃ p < q. So A7 is justified and B must concede q.

Next, B has an argument against W2’s second premise, viz. A3, but B can also
construct an attacker A6 = ({p}, p) of A3. Since p ≈ ¬p, this attack succeeds
as defeat, so A3 is not justified on the basis of ΣB ∪ {p}. So B must challenge.
Then W claims {q ⊃ p} and the dialogue terminates without agreement.

At termination, the commitment sets are:

CW = {p, q, q ⊃ p)}, which is consistent;
CB = {q}, which is consistent.

On the basis of ΣW ∪CW we have that p is justified: we have two arguments A1

and A6 = ({p}, p), for p, which both have no defeater. On the basis of ΣB ∪CB
we have that ¬p is justified since it has a justified argument A4 (since its only
attacker is A1 and A1 ≺ A4).

In sum, even though on the basis of the players’ joint beliefs p is overruled and
¬p is justified, the players do not reach agreement on p.

3. The only legal dialogue now is

W1: claim p B1: claim ¬p

Here the dialogue terminates since W cannot repeat claim p. At termination W
is committed to p and B to ¬p. These sets are both internally consistent and
consistent with the agents’ own beliefs. Finally, p is justified on the basis of
ΣW ∪ CW while ¬p is justified on the basis of ΣB ∪ CB .

EXERCISE 9.6.2

1. The only legal dialogue is

W1: claim p B1: why p
W2: claim {q, q ⊃ p} B2: why q
W3: claim q

This dialogue terminates without agreement since B is not allowed to repeat why
q. So B has learned nothing from W .
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2. Any player can accept a proposition ϕ after a claim {ϕ}move of the other player
that was moved after a why ϕ move, provided that the player cannot construct an
argument for ¬ϕ.

EXERCISE 9.6.3 Assuming the above answer to 9.6.2(2), the only legal dialogue is

W1: claim r B1: why r
W2: claim {p, p ⊃ q, q ⊃ r} B2: why p
W3: claim {p} B3: concede p, B4: claim ¬(p ⊃ q)
W4: claim p ⊃ q B5: concede q ⊃ r

This exercise illustrates a number of subtle features of the PWA protocol. Note first
that black could make his counterclaim only after first conceding p! Next, at B5 black
could not claim ¬(p ⊃ q) even though that is allowed by her assertion attitude, since
this claim repeats B4.1. Finally, the reason why black must concede q ⊃ r is that she
has a justified argument for it with premises {s, s ⊃ ¬q}, which implies not only ¬q
but also q ⊃ r for any r!

EXERCISE 9.6.4

1. A counterexample is Example 9.4.3.

2. A counterexample is ΣW = {p, p ⊃ q, r} and ΣB = {r ⊃ ¬p}, with topic q and
all formulas of the same preference level. The only legal dialogue on q is:

W1: claim q B1: why q
W2: claim {p, p ⊃ q} B2: why p
W3: claim {p} B3: concede p, B4: why p ⊃ q
W4: claim {p ⊃ q} B5: concede {p ⊃ q}

At termination, we have that CW ` q and CB ` q but q is not justified on the
basis of ΣW ∪ ΣB because of the counterargument ({r, r ⊃ ¬p},¬p).

EXERCISE 9.6.5 No. After P1 = claim q, O cannot construct an argument for or
against q, so O must challenge. Then P must reply with claim {p, p ⊃ q}. Then O
has a justified argument against premise p, namely, {¬p}, so O moves claim ¬q. By
contrast, O has a justified argument for p ⊃ q, namely, the argument for ¬p. Then
P moves claim p since P has a trivial justified argument for p, after which O cannot
repeat claim {¬p} and the dialogue terminates without agreement:

W1 = claim q
B1 = why q
W2 = claim {p ⊃ q, p}
B2b = concede p ⊃ q
B2a = claim ¬p
W3a = claim p

EXERCISE 9.6.6. This follows from result (2) of Section 4.4 of the reader, which
implies that finite defeat graphs without cycles have a unique status assignments. (Note

1When read literally, PWA’s termination condition “when the move required by the procedure cannot
be made” implies that the dialogue terminates here, but we read it as meaning that only the ‘sub-dialogue’
about the first premise of W2 terminates and the dialogue then continues about the second premise.
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that dialogue trees have no such cycles through their reply relations.)

EXERCISE 9.6.7. A surrendered move is in by definition regardless of its other replies,
so a new reply can never change any dialogical status.

EXERCISE 9.6.8

1. P1, P3 and P7

2. O2 and O8

3. P1, P9

EXERCISE 9.6.9 For example:

P1 = claim q
O1 = why q
P2 = q since p, p ⊃ q
O2 = ¬p since r, r ⊃ ¬p
P3 = ¬(r ⊃ ¬p) since p, r
O3 = why r
P4 = retract q
or alternatively
P3 = why r
O3 = r since r
P4 = retract q

There are other examples.

EXERCISE 9.6.10 For example:

P1 = claim q
O1 = why q
P2 = q since p ∧ q
O2 = ¬(p ∧ q) since ¬p
P3 = why ¬p
O3 = ¬p since ¬p
P4 = retract q
There are other examples. Note that P cannot attack O2 or O3 with p since p∧ q, since
that argument does not defeat O′s arguments.

11.8 Exercises Chapter 10

EXERCISE 10.3.1.

1. The following precedents are citable for the plaintiff: Boeing, Bryce, College-
Wat, Den-Tel-Ez, Emery, Space Aero, Televation (not Ferranti, Ecologix, since
these were won by defendant)

2. The following are all counterexamples for the defendant against Emery, namely,
all precedents citable by the defendant: Arco, Ecologix, Sandlin, Yokana.
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3. Arco can be distinguished, since it contains none of the p-factors from the new
case and since d-factors 10 en 20 are not in the new case.
Ecologix can be distinguished on lacking the p-factors 2,4 and 15 in the new case
and the d-factors 1 en 19 from the precedent.
Sandlin can be distinguished since it lacks all p-factors from the new case and
since the new case lacks the d-factors 1, 10, 19, 27 from the precedent.
Yokana can be distinguished since it lacks all p-factors of the new case and since
the new case lacks the d-factors 10 en 27 of the precedent.

4. Plaintiff cites Boeing (or Bryce, Den-Tal-Ez, Televation), defendant distinguishes
since the new case lacks F6, then plaintiff can downplay with F4, since in both
cases efforts were made to maintain secrecy (F102).
Plaintiff cites Boeing (or Bryce, College Watt, Den-Tal-Ez, Emery, Space Aero),
defendant distinguishes since the new case contains additional d-factor F23, then
plaintiff downplays (type 1) with F4, so in the new case there is still an express
confidentiality agreement (F121).

EXERCISE 10.3.2. None. All of them can be distinguished in at least one way:
Boeing on 6, 12,14 and on 16, 23;
Bryce on 6, 18 and on 16, 23;
College Wat on 26 and on 16,23;
Den-Tal-Ez on 6,26 and on 16,23;
Emery on 18 and on 16,23;
Space Aero on 8,18 and on 16,23;
Televation on 6,12,18 and on 23.

EXERCISE 10.3.3.

1. The precedent induces {T,D} < {Not-H}. Deciding W in the new case re-
quires {D,H} > {Not-T}. This is consistent with the preference, so W is
allowed. Deciding Not-W in the new case requires {D,H} < {Not-T}. This is
also consistent with the preference, so Not-W is also allowed, soW is not forced.

2. The precedent induces {T,D} < {Not-H}. Deciding W in the new case re-
quires {D} > {Not-T,Not-H}. This is inconsistent with the preference, since
a fortiori it holds that {D} < {Not-T,Not-H}. so W is not allowed. By the
same preference derivation we see that Not-W is allowed, so Not-W is forced.

3. The new case exactly matches the precedent, so the same outcome is forced.

4. Derek’s case for watching TV is stronger than Albert’s case for watching TV in
two ways: Derek is older than Albert, and he is less seriously ill.

EXERCISE 10.3.4

1. The precedent with Albert has {T,D} pro W and {Not-H} con W . The new
case with Betsy has {D,H} pro W and {not-T} con W . Since {not-H} 6⊆
{not-T}, and also since {D,H} 6⊆ {T,D}, it does not hold that

{T,D,Not-H} ≤notW {D,H, not-T}
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So deciding con W is not forced.

Since there is no precedent for W , deciding for W is not forced either. So both
decisions are allowed but not forced.

The relevant differences between Albert and Betsy are {H,not-H}.

2. The new case with Carla has {D} pro W and {Not-H,not-T} con W . Since
{not-H} ⊆ {not-H,not-T} and {D} ⊆ {T,D}, it holds that

{T,D,Not-H} ≤notW {D,H,Not-H,not-T}

So deciding con W is forced.

There are no relevant differences between Albert and Betsy.

3. The fact situations of the new case and the precedent are the same, so they are
obviously equal with respect to ≤notW , so not-W is forced. The cases have no
relevant differences.

EXERCISE 10.3.5

(a) The defendant can distinguish on additional pro-defendant factor F1, after which
plaintiff can downplay by saying that the additional pro-plaintiff factor F4 shows that
F122 is still the case. Defendant can also distinguish on F15, after which plaintiff can
downplay with F4, saying that thus the new case still has F101. The defendant can also
distinguish on F25, after which plaintiff can downplay with F2, saying that the new
case still contains F111.

(b) With Definition 9.2.5: The precedent has {F2, F15, F21} pro π and {F23} pro δ.
The new case has {F2, F4, F21} pro π and {F1, F25} pro δ. Since {F2, F15, F21} 6⊆
{F2, F4, F21}, and also since {F1, F25} 6⊆ {F23}, it does not hold that

{F2, F15, F21, F23} ≤π {F1, F2, F4, F21 < F25}
So deciding pro π is not forced. Since there is no precedent for δ, deciding for δ is

not forced either. So both decisions are allowed but not forced.
With Definition 9.2.8: Clearly, deciding for π is allowed, since there are no deci-

sions for δ in the case base, so adding any decision for π leaves the case base consis-
tent. Moreover, deciding for δ is also allowed, since the preference that could block it,
{F2, F4, F21} > {F1, F25}, does not follow from {F2, F15, F21} > {F23}. But
note that if the case is decided for one of the sides, then in a next case with the same
fact situation, deciding for the same side is forced.

(c) The relevant differences are {F1, F15, F25}.

EXERCISE 10.3.6

1. Neither is forced. Deciding for the plaintiff is not forced for three reasons:

(1) v(measures, c1) >π v(measures, F2) since Entry-By-Visitors-Restricted >π
Access-To-Premises-Controlled;
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(2) v(reverse-eng, c1) >π v(reverse-eng, F2) since f >π t;

(3) v(disclosed , c1) >π v(disclosed , F2) since 10 >π 15.

Deciding for the defendant is not forced for two reasons:

v(deceived , c2) >δ v(deceived , F2) since f >δ t;

v(measures, c2) >δ v(measures, F2) since Minimal >δ Access-To-Premises-
Controlled.

2. The relevant differences between c1 and F2 are {(measures ,Entry-By-Visitors-
Restricted),(reverse-eng, f), (disclosed , 10)}. The relevant differences between
c2 and F2 are {(deceived , f), (measures,Minimal)}.

EXERCISE 10.3.7

Factors T and not-T are now combined into a dimension Age with V equalling the
natural numbers and x <W y iff x < y, so x ≤notW y iff y ≤ x. Moreover, H now
becomes a dimension with at least the values healthy, not-healthy, cold and flu, where

not-healthy <W healthy
cold <W healthy
flu <W healthy
flu <W cold

So the value ordering of the health dimension is partial. Finally, D now becomes a
two-valued dimension with V = {t, f}, where f <W t.

1. Deciding not-W is not forced, since v(H,Betsy) <notW v(H,Albert), since
healthy <notW flu. Since there is no precedent for W , deciding for W is not
forced either. So both decisions are allowed but not forced.

The relevant differences between Albert and Betsy are {(H,flu)}.
2. Deciding not-W is not forced, since v(H,Albert) 6≤notW v(H,Carla). Since

there is no precedent for W , deciding for W is not forced either. So both deci-
sions are allowed but not forced. The relevant differences between Albert and
Carla are {(H,flu)}.

3. Deciding not-W is not forced, since v(Age,Albert) 6<notW v(Age,Derek),
since 12 >notW 15. Since there is no precedent for W , deciding for W is
not forced either. So both decisions are allowed but not forced. The relevant
differences between Albert and Derek are {(Age, 12), (H,flu)}.

EXERCISE 10.3.8

Both decisions are allowed.
A relevant difference between c1 and F is (employer, self-employed), since self-

employed and foreign are incomparable values of employer. So deciding F for changed
is not forced.

A relevant difference between c2 andF is (employer, Dutch), since foreign<not changed
Dutch. Another relevant difference is (duration,12), since 18 <not changed 12. So de-
ciding F for not changed is not forced either.
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