
Learning by implicit imitation in virtual worlds

 Ahmad Abdul Karim Cédric Sanza
 Spirops - Saara team, LIRIS Vortex team - IRIT
University Claude Bernard Lyon 1, France University of Toulouse, France
 ahmad.abdul.karim@spirops.com sanza@irit.fr
 http://liris.cnrs.fr http://www.irit.fr

Abstract

In this paper, we present a system that
generates the behavior of pedestrians in a
virtual town without explicit programming.
This work consists in the creation of a dynamic
set of rules based on the imitation of the
actions of a user.
During the first stage, the user pilots the avatar
in the environment and the system records all
the couple sensors-actions. In the second stage,
the version space algorithm is used to
compress the database into a set of rules
composed of a set of intervals that represents
the sensor part, and a discrete action for the
effector part. In the last stage, the rules are
directly injected in a learning classifier system
that controls the autonomous character. Thus,
the entity can simply use the rules and generate
new ones to cope with new situations.
Different scenarios give encouraging results
with short recording stages. The main rules are
generated from imitation and the secondary
rules come from the ability of the learning
classifier system to adapt the rules to the
environment.

Keywords: behavioural simulation, imitation,
crowd, classifier systems

1. Introduction

In crowd simulations, many researches focus
on collision detection and path planning. Few
works are interested in intelligent behaviors of
the characters because it is a very complex
task. The main techniques for designing such

problems are Top–Down methods and Bottom–
Up methods.
In the Top–Down methods, the designer uses
the complete knowledge of a given problem,
with all the possible situations, actions and
rewards. The most popular techniques are
based on graphs:
- finite state machines: mainly used in video

games, but rather difficult to construct,
- decision tree: automatically generated by

using the concept of entropy,
- artificial neural networks: created from a set

of examples, can give a response to an un-
learned situation.

These three methods are robust in deterministic
environments but a new situation can lead to
completely reconstruct the graph by using the
complementary knowledge. Once the system is
online, the graph remains static and cannot
evolve to deal with complex and unpredictable
environments.
In the Bottom–Up Methods, the designer gives
the necessary tools to the system to solve the
problem, without explicitly giving the solution.
The system needs to combine these tools and
use them properly to find a possible solution.
Exploitation and exploration are abilities that
enable such systems to use the knowledge
already learned and to continuously try to find
better ones. The main techniques are:
- genetic algorithms: a set of randomly

generated solutions evolves thank to a
fitness function to finally give the best
solution,

- learning classifier systems: based on genetic
algorithms, it consists in a set of rules that
converges towards an efficient global
behavior.

In interactive simulations, the main problem of
these methods is the time needed to find the
solutions which can be rather long,
In this paper, we propose to use the
combination of a bottom-up method and a top-
downd method (version space [1] and learning
classifier systems [2]) to define the behavior of
the characters. Our idea is based on the
imitation of a real user to produce a set of
evolving rules to manage pedestrians in a city.
Section 2 presents the concept of imitation.
Section 3 describes the experiment. Results are
presented in section 4. The last section
concludes this paper with future works.

2. Imitation

Imitation is a really powerful tool specially
used by the human brain to increase its
knowledge and to discover solutions. The
imitation strategy highly reduces the search
space for an appropriate solution. It is an
efficient way of enhancing machine learning in
multi-agent systems: the agent can use the
knowledge of the past cooperative teachers, or
other different agents to operate in the same
environment.

In machine learning by imitation there are two
roles which are the observer and one or several
mentors, and two main type of imitation:
explicit and implicit imitation.
In explicit imitation, the mentors take the role
of the teachers, and their goal is to make the
observer imitate them, by directly teaching the
right set of decisions and actions. In this case
the main assumptions are that the mentors are
cooperative and ready to share their knowledge
with the observer, and that the system is
capable of incorporating this kind of direct
communication [3,4].
In implicit imitation, there is no direct
communication between the observer and the
mentors, and the agents are not forced to play
the role of the teacher explicitly, on the
contrary, the observer tries to simply learn by
copying the behavior of other agents. In this
case, we can imagine that it is not possible for
a mentor to alter its behavior to teach the other

agents, or it could be unwilling to do that
because they are in a competitive situation
[5,6,7,8].

There are many differences between the two
strategies. For example in implicit imitation the
agent is not forced to perfectly imitate the
mentors. He can use the observations he made
to enforce his own system, while in explicit
learning, the observer is expected to be
whatever the mentors wants him to be. Another
difference is that in implicit imitation the goals
of the mentors can differ from those of the
observer and that is why the imitation cannot
be exactly identical. In this case, the observer
needs to imitate the more interesting behaviors
concerning its proper objectives.

We need to distinguish between two settings:
homogenous settings where the set of action
and abilities between the observer and the
mentors are the same, in this case the mapping
between the mentors and the observer actions
and decisions is straight forward while in
heterogeneous settings, there might be
differences, which could lead to odd situations
where the mentor is capable of interacting with
the environment differently or he has different
capabilities. The observer needs then to make
adjustments during the imitation process to
adapt everything to his own model.

In any kind of imitation there are 3 main steps:
the recording stage, the machine learning stage
and the re-playing stage.

The information recorded in the first step
depends on the abilities of the agent. The more
complex is the simulation, the more complex is
the kind of data recorded. In a simple grid, the
information is limited to the eight surrounded
cells [5,6]. In a LAN-party video game, the
recorded information is huge and
heterogeneous [7].

The machine learning stage is the more
complex part of the imitation. Several methods
are used to compress the database into different
formats like decision tree [8], set of rules [6],

or neural networks [7] which are directly used
during the replaying-stage to animate the
characters.

All the works where imitation was used show
that the behaviour of the agent is obtained with
few effort compared to methods like scripting
where the designer has to write the correct
code.

3. Experiment

3.1 The environment

The test environment is an in-house developed
3D city simulation, with different kind of
objects like vehicles, pedestrians, traffic lights
and different kind of surfaces like sidewalks,
crossroads, streets (figure 1). We use 3D
models to represent these objects and surfaces
plus we also use Motion Capture for the
pedestrian’s movements.

 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I

Image
 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I
 I-----------------------------------I

Figure 1: “Place de la république” in Paris

This simulation is as real as possible and this
was achieved by using physics to manage the
force that drives most of these objects, like the
interactions between the pedestrians and the
environment (going up the stairs, bumping
with each others), the movement of the
vehicles (suspensions, breaking forces), by
using the open source physics engine Bullet.

3.2 The system of imitation

The system of imitation we build is implicit. It
is based on the Métivier concept of: guidance

interaction [6], where, at any moment of the
simulation, the user can connect to the
environment and control his avatar, and when
he disconnects, the system will take control of
this Avatar and the imitation process will
begin. We have only one mentor who is the
observer at the same time, and they both have
the same capabilities (homogenous setting) and
share the same objectives.

During the recording stage, the perception of
the character (cone of vision) is recorded as a
set of attributes: id, type, name, orientation of
the object, distance and angle between the
object and the avatar, and specific parameters
(speed for the vehicles…). All the attributes
(real, integer, Boolean, string) are unified to
the [0..1] interval in order to work with fuzzy
rules.
The machine learning stage consists in four
sub-stages:
- the data filtering reduces the information

recorded in the database by not processing
the current frame information when no
changes occur in the environment

- the version space algorithm creates the set
of rules. This algorithm has been extended
to avoid the loss of data encountered when
contradictions appear. In our system, a
second rule is created instead of deleting the
first one

- the generation of the forces of the rules
based on two parameters : the number of the
observations that the rule covers, and the
duration of these observations

- the generalization of the rules by merging
the most specific ones.

The re-playing stage adds all the rules into a
learning classifier system [G] that runs with
specific fitness functions. The reward penalizes
the rules that generate collisions or bad
behaviors like crossing the street at the wrong
way.

4. Results

We have tested our system in scenarios where
the mentor crosses a street according to the

traffic light, the vehicles and the other
pedestrians.

The first Scenario is a simulation without
vehicles and pedestrians. The traffic lights are
the only active object. In this case, two or three
street crossing are necessary to perform the
learning and creating the proper LCS. Based on
this LCS, and during the re-playing stage, the
avatar then crosses the street when the light is
green and stops when it is red.

In the second scenario, we have added some
vehicles in the street. The mentor crosses the
street when the light is green. For pedestrians
while it is red for cars. In the replay, the avatar
correctly crosses the street but we sometimes
notice a new interesting behaviour, the avatar
crosses the street when there is no car,
whatever the color of the lights. This behaviour
comes from the number of objects perceived in
the scene. The number of vehicles, a lot more
significant than the number of traffic lights, is
taken into account by the rule as a parameter
for crossing the street: the avatar learns to cross
when there is no car in the crosswalk, instead
of crossing according to the traffic light. This
rule remains persistent in the base as it does
not trigger collision with the cars.

In the last scenario, we have added pedestrians
that crosses the street when the light is green.
As pedestrians are in average more numerous
than cars, the avatar learn to cross when other
pedestrians cross the street.

This three simulations show that the system
works but it could be optimized by a better
generalization of the rules, enabling it for
example to focus on the traffic light instead of
the other objects. The classifier system brings a
part of the solution as it evaluates the rules and
ensure a coherent simulation.

5. Conclusion

We have presented a system that enables to
generate the behavior of a character in a city
from the imitation of a real user. The main

interest of our method is the symbiosis
between a bottom-up and a top-down method.
Even if the rules coming from the imitation are
no perfect, the learning classifier system can
manage every situation by adapting the rules to
the environment.
Applying such a system to a crowd implies the
imitation of several users. The next step is the
interpolation of the imitation of two users in
order to generate a set of various behaviours.

References

[1] T. M. Mitchell, Version Spaces: An
Approach to Concept Learning. PhD
thesis, Stanford University, 1978

[2] S. Wilson, ZCS: A zeroth level classifier.
Evolutionary computation Vol2, 1994

[3] C. Atkeson, S. Schaal Robot learning from
demonstration, Proceedings of the
Fourteenth International Conference on
Machine Learning, pp. 12-20. Nashville,
1997

[4] S. Whitehead, Complexity analysis of
cooperative mechanisms in reinforcement
learning, Proceedings of the Ninth
National Conference on Artificial
Intelligence, pp. 607-613, Anaheim, 1991

[5] B. Price, Accelerating Reinforcement
Learning with Imitation, Ph.D. thesis,
University of British Columbia, 2003

[6] M. Métivier, Méthodes évolutionnaires et
apprentissage : Apprentissage par
imitation dans le cadre des systèmes de
classeurs, Ph.D. thesis, University René
Descates, Paris, 2004.

[7] C. Thurau, G. Sagerer, C. Bauckhage,
Imitation learning at all levels of Game-AI.
International Conference on Computer
Games: Artificial Intelligence, Design and
Education, pp. 402-408, 2004

[8] W. Tambellini, C. Sanza, Behaviors
Generation with Artificial Intelligence in
Video Games. International Digital Games
Conference, Portalegre, Portugal, 2006

