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Abstract 

In this paper, we present a system that 
generates the behavior of pedestrians in a 
virtual town without explicit programming. 
This work consists in the creation of a dynamic 
set of rules based on the imitation of the 
actions of a user.  
During the first stage, the user pilots the avatar 
in the environment and the system records all 
the couple sensors-actions. In the second stage, 
the version space algorithm is used to 
compress the database into a set of rules 
composed of a set of intervals that represents 
the sensor part, and a discrete action for the 
effector part. In the last stage, the rules are 
directly injected in a learning classifier system 
that controls the autonomous character. Thus, 
the entity can simply use the rules and generate 
new ones to cope with new situations. 
Different scenarios give encouraging results 
with short recording stages. The main rules are 
generated from imitation and the secondary 
rules come from the ability of the learning 
classifier system to adapt the rules to the 
environment. 
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1. Introduction 

In crowd simulations, many researches focus 
on collision detection and path planning. Few 
works are interested in intelligent behaviors of 
the characters because it is a very complex 
task. The main techniques for designing such 

problems are Top–Down methods and Bottom–
Up methods. 
In the Top–Down methods, the designer uses 
the complete knowledge of a given problem, 
with all the possible situations, actions and 
rewards. The most popular techniques are 
based on graphs: 
- finite state machines: mainly used in video 

games, but rather difficult to construct, 
- decision tree: automatically generated by 

using the concept of entropy,  
- artificial neural networks: created from a set 

of examples, can give a response to an un-
learned situation.  

These three methods are robust in deterministic 
environments but a new situation can lead to 
completely reconstruct the graph by using the 
complementary knowledge. Once the system is 
online, the graph remains static and cannot 
evolve to deal with complex and unpredictable 
environments. 
In the Bottom–Up Methods, the designer gives 
the necessary tools to the system to solve the 
problem, without explicitly giving the solution. 
The system needs to combine these tools and 
use them properly to find a possible solution. 
Exploitation and exploration are abilities that 
enable such systems to use the knowledge 
already learned and to continuously try to find 
better ones. The main techniques are: 
- genetic algorithms: a set of randomly 

generated solutions evolves thank to a 
fitness function to finally give the best 
solution, 

- learning classifier systems: based on genetic 
algorithms, it consists in a set of rules that 
converges towards an efficient global 
behavior. 



In interactive simulations, the main problem of 
these methods is the time needed to find the 
solutions which can be rather long,  
In this paper, we propose to use the 
combination of a bottom-up method and a top-
downd method (version space [1] and learning 
classifier systems [2]) to define the behavior of 
the characters. Our idea is based on the 
imitation of a real user to produce a set of 
evolving rules to manage pedestrians in a city.  
Section 2 presents the concept of imitation. 
Section 3 describes the experiment. Results are 
presented in section 4. The last section 
concludes this paper with future works. 

2. Imitation 

Imitation is a really powerful tool specially 
used by the human brain to increase its 
knowledge and to discover solutions. The 
imitation strategy highly reduces the search 
space for an appropriate solution. It is an 
efficient way of enhancing machine learning in 
multi-agent systems: the agent can use the 
knowledge of the past cooperative teachers, or 
other different agents to operate in the same 
environment. 
 
In machine learning by imitation there are two 
roles which are the observer and one or several 
mentors, and two main type of imitation: 
explicit and implicit imitation. 
In explicit imitation, the mentors take the role 
of the teachers, and their goal is to make the 
observer imitate them, by directly teaching the 
right set of decisions and actions. In this case 
the main assumptions are that the mentors are 
cooperative and ready to share their knowledge 
with the observer, and that the system is 
capable of incorporating this kind of direct 
communication [3,4]. 
In implicit imitation, there is no direct 
communication between the observer and the 
mentors, and the agents are not forced to play 
the role of the teacher explicitly, on the 
contrary, the observer tries to simply learn by 
copying the behavior of other agents. In this 
case, we can imagine that it is not possible for 
a mentor to alter its behavior to teach the other 

agents, or it could be unwilling to do that 
because they are in a competitive situation 
[5,6,7,8]. 
 
There are many differences between the two 
strategies. For example in implicit imitation the 
agent is not forced to perfectly imitate the 
mentors. He can use the observations he made 
to enforce his own system, while in explicit 
learning, the observer is expected to be 
whatever the mentors wants him to be. Another 
difference is that in implicit imitation the goals 
of the mentors can differ from those of the 
observer and that is why the imitation cannot 
be exactly identical. In this case, the observer 
needs to imitate the more interesting behaviors 
concerning its proper objectives. 
 
We need to distinguish between two settings: 
homogenous settings where the set of action 
and abilities between the observer and the 
mentors are the same, in this case the mapping 
between the mentors and the observer actions 
and decisions is straight forward while in 
heterogeneous settings, there might be 
differences, which could lead to odd situations 
where the mentor is capable of interacting with 
the environment differently or he has different 
capabilities. The observer needs then to make 
adjustments during the imitation process to 
adapt everything to his own model. 
 
In any kind of imitation there are 3 main steps: 
the recording stage, the machine learning stage 
and the re-playing stage. 
 
The information recorded in the first step 
depends on the abilities of the agent. The more 
complex is the simulation, the more complex is 
the kind of data recorded. In a simple grid, the 
information is limited to the eight surrounded 
cells [5,6]. In a LAN-party video game, the 
recorded information is huge and 
heterogeneous [7]. 
 
The machine learning stage is the more 
complex part of the imitation. Several methods 
are used to compress the database into different 
formats like decision tree [8], set of rules [6], 



or neural networks [7] which are directly used 
during the replaying-stage to animate the 
characters. 
 
All the works where imitation was used show  
that the behaviour of the agent is obtained with 
few effort compared to methods like scripting 
where the designer has to write the correct 
code.  

3. Experiment 

3.1 The environment 

The test environment is an in-house developed 
3D city simulation, with different kind of 
objects like vehicles, pedestrians, traffic lights 
and different kind of surfaces like sidewalks, 
crossroads, streets (figure 1). We use 3D 
models to represent these objects and surfaces 
plus we also use Motion Capture for the 
pedestrian’s movements. 
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Figure 1: “Place de la république” in Paris 
 
This simulation is as real as possible and this 
was achieved by using physics to manage the 
force that drives most of these objects, like the 
interactions between the pedestrians and the 
environment (going up the stairs, bumping 
with each others), the movement of the 
vehicles (suspensions, breaking forces), by 
using the open source physics engine Bullet. 

3.2 The system of imitation 

The system of imitation we build is implicit. It 
is based on the Métivier concept of: guidance 

interaction [6], where, at any moment of the 
simulation, the user can connect to the 
environment and control his avatar, and when 
he disconnects, the system will take control of 
this Avatar and the imitation process will 
begin. We have only one mentor who is the 
observer at the same time, and they both have 
the same capabilities (homogenous setting) and 
share the same objectives. 
 
During the recording stage, the perception of 
the character (cone of vision) is recorded as a 
set of attributes: id, type, name, orientation of 
the object, distance and angle between the 
object and the avatar, and specific parameters 
(speed for the vehicles…). All the attributes 
(real, integer, Boolean, string) are unified to 
the [0..1] interval in order to work with fuzzy 
rules.  
The machine learning stage consists in four 
sub-stages:  
- the data filtering reduces the information 

recorded in the database by not processing 
the current frame information when no 
changes occur in the environment 

- the version space algorithm creates the set 
of rules. This algorithm has been extended 
to avoid the loss of data encountered when 
contradictions appear. In our system, a 
second rule is created instead of deleting the 
first one  

- the generation of the forces of the rules 
based on two parameters : the number of the 
observations that the rule covers, and the 
duration of these observations 

- the generalization of the rules by merging 
the most specific ones.  

The re-playing stage adds all the rules into a 
learning classifier system [G] that runs with 
specific fitness functions. The reward penalizes 
the rules that generate collisions or bad 
behaviors like crossing the street at the wrong 
way.  

4. Results 

We have tested our system in scenarios where 
the mentor crosses a street according to the 



traffic light, the vehicles and the other 
pedestrians. 
 
The first Scenario is a simulation without 
vehicles and pedestrians. The traffic lights are 
the only active object. In this case, two or three 
street crossing are necessary to perform the 
learning and creating the proper LCS. Based on 
this LCS, and during the re-playing stage, the 
avatar then crosses the street when the light is 
green and stops when it is red. 
 
In the second scenario, we have added some 
vehicles in the street. The mentor crosses the 
street when the light is green. For pedestrians 
while it is red for cars. In the replay, the avatar 
correctly crosses the street but we sometimes 
notice a new interesting behaviour, the avatar 
crosses the street when there is no car, 
whatever the color of the lights. This behaviour 
comes from the number of objects perceived in 
the scene. The number of vehicles, a lot more 
significant than the number of traffic lights, is 
taken into account by the rule as a parameter 
for crossing the street: the avatar learns to cross 
when there is no car in the crosswalk, instead 
of crossing according to the traffic light. This 
rule remains persistent in the base as it does 
not trigger collision with the cars.  
 
In the last scenario, we have added pedestrians 
that crosses the street when the light is green. 
As pedestrians are in average more numerous 
than cars, the avatar learn to cross when other 
pedestrians cross the street.  
 
This three simulations show that the system 
works but it could be optimized by a better 
generalization of the rules, enabling it for 
example to focus on the traffic light instead of 
the other objects. The classifier system brings a 
part of the solution as it evaluates the rules and 
ensure a coherent simulation.  

5. Conclusion  

We have presented a system that enables to 
generate the behavior of a character in a city 
from the imitation of a real user. The main 

interest of our method is the symbiosis 
between a bottom-up and a top-down method. 
Even if the rules coming from the imitation are 
no perfect, the learning classifier system can 
manage every situation by adapting the rules to 
the environment.  
Applying such a system to a crowd implies the 
imitation of several users. The next step is the 
interpolation of the imitation of two users in 
order to generate a set of various behaviours.  
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