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Warning!

m We try to make everything easy to understand.
m \We often do not mention crucial detalls.

m \We use both 4- and 8-neighbor grids.

m \We invite you to ask questions!



Warning!

m \We use robotics to illustrate the planning techniques
because
Incomplete information and uncertainty are important in robotics
domains from robotics are easy to understand, and
the behavior of planning techniques is easy to visualize.

m However, the planning techniques also apply to a variety
of other domains, including more “symbolic” ones.
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Partially-known Domains
m Challenges

complexity/size (high-dim., expensive to compute costs, etc.)
severe time constraints (e.g., tens of msecs to few seconds)
robustness to uncertainties in execution, sensing, environment

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

> . )
part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Real-time Planning in Dynamic and Maxim
Partially-known Domains

m Challenges
complexity/size (high-dim., expensive to

compute costs, etc.)

severe time constraints (e.g., tens of msecs to few seconds)
robustness to uncertainties in execution, sensing, environment

generality of approache?
theoretical guarantees |
simplicity

-

lity to find some solution fast
ability to improve the solution before and

ability to re-use search results
ability to plan under uncertainty

during execution
—




Real-time Planning in Dynamic and Maxim
Partially-known Domains

Common theme in this talk:
Planning with a series of (efficient) graph searches
Planning with variants of A* searches
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Work vs Configuration Space
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Work vs Configuration Space

m Configuration spaces are often
continuous and
high-dimensional.
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Discretizing Configuration Space

m Skeletonization methods

visibility graph
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Discretizing Configuration Space

m Skeletonization methods:

randomized and_probabit ete

T
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roadmap using random points [Kavraki et al, 1994]

goal
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Discretizing Configuration Space

m Skeletonization methods:
randomized and probability complete

start

o goal B
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. I
roadmaps using RRTs [LaValle, 1998] i
[from Steve LaValle]
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m Skeletonization methods:
randomized and probability complete ﬁ

roadmaps using dynamically-feasible trajectories
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Discretizing Configuration Space

m Cell decomposition methods:
systematic and resolution complete

[from Stuart Russell and Peter Norvig]

vertical strips grid
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Discretizing Configuration Space

8-neighbor grid 4-neighbor grid
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Discretizing Configuration Space

?

m Lattice-
methods:

(x,y,theta) { /

start

methods combine road-map and cefl fased
onf'|iurations are the centers .
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A*

m A* [Hart, Nilsson and Raphael, 1968] Uses user-supplied h-
values to focus its search.

m The h-values approximate the goal distances.
m We always assume that the h-values are consistent!

m The h-values h(s) are consistent succ(s,a)
Iff they satisfy the triangle inequality: c(s,a *~..h(succ(s,a))
h(s)=0ifsisthegoaland (U e O

h(s) < c(s,a) + h(succ(s,a)) otherwise. *
m Consistent h-values are admissible.

m The h-values h(s) are admissible
Iff they do not overestimate the goal distances.
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A*

(Forward) A*
1. Create a search tree that contains only the start.

2. Pick a generated but not yet expanded state s
with the smallest f-value.

3. If state s is the goal then stop.
4. Expand state s.
5. Goto 2.



Sven
A*

m Search problem with uniform cost

4-neighbor grid



A*

m Possible consistent h-values

Sven
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A*

m First iteration of A*

Sven

order of expansions

i §
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cost of the shortest path
In the search tree from the
start to the given state

4-neighbor grid

L] generated but not expanded state (OPEN list)
[[] expanded state (CLOSED list)
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order of expansions
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A*
415
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order of expansions

A*

m Sixth iteration of A*
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4-neighbor grid
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order of expansions

A*
41516
m Seventh and last iteration of A* 3|1 (7)
2
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g-values + h-values = f-values

cost of the shortest path
In the search tree from the
start to the given state

L] generated but not expanded state (OPEN list)
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4-neighbor grid



Sven

Uniform-cost search

A* Breadth-first search
716151432 |/5(4(3(2|2|2|/0(0|0|0]|0]0
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Weighted A*

A* Weighted A* [Pohl, 1970]
f(s) = g(s) + h(s) f(s) = g(s) +w h(s)

S S

(w=1.0) w=2.5
20 expansions 13 expansions
10 movements 11 movements

8-neighbor grid
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Modeling Planning Domains

m Deterministic Models — Graphs
Skeletonization Methods (Roadmaps)
Cell Decomposition Methods

m Searching Graphs
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m Searching MDPs
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Modeling Uncertainty

- So far, we assumed no uncertainty in the model
- execution is perfect
- localization is perfect
- environment is fully known

S, 1S, |S
1|92 | 23 @ @ search the graph

| LSS
s, | s. convertlntoagrap=h @ @ for a least-cost
(S5

path
from Sstart o Sgoal

Se
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Modeling Uncertainty

« Uncertainty in execution
- execution is imperfect
- localization is still assumed to be perfect
- environment is still assumed to be fully known

Markov Decision Processes (MDP)

s, | s, | s, &) &)

nvert in n M
s, | s. convert into a [ZP @

Se

- at least one action in the graph has more than one outcome
- each outcome is associated with probability and cost
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Modeling Uncertainty

« Uncertainty in execution

- execution is imperfect
- localization is still assumed to be perfect
- environment is still assumed to be fully known

Markov Decision Processes (MDP)

s, | s, | s, &) &)

convert into an MDP
FROREY

Se

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost
example: s;, S,, S5 € succ(s,, agg),
P(35|ase'82) =0.9, C(SZ’ase'SS) =14
P(s;las,S,) = 0.05, ¢(S,,a4,S3) = 1.0
P(s4las,S,) = 0.05, c(S,,84,S,) = 1.0
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Modeling Uncertainty

« Uncertainty in execution
- execution is imperfect
- localization is still assumed to be perfect
- environment is still assumed to be fully known

Moving-target search example

- State: <R, T>
- Uncertainty in the target moves

R

I
—T >
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Modeling Uncertainty

- execution is perfect
- localization is still assumed to be perfect
- environment is partially-known

Incomplete Information State

Sy | Sz | Ss

into ?2??
S, | S convert into 27"

v

Se

- the costs and connectivity of the graph is not fully known
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Modeling Uncertainty

Information state (e.g., knowledge about the environment) is
not fully known

Robot navigation in a partially-known environment

S — agent’s state
<X,y> position

H — a vector of hidden variables
status of cells B5 and E4
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Modeling Uncertainty

Information state (e.g., knowledge about the environment) is
not fully known

Robot navigation in a partially-known environment

S — agent’s state
<X,y> position

H — a vector of hidden variables

chlls B5 and F4
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Modeling Uncertainty

/X:LS(X);H &-belief state

current (observable) state of the robot current belief of the robot about
hidden variables (i.e., P(H))

Robot navigation in a partially-known environment

S — agent’s state
<X,y> position

H — a vector of hidden variables
status of cells B5 and E4




Modeling Uncertainty: Incomplete Info State Maxim
- Belief State-Space: X=[S(X);H(X)] - belief state

- An action can affect both the observable state of the robot (e.g.,
move action) as well as its knowledge about the environment (e.g.,
sensing action):

@ a >@ X1=[S:(X);H,(X)]
[S(X);H(X)] @Xf[sz(x);HZ(x)]

@xk:[sk(X);Hkom



Modeling Uncertainty: Incomplete Info State Maxim
- Belief State-Space: X=[S(X);H(X)] - belief state

Assuming perfect sensing:

R=E4;
P(E4=free)=0.5 E4=free
> B5=u

6 X,=[S(X,);H(X,)] - belief state




Modeling Uncertainty: Incomplete Info State Maxim
- Belief State-Space: X=[S(X);H(X)] - belief state

H(X,): P(E4=free) = 1; P(B5=free) = 0.5;

Assuming perfect sensing:
gp g \R:E4;
P(E4=free)=0.5 E4=free

> B5=u

6 X,=[S(X,);H(X,)] - belief state

H(X): P(E4=free) = 0.5; P(B5=free) = 0.5;



Assuming perfect sensing:

wnmn A W N =

A

Modeling Uncertainty: Incomplete Info State Maxim
- Belief State-Space:

B

C

D

E

F

X=[S(X);H(X)] - belief state

(=%
R=A4, R=B4;

E4=u
B5=u

East

R=C4;
E4=u
B5=u




Modeling Uncertainty: Incomplete Info State Maxim
- Belief State-Space: X=[S(X);H(X)] - belief state

: : MDP in which optimal polic R=F4
Assuming perfect sensing: s a tree (acyclic) 4

A B C D E F 1‘i!’
R=F4

R=C4;

1 Ed=y E4=fre
9 B5=u B5=u
At
; Xy
R=A4; R=B4; R=F4;
4| Syian Seoal | Ea=y E4=u E4=0bs
5 B5=u B5=u B5=u
6
R=F4;
E4=free
B5=free




Modeling Uncertainty Maxim

- Uncertainty in localization/execution/environment
- execution is imperfect
- localization is imperfect
-environment is partially-known

Partially-Observable MDPs (POMDPS)



Modeling Uncertainty: POMDPs Maxim

- MDP + robot Is uncertain about its state (and/or about
some of the action costs)

- Can always be converted into a belief state-space MDP
(where each state is a probability distribution over original states)

- optimal policy: mapping from a belief state onto action
- optimal policy can now be cyclic

- optimal policy can be found by solving belief MDP
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Modeling Planning Domains

m Deterministic Models — Graphs
Skeletonization Methods (Roadmaps)
Cell Decomposition Methods

m Searching Graphs
A
Weighted A*
m Nondeterministic Models — MDPs

m Searching MDPs



Probabilistic Planning Maxim

- What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

2
@ g P(Sgoallslia )=O-9
1 C(Sl1alisgoal =2
1 c(spa,5)=
l Pgsgoa,]]sl,al):o.ll

3 /
(s)——(s)
- Without uncertainty, plan is a single path:
a sequence of states (a sequence of actions)

- In MDPs, plan is a policy
mapping from a state onto an action




Minimax Formulation Maxim
2
(s.) (5,) 8 P(syals,8)=0.9
C(““N’llalisgoal =2

R,
3 /
(so——()
- Optimal policy 7*:

minimizes the worst cost-to-goal

* = argmin_ maX,comes of .1 COSt-t0-goal }

- Worst cost-to-goal for 7;=(Sga1,S2:54:53:Sgoal) IS:
1+1+3+1=6

- worst cost-to-goal for z,=(try to go through s,) Is:
142+42+2+2+2+2 + ... = ©



Minimax Formulation Maxim
2
@ﬁiﬁgoallsjja ):0.9
C(““N’llalisgoal =2

1 c(sg,a
l Pgsgoaljlsl al) 0. 1]_

3 /
)=
- Optimal policy 7*:

minimizes the worst cost-to-goal

* = argmin_ maX,comes of .1 COSt-t0-goal }

» Optimal minimax policy 7* = ;=(Sq4rt:52:54:53,S goa,)



Computing Minimax Plans Maxim

OESo

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
while(s,,: ot expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;



Computing Minimax Plans Maxim

OESo

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
while(s,,: ot expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s’) > max, € succ(s’, a) C(s,u) + g(u)
g(s’) = max, € succ(s’, a) C(s ,u) + g(u);

insert s’ into OPEN;
reduces to usual backward A* if

no uncertainty in outcomes




Computing Minimax Plans Maxim

g~ X g~
=1 2 h=2

3 / —
g§=® @ :@ ﬁzzgoo gllch)aEE{ngjl}

next state to expand: sy,

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
while(s,,: ot expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;



Computing Minimax Plans Maxim

g~ X g~

h=1 92 h=2
ho 1 @

ay I:)(Sgoallslia ):09

C(““N’llalisgoal =2

oall81,:80)=0.17 ﬁ:::go
@ 3 ;@/CVLOSED (Syo)

"= OPEN = {s;}
next state to expand: s,

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;
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g~ X g~

h=1 92 h=2
ho 1 @

ay I:)(Sgoallslia ):09

C(““N’llalisgoal =2

oall81,:80)=0.17 ﬁ:::go
@ :@/CLOSED {50153

°Zs' OPEN = {s,}
next state to expand: s,

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;
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g=>5 g=

h=1 92 h=2
ho 1 @

ay I:)(Sgoallslia ):09

C(““N’llalisgoal =2

oall81,:80)=0.17 ﬁ:::go
@ 3 =@/CVLOSED (Syom S35}

°Zs' OPEN = {s,}
next state to expand: s,

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;



Computing Minimax Plans Maxim
g=>5 g=7
=12 h=2

I:)(Sgoallslia ):09
C(S1,81,Sg0ar) = 2

Su ll ATy ) 1
=4 () 3 =@/CVLOSED {S40a1S3:54:55}

=1
223 OPEN {Sstartisl}
next state to expand: Sy

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;



Computing Minimax Plans Maxim

g=>5 g=17

h=1 2 h=2
1701 @ <
h=0 C(““N’llalisgoal =
@ 1 c(sg,ag, 9 0
l Pg goaljlslial)/
Q @ OSED = {Sgoal’s3is4’82’ start}

h=3 OPEN = {s;}
DONE!

I:)(Sgoallslia ):09

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s7) > max, € succ(s’, a) C(s u) + g(u)
g(s7) = MaXy ¢ sucers”, o) C(s u) + g(u);
insert s’ into OPEN,;



Computing Minimax Plans Maxim

g=>5 g=17

" ~SOPEN = {s,}
DONE!

2—224 @ : @4853 N {Sgoa|’s3’s4’82’sstart}

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
while(s,,: ot expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s’) > max, € succ(s’, a) C(s,u) + g(u)
g(s’) = max, € succ(s’, a) C(s ,u) + g(u);

Insert s’ into OPEN;
In this example, the computed policy is a path,

but in general it is a tree
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g=>5 g=17

h=1 2 h=2
90°° 1 @ <
h=0 c(sl,al,sgoa, =2
Ohgl e
l P% goaljlsl’al) /
_>@ OSED = {S oal’53’34’521 start}

OPEN = {s,}
DONE!

P(Sgoallslia ):09

- Minimax backward A*:

9(Sgoar) = O; all other g-values are infinite; OPEN = {s.,};
whlle(sStalrt not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Insert s into CLOSED,;
for every s’s.ts € succ(s’, a) for some aand s’ not in CLOSED
If g(s’) > max, € succ(s’, a) C(s’u) +g(u)

g(s’) = max, € succ(s’, a) C(S 4 Minimax A* guarantees

insert s’ into OPEN: to find an optimal (minimax) policy,
’ and never expands a state more than once,

provided heuristics are consistent (just like A*
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- Minimax backward A*

-searches  backwards  which  sometimes can  be
hard/computationally very expensive (consider moving-target
search, what is a goal?)



Computing Minimax Plans Maxim

- Pros/cons of minimax plans

- robust to uncertainty

- overly pessimistic

- harder to compute than normal paths
- especially if backwards minimax A* does not apply
-even If backwards minimax A* does apply, still more
expensive than computing a single path with A* (heuristics
are not guiding well)



Expected Cost Formulation Maxim
2
S = 8 P(Sy0q51,2,)=0.9
A5 iy

T,
3 /
(so)——(s)

- Optimal policy 7*:
minimizes the expected cost-to-goal
7* = argmin_ E{cost-to-goal}
S
expectation over outcomes
- expected cost-to-goal for z,= S3:Sgoal) IS
1+1+3+1=6

- cost-to-goal for z,=(try to go through s,) Is:
0.9*(1+2+2) + 0.9%0.1*(1+2+2+2+2) + 0.9*%0.1*0.1*(1+2+2+2+2+2+2) + ...=5.444

start’521S4’



Expected Cost Formulation Maxim
2
(s.) (5,) 8 P(syals,8)=0.9
C(““N’llalisgoal =2

R,
3 /
(s)——(s)

- Optimal policy 7*:
minimizes the expected cost-to-goal
7* = argmin_ E{cost-to-goal}

- Optimal expected cost policy z* = z,=(go through s,)



Computing Expected Cost Minimal Plans

2
@ g & I:)(Sgoallslia )=0.9
1 C(Slialisgoal =2
1 c(s,,a
l Pgsglgoaljlsl al) 0. 11
3 /
(s)——(%)

- Optimal expected cost-to-goal values v* satisfy:

V*(S oal) 0
V*(Sg min, E{c(s,a,s’)+tv*(s’)} for all s # s,
(expectation over outcomes s’ of action a executed at state s)

Bellman optimality equation

Maxim



Computing Expected Cost Minimal Plans  Maxim

2
@ g & I:)(Sgoallslia )=0.9
C(Slialisgoal =2

1 c(s,,a,,5, )=
l P%séoa,]]sf,al):o.l 1

3 /
(s)——(s)

- Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
v(sg

=min, E{c(s,a,s’)+v(s’)} forany s # sy,
1

Bellman update equation

(or backup)
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v=0 , v=0
1 @ g & P(Sgoallslia )=0.9

@/ C(Slialisgoal =2
@ ll Bg;()iﬂlsfal_):ol/l. v=0
3
O = !

- Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
v(sg

=min, E{c(s,a,s’)+v(s’)} forany s # sy,
1

Bellman update equation

(or backup)
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v=0 , V=2
1 @ > & P(Sgoallslia )209

@/ C(S1,81,Sq0a1) = 2
S l : B%é;j;‘:lsﬁa;):o.l/ V=0
@ > @ after backing up s,

v=0 v=0

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,
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v=1 , V=2
1 @ > & P(Sgoallslia )209

@/ C(S1,81,Sq0a1) = 2
S l : B%é;j;‘:lsﬁa;):o.l/ V=0
@ > @ after backing up s,

v=0 v=0

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,
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v=1 , V=2
1 @ > & P(Sgoallslia )209

@/ C(S1,81,Sq0a1) = 2
S l : B%é;j;‘:lsﬁa;):o.l/ V=0
@ > @ after backing up s,

v=0 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,
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v=1 , V=2
1 @ > & P(Sgoallslia )209

@/ C(S1,81,Sq0a1) = 2
S l : B%é;j;‘:lsﬁa;):o.l/ V=0
@ ° @ after backing up s,

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,
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v=1 ) V=2
‘/Sl Oa ) =2
1 ~ —
l Sgéﬁujléf,al)ﬂ-ll v=0
3 / .
@ @ after backing up S

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=1 ) v=2.1
‘/Sl Oa ) =2
1 ~ —
l Sgéﬁujléf,al)ﬂ-ll v=0
3 / .
@ @ after backing up s,

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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:4]2. v=2.1
‘/Sl Oa ) =2
1 ~ —
l Sgéﬁujléf,al)ﬂ-ll v=0
3 / .
@ @ after backing up s,

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.1 v=2.1
2

P(Sgoallslia )209
C(Slialisgoal =2

[ 1 sgz;;jﬁglz,a;:o_l/ v=0
@V:Z =@v:1 backing up s; and s, has no

effect since their Bellman
errors are zero

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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=41 v=2.1
‘/S“ O =2
1 ~ —
l Sgéﬁujléf,al)ﬂ-ll v=0
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@ @ after backing up S

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=2.41

=4.1
2
S > ;. P(SyealS1,81)=0.9
%11/@ 1 C((Slg,all,sgljoal )= 2
% 1 co(s,a,5)= v=0
l P%séoa,]]sf,al):o.l 1
3 _— .
@ @ after backing up s,

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.41 v=2.41

2
_ S > a;  P(S,04151,2,)=0.9
=511 A5 T C(6 A o) = 2
1 co(s,a,5)= v=0
% l Pgséoaljlslzi al):O-ll
3 _— .
@ @ after backing up s,

v=4 v=1

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.41 v=2.41

2
S > ;. P(SyealS1,81)=0.9
V:5411 @ . C((Slg,a::_l,szom )= 2
1 c(s,a 5= v=0
% l P%séoa,]]sf,al)zo.l 1
=1 '@vzl after backing up S

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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2
S > ;. P(SyealS1,81)=0.9
s S Ry
% 1 c(sap5)= v=0
l P%séoa,]]sf,al):o.ll
s =2 '@vzl after backing up s,

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.441 v=2.441

2
S > ;. P(SyealS1,81)=0.9
s S Ry
% 1 c(sap5)= v=0
l P%séoa,]]sf,al):o.ll
s =2 '@vzl after backing up s,

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.441 v=2.441

2
S > a1 P(Sy0alS1,8,)=0.9
v=5.441 @ 1 c((sf,all,s;oa,)= 2
1 c(s,a 5= v=0
% l p%sgoaﬂ]sﬁal):oal
=1 '@vzl after backing up S

- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.44444... v=2.44444 .

2
S . a P a,)=0.9
v=5.44444...1 @ 1 C((Sf,a:;',é;j, =5
1 cs,,a.5)= v=0
% l p%sgoaﬂ]sﬁal):oal
S 3 / L
@V:4 '@ every Iteration computes

v=1 : :
one more decimal point

_ At convergence...
- Value Iteration (V1):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(S oal) =0
V(Sg =min, E{c(s,a,s’)+v(s’)} forany s # sy,

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 5444
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v=4.4214444... v=2.44444...
dy P(S oal|51’ ) 0.9

V5.4%y'@ C(Sl’al’ soal) = 2
(Suay ! Bﬂiggiﬁbf,al_):m/l, V=0
@ : @ every iteration computes

v=4 v=1 : :
one more decimal point

optimal policy is given by greedy policy: At convergence...
always select an action that minimizes
E{c(s,a,s’)+v(s’)}

expected cost of executing greedy policy is at most:
V¥ (Ssar) o i) for any s # Syq
where c,,;, IS minimum edge cost

: pFrinan error over all states < A
Bellman error: [v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # 544
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V=4.44444... v=2.44444...
& P(Sgoallsl’a )209

v5.4%y'@ C(S1,81,S40a1) = 2
(S [1 B%é;j;‘:lsﬁa;):o.l/ V=0
@V:Z =@v:1

« RTDP [Barto, Bradtke and Singh, 1993] (usually much much
more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached,;
2. Backup all states visited on the way;

3. Reset to s« and repeat 1-3 until all states on the current greedy policy
have Bellman errors < A;
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v=4.4214444... v=2.44444...
& P(SgoaI|51’a ):O_9

v5.4%y'@ C(S1,81,Sg0al) = 2
@ ll Bg;oiljlslzal_)ﬂl/lv V=0
<S_Dv:jr =@v:1

RTDP focusses its backups on what is
relevant to the optimal plan rather than computing
ALL state values (like VI)

- RTDP [Barto, Bradtke and Singh, 1993] (USG&HES

more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached,;
2. Backup all states visited on the way;

3. Reset to s« and repeat 1-3 until all states on the current greedy policy
have Bellman errors < A;
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v=4.4214444... v=2.44444...
& P(sgoaI|51’a )20_9

v5.4%y'@ C(S1,81,Sg0al) = 2
@ ll Bg;oiljlslzal_)ﬂl/lv V=0
S (5

xpected cost of executing greedy policy is at most:

V*(Ss_tart)c_mi_n/ (Cmin'A)
where c,,;, IS minimum edge cost

- RTDP [Barto, Bradtke and Singh, 1993] (Ubblu“]

more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached,;
2. Backup all states visited on the way;

3. Reset to s« and repeat 1-3 until all states on the current greedy policy
have Bellman errors < A;
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Greedy Agent-Centered Search

m Greedy agent-centered search starts at some state. It
marks the robot state (and perhaps other states as well)
as uninteresting and then moves to the closest
Interesting state. It repeats the process until all states
are marked uninteresting.
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Greedy Agent-Centered Search

m Theorem [Tovey and Koenig, 2003]

The worst-case number of movements of greedy agent-
centered search is |V| + 2 |V| In |V| In known connected
graphs, where |V| is the number of vertices.
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Robot-Navigation Problems
12345678

Perfect actuation in four
compass directions

Perfect sensing in four
compass directions with
sensor range one

m Compass is available

m Minimize the worst-case
number of movements for

m Grid of a given size
m Start cell
m Tie breaking
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| ocalization

m Localization determines the robot cell on a given map.
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Approx Optimal Localization

m Theorem [Tovey and Koenig, 2000]

It iIs iIn NP to determine whether there exists a

localization plan that executes no more movements than
a given value.

It is NP-hard to find a localization plan in grids whose
worst-case number of movements to localization is within
a factor O(log(|V|)) of optimum, where |V| is the number
of states (= unblocked cells), even in connected grids in

which localization is possible.
(Contrast this theorem with [Dudek, Romanik, Whitesides, 1995].)

m Thus, it is intractable to find optimal localization plans via
complete AND-OR searches.
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Approx Optimal Localization

Planning time Exponential
Plan-execution time Low-order polynomial
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Greedy Localization

m Agent-centered search:
Interleaving of deterministic
searches that result in a gain
In information with
action executions.
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Greedy Localization

m Greedy localization repeatedly makes the robot execute
a shortest movement sequence to a closest informative
unblocked cell, where an informative cell is one that
allows the robot to make an observation that is
guaranteed to reduce the number of possible robot cells
[Genesereth and Nourbakhsh, 1993] [Koenig and Simmons, 1998].
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Greedy Localization
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Greedy Localization
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Greedy Localization

m Greedy localization starts at some unblocked cell. It
marks the robot cell (and perhaps other cells as well) as
uninformative and then moves to the closest informative
unblocked cell. It repeats the process until all unblocked
cells are marked uninformative.

m Corollary [Tovey and Koenig, 2005]

The worst-case number of movements of greedy
localization is O(|V| log |V[), where |V| is the number of
states (= unblocked cells).
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Greedy Localization

Planning time Exponential

Plan-execution time Low-order polynomial
__|Greedy Localization

Planning time Low-order polynomial

Plan-execution time Low-order polynomial
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Greedy Localization

m DFS mazes

Acyclic mazes generated with DFS
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Greedy Localization

m DFS mazes

gridworld obstacle av. number av. number av. total
size density of subplans of steps per number of
subplan movements
to localization to localization to localization

11 x 11 41.3% 2.4 X 1.5 = 3.6

21x 21 45.4 % 3.3 X 1.7 = B.

31x 31 46.8 % 3.8 X 1.7 = 6.

41 x 41 47.6 % 4.1 X 1.8 = 75

51x 51 48.1 % 4.5 X 1.8 = 8.0

61 x 61 48.4 % 4.7 X 1.8 = 8.6

71x71 48.6 % 4.9 X 1.9 = 0.1 (5041 cells)
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Greedy Localization

m Example for room-like terrain [Tovey and Koenig, 2005]

The worst-case number of movements of greedy
localization can be a factor Q(|V| / log |V|) worse than the
optimal worst-case number of movements to localization,
where |V| is the number of states (= unblocked cells),
even in connected grids in which localization is possible.
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Greedy Localization

m Our grids

000 001 010

4-neighbor grid
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Greedy Localization

m Our grids

000 001 010

4-neighbor grid



Sven

Greedy Localization

Planning time Exponential

Plan-execution time Low-order polynomial
__|Greedy Localization

Planning time Low-order polynomial

Plan-execution time Low-order polynomial
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Greedy Localization

@ Our minimax model
m Perfect actuation, perfect sensing
m Minimize worst-case number of movements
m Sets of states

m POMDP-based (“Markov”) localization [Burgard, Fox and Thrun, 1997]
m Noisy actuation, noisy sensing
m Minimize average-case number of movements
m Probability distribution over states
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Greedy Localization

m Our minimax model

m Greedy localization repeatedly makes the robot
execute a shortest movement sequence that is
guaranteed to reduce the number of possible robot
cells.

m POMDP-based (“Markov”) localization [Burgard, Fox and Thrun, 1997]

m Greedy localization repeatedly makes the robot
execute a shortest movement sequence that is
guaranteed to reduce the entropy of the probability
distribution over the possible robot cells.
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Planning Problems and Strategies
m Greedy Agent-Centered Search

m Three Robot-Navigation Problems and Approaches

m Localization using Agent-Centered Search:
Greedy Localization

m  Mapping using Agent-Centered Search:
Greedy Mapping

m Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

m Summary
m Agent-Centered Search
m Planning with the Freespace Assumption

m Real-Time Search
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Mapping

m Mapping determines a map, always knowing the robot
cell.



Mapping
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Mapping
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Greedy I\/Iapping

m Agent-centered search
Interleaves deterministic
searches that result in a gain
In Information with
action executions.
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Greedy Mapping

m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

4-neighbor grid
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m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].
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Greedy Mapping

m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].
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Greedy Mapping

m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
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Greedy Mapping

m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].
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Greedy Mapping

m Greedy mapping repeatedly makes the robot execute a
shortest movement sequence to the closest informative
unblocked cell, where an informative cell is one that allows
the robot to observe the blockage status of at least one
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].
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Greedy Mapping

m Greedy mapping starts at some unblocked cell. It marks
the robot cell (and perhaps other cells as well) as
uninformative and then moves to the closest informative
unblocked cell. It repeats the process until all unblocked
cells are marked uninformative.

m Corollary [Tovey and Koenig, 2003]

The worst-case number of movements of greedy
mapping is O(|V| log |V]), where |V| is the number of
states (= unblocked cells).
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Greedy Mapping

| Greedy mapping

Planning time Low-order polynomial
Plan-execution time Low-order polynomial
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Greedy Mapping

m Greedy mapping is reactive to changes in the robot cell.
Thus, the robot does not need to move as instructed by
greedy mapping.

m Other modules of a robot architecture can switch off
greedy mapping and reactivate it later.

4-neighbor grid
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Greedy Mapping

m Greedy mapping is reactive to changes in the robot’s
knowledge of the terrain, independent of how the
knowledge was obtained.

m Greedy mapping immediately uses new terrain
Information, e.g. information provided by the user.

4-neighbor grid
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Planning Problems and Strategies
m Greedy Agent-Centered Search

m Three Robot-Navigation Problems and Approaches

m Localization using Agent-Centered Search:
Greedy Localization

m  Mapping using Agent-Centered Search:
Greedy Mapping

m Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

m Summary
m Agent-Centered Search
m Planning with the Freespace Assumption

m Real-Time Search
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Stationary Target

m Stationary target-search navigates to a stationary target
cell with no a priori given map, always knowing the robot
cell. (Stationary target search is often called goal-
directed navigation.)
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Pl w the Freespa

m Assumption-based planning
Interleaves deterministic
searches resulting from
making assumptions about
action outcomes with action
executions.
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Pl w the Freespace Assumption

m Planning with the freespace assumption repeatedly
makes the robot execute a shortest movement sequence
to the goal under the assumption that cells with unknown
blockage status are unblocked [Brumitt and Stentz, 1998]
[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid
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m Planning with the freespace assumption repeatedly
makes the robot execute a shortest movement sequence
to the goal under the assumption that cells with unknown
blockage status are unblocked [Brumitt and Stentz, 1998]
[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].
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Pl w the Freespace Assumption

m Planning with the freespace assumption repeatedly
makes the robot execute a shortest movement sequence
to the goal under the assumption that cells with unknown
blockage status are unblocked [Brumitt and Stentz, 1998]
[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].
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Pl w the Freespace Assumption

m Planning with the freespace assumption repeatedly
makes the robot execute a shortest movement sequence
to the goal under the assumption that cells with unknown
blockage status are unblocked [Brumitt and Stentz, 1998]
[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid
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Pl w the Freespace Assumption

m Theorem [Mudgal, Tovey and Koenig, 2004]

The worst-case number of movements of planning with
the freespace assumption is O(|V| log |V]), where |V| is
the number of states (= unblocked cells).
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Pl w the Freespace Assumption

Planning time Low-order polynomial
Plan-execution time Low-order polynomial
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Pl w the Freespace Assumption
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Planning Problems and Strategies
m Greedy Agent-Centered Search

m Three Robot-Navigation Problems and Approaches

m Localization using Agent-Centered Search:
Greedy Localization

m  Mapping using Agent-Centered Search:
Greedy Mapping

m Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

B Summary

m Agent-Centered Search

m Planning with the Freespace Assumption

m Real-Time Search
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Agent-Centered Search

m Agent-centered search
Interleaves deterministic
searches that result in a gain
In Information with
action executions.
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Real-Time Search

m Real-time search

start

Interleaves deterministic

searches thatresttta-geatn
HHferaten with

action executions.
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Assumption-Base

m Assumption-based planning
Interleaves deterministic
searches resulting from
making assumptions about
action outcomes with action
executions.
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Real-Time Searc

m Real-time search
I (N OO
interleaves deterministic | R
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Issues

m Agent-centered search
m How to find similar plans efficiently?
m How much to plan...
m to guarantee that the objective is achieved and
m to trade off well between planning and plan-execution time?

m Assumption-based planning
m How to find similar plans efficiently?
m  Which assumptions to make
m to guarantee that the objective is achieved and
m to trade off well between planning and plan-execution time?
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Stationary Target

m Stationary target search navigates to a stationary target
cell with no a priori given map, always knowing the robot
cell.
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Incremental Heuristic Search

m Incremental heuristic search speeds up A* searches for
a sequence of similar search problems by exploiting
experience with earlier search problems in the
sequence. It finds shortest paths.

m In the worst case, incremental heuristic search cannot be
more efficient than A* searches from scratch
[Nebel and Koehler 1995].
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Fringe Saving A* (FSA*)

m Fringe Saving A* (FSA*) [Sun and Koenig, 2007] Speeds up A*
searches for a sequence of similar search problems by
starting each A* search at the point where it could differ

from the previous one.
m FSA* s similar to but faster than 1A* [Yap, unpublished].
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order of expansions

Fringe Saving A* (FSA*)
4 |151]6
m Seventh and last iteration of A* 3|1 (7)
2
2134 666
/(1654|332 AN
21112,3||6|5|14|3|2]1 0| 4+4<+4
7 P
2 1\0 411514 (3|2|1|0 64
2 | 1 6(5/4[3]2]1 6+ 4
g-values + h-values = f-values

cost of the shortest path
In the search tree from the
start to the given state

L] generated but not expanded state (OPEN list)
[[] expanded state (CLOSED list)

4-neighbor grid



Sven
order of expansions

Fringe Saving A* (FSA¥)
4
= One cell becomes blocked 3|1
2
213|4||7/6|5|4[3]|2 6
3//6|/5(4(|3|2]|1 6|4
. P
2/1(0)m4||5(4|3][2[1]|0 634 (4)
1 6|5|4[3|2]1 6-+4
g-values + h-values = f-values

cost of the shortest path
In the search tree from the
start to the given state

L] generated but not expanded state (OPEN list)
[[] expanded state (CLOSED list)

4-neighbor grid



Sven
order of expansions

Fringe Saving A* (FSA¥)

4
= One cell becomes blocked 3|1
2
213|4||7/6|5|4[3]|2 6
3//6|/5(4(|3|2]|1 6| 4

. P

2 1\0 411514 (3|2|1|0 64
1 6|5|4[3|2]1 6+ 4
g-values + h-values = f-values

cost of the shortest path
In the search tree from the
start to the given state

L] generated but not expanded state (OPEN list)
[[] expanded state (CLOSED list)

4-neighbor grid
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Fringe Saving A* (FSA*)

210
fast
operations

/\




0y
<
®
-

Incremental Heuristic Search 35
Fringe Saving A* (FSA¥) 8 o
Adaptive A* (AA¥*) § §
Lifelong Planning A* (LPA*), D* Lite and Minimax LP%A%U),} §
Comparison of D* Lite and Adaptive A* : 3
Eager and Lazy Moving-Target Adaptive A* (MTAA*) 3 %
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Adaptive A* (AA*)

m Adaptive A* (AA*) [Koenig and Likhachev, 2005] Speeds up A*
searches for a sequence of similar search problems by
making the h-values more informed after each search.

m The principle behind AA* was earlier used in Hierarchical
A* [Holte et al., 1996].



Sven

Adaptive A* (AA*)

start start

goal goal
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Adaptive A* (AA*)

m Consider a state s that was expanded
by A* with consistent h-values h,: @Erfv

distance(start,s) + distance(s,goal) = distance(start goal)
distance(s,goal) = distance(start,goal) — distance(start,s)
distance(s,goal) 2

m The h-values h ., are again consistent.

m The h-values h ., dominate the h-values h_.

m These properties continue to hold even if the start changes
or the movement costs increase.

m The next A* search with h-values h ., expands no more
states than an A* search with h-values h_, and likely many
fewer states.

new



1

T~
<t
o~
o
C~
o
o~

|

second A* search

9

2

103 8[4 8|5 8|6 8

4

Adaptive A* (AA*)

4-neighbor grid
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Adaptive A* (AA*)

712 T3 T4 7

1

6165 5|4 4|33

9

2

816 8

3122

51514 4|3

1013 8|4 815

4

second AA* search

first AA* search

4-neighbor grid
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Lifelong Planning A* (LPA*)

m Lifelong Planning A* (LPA*) [Koenig and Likhachev, 2002]
speeds up A* searches for a sequence of similar search
problems by recalculating only those g-values in the
current search that are important for finding a shortest
path and have changed from the previous search.

m This can often be understood as transforming the search
tree from the previous search to the one of the current

search.
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Lifelong Planning A* (LPA*)

8-neighbor grid



8-neighbor grid


http://www.slate.com/id/2126829/

Lifelong Planning A* (LPA*)

8-neighbor grid



8-neighbor grid


http://www.slate.com/id/2126829/

Sven

Lifelong Planning A* (LPA*)

artificial intelligence algorithm theory

heuristic search Incremental search

How to search efficiently ~ How to search efficiently
using h-values to focus the by reusing information
search? from previous similar
searches?
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Lifelong Planning A* (LPA*)

uninformed search

heuristic search

breadth-first search

A*
[Hart, Nilsson, Raphael, 1968]

Incremental search, complete search

DynamicSWSF-FP

with early termination (our addition)
[Ramalingam and Reps, 1996]

Lifelong Planning A* (LPA¥)
[Koenig and Likhachev, 2002]



Incremental search complete search

Sven

Lifelong Planning A* (LPA*)

uninformed search

heuristic search




Incremental search complete search

Lifelong Planning A* (LPA*)

uninformed search

[from slate.com]
heuristic search



http://www.slate.com/id/2126829/

Sven

Lifelong Planning A* (LPA*)

procedure CalculateKey(s)

return [mindgis)h, rhs(sy) + his) min{z(s), rhs(s))]:
procedure Initialize()

L=

forall s = S rhsis) = g(s) = e

rhs(sggn) = O

Ll InsertSgpart. [N Sgtart 0]

procedure UpdateVertex(u)

{0 # sgrgpy) ThS(U) = Ming: i pragyyy (2057 e(s" )
ifiue Uy UL Remove(u):

if{giu) = rhsiu)) Ulnsertiu, Calculateleyiu)):

procedure ComputeShortestPathi)
while (U TopKey = CalculateKey(s joq ) OR thsis,gq)) # gisgqq 1)
u=LLPopi):
iF (giuy = rhs{uj)
giu) = rhsiu);
for all s & Suce(u) UpdateVertex(s):
else
giul = rhsiuy
forall s e § Succiu) ' u b UpdateVertex(s):
procedure Maing)
[nitializel )
Forever
ComputeShortestPathi )
Wait for changes in edge costs:
tor all directed edges (u, v with changed edge costs
LIpdate the edge cost cluv);

UpdateVertex(v):



Lifelong Planning A* (LPA*)

m Grids of size 101 x 101
m Movement costs are one or two with equal probability.

Sven

number of | planning time | first planning replanning replanning
movement of A* time of LPA* | time of LPA* | time of LPA*
cost changes planning time
of A*
02% |0.299ms | 0.386ms |0.029 ms| 10.4Xx
04% |0.336 ms|0.419 ms | 0.067 ms 5.0 X
06% |0.362ms|0.453 ms | 0.108 ms 3.3 X
0.8% |0.406 ms|0.499 ms | 0.156 ms 2.6 X
1.0% [0.3/0ms |0.434 ms|0.174 ms 2.1X




Lifelong Planning A* (LPA*)

start

goal

A*

start
old new
search search
tree tree

goal

LPA*

Sven
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Lifelong Planning A* (LPA*)

start

old new
search search
tree tree

goal

search

start
new
search
tree
© o
goal

m Start of the search must remain unchanged.
m LPA* can expand more states and run slower than A* if

the number of changes is large or

the changes are close to the start of the search.
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Stationary Target
-

iin N

8-neighbor grid




D* Lite

m LPA* needs to search from the destination of the robot to
the robot itself because the start of the search needs to
remain unchanged.

m LPA* s efficient because the robot observes blockages
around itself. Thus, the changes are close to the goal of
the search.



D* Lite

robot
|
old new
search search
tree tree
goal

LPA*

old
search
tree

Sven

new
search
tree

goal

LPA*



1

goal
distance

D* Lite

8-neighbor grid



speed-up 110x

D* Lite

m Random grids of size 129 x 129

Sven

replanning time
—| uninformed search from scratch 296.0 ms
heuristic search from scratch 10.5 ms
Incremental uninformed search 6.1 ms
Incremental heuristic search
D* [stentz, 1995] 4.2 ms
D* was probably the first true incremental heuristic
search algorithm, way ahead of its time.
nd D* Lite 2./ ms
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Incremental Heuristic Search
Fringe Saving A* (FSAY*)
Adaptive A* (AA*)
Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
Comparison of D* Lite and Adaptive A*
Eager and Lazy Moving-Target Adaptive A* (MTAA*)
Anytime Replanning A* (ARA*)
Anytime D*



D* Lite vs AA*

LPA*/D* Lite

Sven

AA*

Adapt previous search tree

Improve previous h-values

Start of the search must
remain unchanged

Movement cost
In/decreases

Goal of the search must
remain unchanged

Movement cost increases
only*

Can result in more
expansions than A*

Fewer expansions on
average

Slow expansions

Guaranteed no more
expansions than A*

More expansions on
average

Fast expansions

*actually, movement cost in/decreases but AA* is more efficient for movement cost increases



D* Lite vs AA*

m Torus-shaped DFS mazes of size 100 x 100

E
It}

5 .a%al,fﬂh :
El il
B

Acyclic mazes generated with DFS

Sven
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D* Lite vs AA*

expansions| planning time
per search| per search

Forward A* 3711 581
Backward A* 4104 644
(Forward) AA* 391 81

(Backward) D* Lite 31 15
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Incremental Heuristic Search
Fringe Saving A* (FSAY*)
Adaptive A* (AA*)
Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
Comparison of D* Lite and Adaptive A*
Eager and Lazy Moving-Target Adaptive A* (MTAA%)
Anytime Replanning A* (ARA¥)
Anytime D*



Sven

Moving Target

m Moving target search catches a moving target with no a
priori given map, always knowing the robot cell.



D* Lite vs AA*

LPA*/D* Lite

Sven

AA*

Adapt previous search tree

Improve previous h-values

Start of the search must
remain unchanged

Movement cost
In/decreases

Goal of the search must
remain unchanged

Movements cost increases
only*

Can result in more
expansions than A*

Fewer expansions on
average

Slow expansions

Guaranteed no more
expansions than A*

More expansions on
average

Fast expansions

*actually, movement cost in/decreases but AA* is more efficient for movement cost increases
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D* Lite vs MTAA*

m Torus-shaped DFS mazes of size 100 x 100
m Randomly moving target that pauses every 10" move

2‘
It}

Acyclic mazes generated with DFS




D* Lite vs MTAA*

Sven

expansions|planning time

per search | per search
Forward A* 3703 570
Backward A* 4519 7122
Forward Lazy MTAA* 2334 465
Backward Lazy MTAA* 2025 411
Agent-Centric D* Lite 2229 1481
Target-Centric D* Lite 806 833



Maxim

Incremental Heuristic Search
Fringe Saving A* (FSAY*)
Adaptive A* (AA*)
Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
Comparison of D* Lite and Adaptive A*
Eager and Lazy Moving-Target Adaptive A* (MTAA*)
Anytime Replanning A* (ARA¥)
Anytime D*



Dynamic and Partially-known Environments M2
 Planning in

— partially-known environments is a repeated process
— dynamic environments is also a repeated process

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

y ) g
part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race



Dynamic and Partially-known Environments Maxm

* Planning in
— partially-known environments is a repeated process

— dynamic environments is also a repeated process
planning in dynamic environments

Tartanracing, CMU



Dynamic and Partially-known Environments Maxim
* Need to re-plan fast!

« Two ways to help with this requirement
— anytime planning — return the best plan possible within T msecs

— Incremental planning — reuse previous planning efforts
planning in dynamic environments




Dynamic and Partially-known Environments Maxim
* Need to re-plan fast!

« Two ways to help with this requirement
— anytime planning — return the best plan possible within T msecs

— Incremental planning — reuse previous planning efforts
planning in dynamic environments




Anytime Search based on weighted A*  Maxim

 Constructing anytime search based on weighted A*:
- find the best path possible given some amount of time for planning
- do It by running a series of weighted A* searches with decreasing ¢:

£=25

€=1.5

£=1.0

13 expansions
solution=11 moves

15 expansions
solution=11 moves

20 expansions
solution=10 moves



Anytime Search based on weighted A*  Maxim

 Constructing anytime search based on weighted A*:
- find the best path possible given some amount of time for planning
- do It by running a series of weighted A* searches with decreasing ¢:

£€=2.5 €=1.5 £=1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

. Inefficient because

-many state values remain the same between search iterations
-we should be able to reuse the results of previous searches



Anytime Search based on weighted A*  Maxim

 Constructing anytime search based on weighted A*:
- find the best path possible given some amount of time for planning
- do It by running a series of weighted A* searches with decreasing ¢:

£€=2.5 €=1.5 £=1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

-  ARA*

- an efficient version of the above that reuses state values within any search
iteration



A* with Reuse of State VValues Maxim

o Alternative view of A* [Likhachev et. al., AII’08]:

- basis for efficient reuse of search efforts in ARA*/LPA*/D* Lite
and thelr extensions

- simple but useful trick



A* with Reuse of State Values Maxim
 Alternative view of A*

ComputePath function
while(f(Syoq) > Minimum f-value in OPEN))

remove s with the smallest [g(s)+ h(s)] from OPEN;
Insert s into CLOSED,;
Tovevery successor s’ of s
Ifg(s) > g(s) +c(s,s)
g(s) =g(s) *c(s,s);
Insert s’ into OPEN;



A* with Reuse of State Values Maxim
 Alternative view of A*

v-value — the value of a state
D during its expansion (infinite if

ComputePath function state was never expanded)
while(f(Sgoq) > Minimum f-value in OP
remove s with the smallest + h(s)] from OPEN;

insert s into CLOS

for every successor s’ of s
Ifg(s’) >g(s) +c(s,s’)

g(s’) = g(s) +c(s,s);
insert s’ into OPEN;



A* with Reuse of State Values Maxim
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(f(Syoq) > Minimum f-value in OPEN))
remove s with the smallest [g(s)+ h(s)] from OPEN;

Insert s into CLOSED,;

v(s)=9(s);

for every successor s’ of s
Ifg(s’)>9(s) + c(s,s)

g(s’) =09(s) +c(s,57);
Insert s’ into OPEN;

* g(S’) - mins”épred(s’) V(S ”) T C(S ”’S’)



A* with Reuse of State Values Maxim
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(f(Syoq) > Minimum f-value in OPEN))
remove s with the smallest [g(s)+ h(s)] from OPEN;

Insert s into CLOSED,;
v(s)=9(s);
for every successor s’ of s
Ifg(s’)>9(s) + c(s,s)
g(s) =9(s) +c(s.5);

Insert s’ Into OPEN; overconsistent state

.+ g(s’) =min,.._ red(s’) v(s”) + C(L;V consistent state
- OPEN: a set ofp states with v(s) >g(s)

g
all other states have v(s) = g(s) /




A* with Reuse of State Values Maxim
 Alternative view of A*

all v-values initially are infinite;

ComputePath function

while(f(Syoq) > Minimum f-value in OPEN))
remove s with the smallest [g(s)+ h(s)] from OPEN;
Insert s into CLOSED,;

v(s)=9(s);
for every successor s’ of s
Ifg(s’)>9(s) + c(s,s)

g(s’) =09(s) +c(s,57);
Insert s’ into OPEN;

g(S’) mins red(s’) V(S”) T C(S”S)
- OPEN: a set ofp states with v(s) > g(s)
all other states have v(s) = g(s)

- this A* expands overconsistent states in the order of their f-values



A* with Reuse of State Values Maxim
« Making A* reuse old values:

initialize OPEN with all overconsistent states:

ComputePathwithReuse function
while(f(Syoq) > Minimum f-value in OPEN))

remove s with the smallest [g(s)+ h(s)] from OPEN;
Insert s into CLOSED,;

v(s)=9(s);
for every successor s’ of s
Ifg(s’)>9(s) + c(s,s)

g(s’) =09(s) +c(s,57);
Insert s’ into OPEN;

g(5) = MiNG_ iy V) + c(s5)
OPEN a set ofp states with v(s) > g(s)
all other states have v(s) = g(s)

- this A* expands overconsistent states in the order of their f-values

all you need to do to
make it reuse old values!



A* with Reuse of State Values

CLOSED = {} =2
OPEN = {54’ goal} \f/I—Z
next state to expand: s,

g(S) mlns Ep ed V(S ) +C(S S)
initially OPEN contains aI overcon5|stent states

Maxim



A* with Reuse of State Values

CLOSED = {s,} g=2 0=
OPEN = {S5,S40a} Nk V-
next state to expand: s

Maxim



A* with Reuse of State Values

CLOSED = {s4,S40a1}
OPEN = {s;}
done

all g-values of states are equal to final A* g-values

after ComputePathwithR@

Maxim



A* with Reuse of State Values

g= 2 g= 5
V=2 V= oo
h=2 h=1

we can now compute a least-cost path

Maxim



A* with Reuse of State Values Maxim
« Making weighted A* reuse old values:

initialize OPEN with all overconsistent states:

ComputePathwithReuse function
while(f(Syoq) > Minimum f-value in OPEN))

remove s with the smallest [g(s)+ ¢h(s)] from OPEN,;
Insert s into CLOSED,;
v(s)=9(s);
for every successor s’ of s
if g(s) > g(s) + c(ss /
g(s’) = g(s) tc(ss);

If s’ not in CLOSED then insert s’ into OPEN:;

the exact same
thing as with A*

just make sure no state is
expanded multiple times




Anytime Repairing A* (ARA%*) Maxim
« Efficient series of weighted A* searches with decreasing e:

set ¢to large value;
d(Sgar) = 0; v-values of all states are set to infinity; OPEN = {S...+};
while e>1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &

initialize OPEN with all overconsistent states;



ARA* Maxim

 Efficient series of weighted A* searches with decreasing &:

set ¢to large value;
d(Sgar) = 0; v-values of all states are set to infinity; OPEN = {S...+};
while e>1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &

initialize OPEN with all overconsistent states;

need to keep track of those



ARA* Maxim

Efficient series of weighted A* searches with decreasing &:

Initialize OPEN with all overconsistent states;
ComputePathwithReuse function
while(f(Syoq) > Minimum f-value in OPEN))
remove s with the smallest [g(s)+ ¢h(s)] from OPEN,;
insert s into CLOSED,;
v(s)=9(s);
for every successor s’ of s
ifg(s’)> g(s) +c(ss)
g(s) = g(s) +cs,s),
If s’ not iIn CLOSED then insert s’ into OPEN;
otherwise insert s’ into INCONS

- OPEN U INCONS = all overconsistent states



ARA* Maxim

 Efficient series of weighted A* searches with decreasing &:

set ¢to large value;
d(Sgar) = 0; v-values of all states are set to infinity; OPEN = {S...+};
while e>1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &

initialize OPEN = OPEN U INCONS;

all overconsistent states
(exactly what we need!)



ARA™

« A series of weighted A* searches
e=2.5

=15

Maxim

13 expansions
solution=11 moves

e ARA*
£=2.5

15 expansions
solution=11 moves

¢=15

20 expansions
solution=10 moves

¢=1.0

13 expansions
solution=11 moves

1 expansion
solution=11 moves

9 expansions
solution=10 moves



ARA* Maxim

« Motion planning for manipulators using ARA*:

Planning for 7DOF real robot arm

Planning for 20DOF planar arm

—— —

joint work with Willow Garage

Available online as part of ROS packages (SBPL arm planner)
ARA*/Anytime D* available as part of SBPL library



ARA* Maxim

 Planning for door opening using ARA*:

joint work with Willow Garage
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Incremental Heuristic Search
Fringe Saving A* (FSAY*)
Adaptive A* (AA*)
Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
Comparison of D* Lite and Adaptive A*
Eager and Lazy Moving-Target Adaptive A* (MTAA*)
Anytime Replanning A* (ARA%)
Anytime D*



Anytime and Incremental Planning Maxim

. Anytime D* [Likhachev, a1ros]: cOmbination of ARA* and D*
Lite
— decreases ¢ and updates edge costs at the same time

— re-computes a path by reusing previous state-values (using a
modified version of A* that reuses state values)

set ¢to large value;
until goal is reached
ComputePathwithReuse(); //modified to fix underconsistent states
publish e-suboptimal path;
follow the path until map is updated with new sensor information;
update the corresponding edge costs;
set S, 10 the current state of the agent;
If significant changes were observed
Increase ¢ or replan from scratch;
else
decrease &;



Anytime and Incremental Planning Maxim
« 4D (X, Y, 6, V) planning using Anytime D* in Urban Challenge’07

Example of anytime planning

AR TN\ -4u

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

ARA*/Anytime D* and navigation planners using it are available as part of SBPL library
(as part of ROS packages and at www.seas.upenn.edu/~maximl/software.html)



Anytime and Incremental Planning Maxim
e 4D (X, Y O, V) planning USing Anytime D* in Urban Challenge’07

Example of re-planning

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Greedy

Approx-Optimat Localization

{E4,E6}
m Agent-centered search o o
Interleaves deterministic R b ey |
searches that result in a gain {D2,D4,06} {D4,06}
in information with s | bt | iy Fsie
action executions. (2.C4.08} Ca.06)
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Real-Time Versions of A*

m Real-time search
Interleaves deterministic

searches Hratrestitra-gat
H-Hfermraten with

action executions.

start

start
{E2,E4,E6} {E4,E6}

A
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I
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{B3,B5} {B5} {B7}
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Real-Time Versions of A*

m Real-time search
Interleaves deterministic

searches Hratrestitra-gat
H-Hfermraten with

action executions.

start

start
{E2,E4,E6} {E4,E6}

A

n. +-+- | S, +—— n. +-+- | AS' +—-
Ly | S by | St

{D2,D4,D6} {D4,D6}
{C2,Cc4,C6} {C4,C6}
;—;&-:+ n: —+-;|—// ;Z +=-
{B2} {B4,B6}
I
goa / A +>'\+
{B3,B5} {B5} {B7}
goal goal

- g
{BZF goa?
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Real-Time Versions of A*

m Real-time search
Interleaves deterministic

searches Hratrestitra-gat
H-Hfermraten with

action executions.

start

start
{E2,E4,E6} {E4,E6}

A
Ni+-+-y |S. -

{D2,D4,D6} {D4,D6}
N +-+ '| |AS: +=+- N +-+- '| Ts: -
{C2,C4,C6} {C4,C6}
;—;&-:+ n: —+-;|—// ;Z +=-
{B2} {B4,B6}
I
goa / e! —+++ +>\ —
{B3,B5} {B5} {B7}
goal goal

- g
{BZF goa?



Real-Time Versions of A*

m One could repeatedly move to the most promising
neighboring state, using the h-values.

Sven

54@210 54@.?5432 0
6|5 3121|165 211116|5 21
716/5/4/3/2||7/6|5/4(3/2]17|6/5(4|3]|2
8 7/6/5/4,3|18|7|/6/5(4|31|8|7/6/5/4)|3
514372 054054%E
6|5 11165 2111165 21
716/5(4/3/2|17/6/5/4/3|2||7|/6/5/4|3|2
8/7,6/5/4/3118/7/6/5/4,3]18|/7/6/5/4|3
4-neighbor grid local minima are a problem



Sven

Real-Time Versions of A*

m Real-time heuristic search [Korf, 1990] Solves search
problems with a constant planning time between
movements by interleaving partial searches around the
robot cells with movements. It updates the h-values after
every search to avoid cycling without reaching the goal.
It typically does not follow a shortest path.

m There are many different real-time heuristic search
algorithms. We present one of them.
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Real-Time Heuristic Search
Learning-Real Time A* (LRTA¥)
Comparison of D* Lite and LRTA*
Real-Time Adaptive A* (RTAA¥)
Generalizations of LRTA*: Minimax LRTA* and RTDP



Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

A

1

0

32
S} 3

654

00N |O |01

/165

2
3
A

1
2
3

4-neighbor grid

Sven



Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

549210 54|32 8 0
6|5 321 65@21
716/5/4/3/2||7/6|/5/4|3|2
8/7/6/5/4/3|1/8|7/6/5/4|3

4-neighbor grid

Sven



Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

549210 54|34 80
6|5 321 65@21
716/5/4/3/2||7/6|/5/4|3|2
8/7/6/5/4/3|1/8|7/6/5/4|3

4-neighbor grid

Sven



Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

Sven

5 492 1][0] [5 4W 5 4i5i4Fo
653 2/1]||6/5 211]16/5 2|1
716/5/4/3/2|[7]/6|/5/4|3]/2||7/6]|5/4|3]|2
8/7/6/5/4/3||8/7/6/5/4/3|[8]/7/6/5/4]|3
5456 0| |5 4456 MO| |5(6+5 6O
6|5 1] 16/|5 2|1 65“21
716/5/4/3(2||7/6/5/4/3/2]|]|7/6/5/4|3|2
8/7/6/5/4/3|18/7/6/5/4/3|[8]/7/6/5/4]|3

local minima are overcome by updating the h-values
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Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

——
—_—

goal

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

Properties of Learning Real-Time A* (LRTAY) [Korf, 1990]:

The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
Informed over time.

m The h-values remain consistent.
m The robot reaches the goal with O(|V|?) movements in safely

explorable state spaces, where |V| is the number of states
(= unblocked cells) [koenig, 2001].

If the robot is reset into the start whenever it reaches the
goal then the number of times that it does not follow a
shortest path from the start to the goal is bounded from
above by a constant if the cost increases are bounded from
below by a positive constant.
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Learning Real-Time A* (LRTA¥*)

m Theorem

LRTA* reaches the goal if it is reachable from every
state (= the search space is safely explorable).

m Proof:

goal
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Learning Real-Time A* (LRTA¥*)

m Theorem

LRTA* reaches the goal if it is reachable from every
state (= the search space is safely explorable).

m Proof:
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Learning Real-Time A* (LRTA¥*)

m Theorem

LRTA* reaches the goal if it is reachable from every
state (= the search space is safely explorable).

m Proof:
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Learning Real-Time A* (LRTA¥*)

m Theorem [Koenig, 2001]

The worst-case number of movements is O|V|?) if the
goal is reachable from every state and all movement
costs are one, where |V| is the number of states (=
unblocked cells).

m Proof under the assumption that all movements change the state:
Consider the sum of all h-values minus the h-value of the robot
state. The initial sum is at least zero. The final sum is at most |V|
diameter since the h-value of every state is at most its goal distance.
Every movement increases the sum by at least one.
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Learning Real-Time A* (LRTA¥*)
before: afterwards: @—»@

S 5 ] S 5
S’ 4 s’ 4

sum = x+4 sum = x+5
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Learning Real-Time A* (LRTA¥*)
before: afterwards: @—»@

S 5 ] S 7
S’ §) s’ 6

sum = x+6 sum = x+7
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Learning Real-Time A* (LRTA¥*)

m LRTA* repeatedly moves to the most promising
neighboring state, using and updating the h-values.

——
—_—

goal

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

We need larger lookaheads.
The possible design choices differ as follows:
m Which states to search?

m The h-values of which states to update?

m How many moves to make before the next search?
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Learning Real-Time A* (LRTA¥*)

We need larger lookaheads.
We make the following design choices [Koenig, 2004]:

Which states to search?

The number x of states to search is determined by the available
planning time between movements and is thus a parameter. We use
the first x states expanded by an A* search. An A* search uses h-
values to focus the search and always tries to disprove the path
currently believed to be shortest.

The h-values of which states to update?

We use Dijkstra’s algorithm to update the h-values of all x states
searched.

How many moves to make before the next search?
We move the robot until it reaches a state different from the x states
searched.
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Learning Real-Time A* (LRTA¥*)

S
6

0l N| O O
N o o b~

2
3
4
5

wl N k| O

W N

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 1: Forward A* search

5 42 10
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

first A* state expansion

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 1: Forward A* search

5 . 110
N\

6 | 5 31211

716/ 5| 4| 3|2

8| 716|543

second A* state expansion

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 1: Forward A* search

N
6 | 5 3| 2|1
71 6| 54| 3|2
8| /7|6 | 5| 4]3

third A* state expansion

4-neighbor grid



Learning Real-Time A* (LRTA¥*)

m Step 1: Forward A* search

4-neighbor grid

5 | 4 »0
6 593 1
/| 6] 5| 4 2
8| 7] 6|5 3

third A* state expansion

Sven
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Learning Real-Time A* (LRTA¥*)

m Step 1: Forward A* search

N
6 | 5 3| 2|1
71 6| 54| 3|2
8| /7|6 | 5| 4]3

third A* state expansion

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

N
6 | 5 3| 2|1
71 6| 54| 3|2
8| /7|6 | 5| 4]3

first iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

5 4oo 1|0
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

second iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

5 42 1|0
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

third iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

5 42 1|0
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

fourth iteration of Dijkstra’s algorithm

4-neighbor grid



Sven

Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

5 42 1|0
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

fifth iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTA¥*)

m Step 2: Updating the h-values with Dijkstra’s algorithm

5 42 1|0
N\

6 | 5 3121

716/ 5| 4| 3|2

8| 716|543

sixth iteration of Dijkstra’s algorithm

4-neighbor grid



Learning Real-Time A* (LRTA¥*)

m Step 3: Moving along the path

4-neighbor grid

5 | 4 3421100
6 593 2 |1
7165 4| 3|2
8|7 6| 5|43

follow the path

Sven
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Learning Real-Time A* (LRTA¥*)

m Step 3: Moving along the path

0l N| O O

follow the path
4-neighbor grid



Learning Real-Time A* (LRTA¥*)

Sven

m LRTA* repeatedly moves to the most promising neighboring
state, using and updating the h-values with a lookahead > 1.

514 [3F2F1+0 5«—6#‘? 7767 SFO
6 53 2 1]||6|5 21| [67F5 2|1
716/5/4|3|2||7]6 2|117/6|/5/4[3]|2
8/7/6/5/4(3]|(8]|7 3]118/7|/6/5]4]|3
71817/ co| |78 o|[7!8]7|8

6@i21 6|7 1| |6]7 1
7.675/4(3/2]||7/6 2[17]/6]/5|4|3(2]
8/7/6/5/4/3]|[8]7 3|1|8/7/6|5|4]|3]

4-neighbor grid



Learning Real-Time A* (LRTA¥*)

Sven

m LRTA* repeatedly moves to the most promising neighboring
state, using and updating the h-values with a lookahead > 1.

4-neighbor grid

[ —

—

—

\

/

—

goal
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Learning Real-Time A* (LRTA¥*)

m Safely explorable random grids of size 301 x 301

Grids with 25% random obstacles
The h-values are generally not misleading.

Larger lookaheads are less helpful.
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Learning Real-Time A* (LRTA¥*)

lookahead |Manhattan distance| octile distance
planning| move- |planning| move-
time ments time ments
1 28280 499 28293 363
11 28698 315 28878 315
21 29153 302 29477 311
31 29615 299
41




Sven

Learning Real-Time A* (LRTA¥*)

m DFS mazes of size 301 x 301

Acyclic mazes generated with DFS
The h-values are generally misleading.
Larger lookaheads are very helpful.
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Learning Real-Time A* (LRTA¥*)

lookahead | Manhattan distance | octile distance
planning | move- |planning| move-
time ments time ments
1 085362 | 1987574 | 628175 | 1259958
11 313998 | 337704 | 277974 | 272842
21 279856 | 205370 | 273280 | 177143
31 310131 | 135554
41 348330 | 114917
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Real-Time Heuristic Search
Learning-Real Time A* (LRTAY)
Comparison of D* Lite and LRTA*
Real-Time Adaptive A* (RTAA¥)
Generalizations of LRTA*: Minimax LRTA* and RTDP
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LRTA* vs D* Lite

D* Lite

m can detect that the goal is unreachable,

m cannot satisfy hard real-time requirements and

m has a worst-case number of movements of O(|V| log |V|).

LRTA*

m cannot easily detect that the goal is unreachable,
m can satisfy hard real-time requirements and

m has a worst-case number of movements of 8(|V/[?).
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LRTA* vs D* Lite

m Safely explorable random grids of size 301 x 301

Grids with 25% random obstacles
The h-values are generally not misleading.

Larger lookaheads are less helpful.



LRTA* vs D* Lite

Sven

lookahead |Manhattan distance| octile distance
planning | move- |planning| move-
time ments time ments
D* Lite 36826 309 40737 314
1 28280 499 28293 363
11 28698 315 28878 315
21 29153 302 29477 311
31 29615 299
41
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LRTA* vs D* Lite

m DFS mazes of size 301 x 301

Acyclic mazes generated with DFS
The h-values are generally misleading.
Larger lookaheads are very helpful.



LRTA* vs D* Lite

Sven

lookahead | Manhattan distance | octile distance
planning | move- |planning| move-
time ments time ments
D* Lite 35/41¢ | 21738 | 373561 | 21140
1 085362 | 1987574 | 628175 | 1259958
11 313998 | 337704 | 277974 | 272842
21 279856 | 205370 | 273280 | 177143
31 310131 | 135554
41 348330 | 114917
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Real-Time Heuristic Search
Learning-Real Time A* (LRTAY)
Comparison of D* Lite and LRTA*
Real-Time Adaptive A* (RTAAY*)
Generalizations of LRTA*: Minimax LRTA* and RTDP
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Real-Time Adaptive A* (RTAA*)

m \We use AA* to create Real-Time Adaptive A* (RTAA¥)

[Koenig and Likhachev, 2006], a real-time heuristic search
method with similar properties as LRTA*. RTAA*

Improves on LRTA* by updating the h-values much faster
although they are not quite as informed.
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

o1 o
W |~ | O
Ok NW P~

OO | |00
Wi 0110 |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

o1 o
W |~ | O
Ok NW P~

OO | |00
Wi 0110 |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

o1 o
N (W[~ |01
Ok NW P~

OO | |00
OO |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

o1 o
N (W[~ |01
Ok NW P~

o110 | |00
OO |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

o |

o1 o

N (W[~ |01
Ok NW P~

o110 | |00
o1
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

O
\l
(@)

~J
(@)
o1
N (W[~ |01
Ok NW P~

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

O
\l
(@)

~J
(@)
o1
N (W[~ |01
Ok NW P~

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

O
\l
(@)

~J
(@)
o1
N (W[~ |01
Ok NW P~

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

state about to be
4 expanded

O
\l
(@)

\l
o
o1

o))
N DO
N

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

O
\l
(@)

~J
(@)
o1
N (W[~ |01
Ok NW P~

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

8|7/6/5|4
/716|543
6|o|=| 3|2
0 | 00 1
00 | 00 0]

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

(@)

818 |8 O~
B (O
W |~ O

88 O|N|00

Ok NW P~

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

8|7/6/5|4
/716|543
6|9 3|2
0 | 00 1
00 | 00 0]

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

8/ 7,654
716|543
6|5 3|2
| 6 1
0 | 00 0]

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

8/ 7,654
716|543
6|5 3|2
/|6 1
0 | 00 0]

4-neighbor grid



Sven

Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

876|554
/16543
6|9 3|2
/|6 1
|/ 0

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

876|554
/16543
6|9 3|2
/|6 1
8|7 0

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

876|554
/16543
6|9 3|2
/|6 1
8|7 0

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values

o1 o
N (W[~ |01
Ok NW P~

0N O | |00
~N O | 0110 |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 3: moving along the path

8|7/6/5]4
716(5/4/3
6| 543 2
7 62| 1
e K

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 3: moving along the path

8/7/6/5/4
716543
65432
7 621
8(7/8 MO

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 3: moving along the path

8|71/6|/5|4
716/5]4]3
6/5/4[3]|2
7621
s|7/sM o

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 3: moving along the path

0N O | |00

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

Properties of LRTA* [Korf, 1990]

m The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
Informed over time.

m The h-values remain consistent.

m The robot reaches the goal in safely explorable state
spaces.

m If the robot is reset into the start whenever it reaches the
goal then the number of times that it does not follow a
shortest path from the start to the goal is bounded from
above by a constant if the cost increases are bounded
from below by a positive constant.
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

o1 o
W |~ | O
Ok NW P~

OO | |00
Wi 0110 |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

o1
W |~ | O
Ok NW P~

OO | |00
Wi 0110 |
AN

bold = g-value

lar = h-val
4-neighbor grid reguiar vale
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

o1
W |~ | O
Ok NW P~

OO | |00
=N OO0 |
AN

bold = g-value

lar = h-val
4-neighbor grid reguiar vale
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

6
5
4

N (W[~ |01
Ok NW P~

N Oo1o |~ 00
=N OO (N

(0

bold = g-value
regular = h-value

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

716
6|5
5|4
2

N (W[~ |01
Ok NW P~

N Oo1o |~ 00

10

bold = g-value
regular = h-value

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

76
6|5
54
2

1(0)
bold =g-value
regular = h-value

W |~ | O
Ok NW P~

N W o |~ o

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

/|6
6|5
3 4
2

N (W[~ |01

N W o |~ o

A
3
2
1
10 0

bold = g-value
regular = h-value

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

6
S
4

N (W[~ |01
Ok NW P~

-
6
3
2

N W o |~ o

1(0

bold = g-value
regular = h-value

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 1. forward A* search

4-neighbor grid

A

2

o b o

1

6
5

4

0

N W o |~ | o
T-N-qu\l

0

bold = g-value
regular = h-value

state about to be
expanded
g-value =5
h-value =3
f-value =8
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Real-Time Adaptive A* (RTAA*)

L RTAA* Step 2 Updatlng the h'ValueS f(state about to be expanded)
RTAA*: For each expanded state s: set h,.,(S) = f()q,eﬁ) —g(s).
LRTA*: For each expanded state s: use Dijkstra to determine h,,,(S).

4-neighbor grid

A

2

6
S
4

-
6
3
2

N (W[~ |01

1

N W o |~ o

1(0 0

bold = g-value
regular = h-value

state about to be
expanded
g-value =5
h-value =3
f-value =8
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 2: updating the h-values

4-neighbor grid

\l

(@)

o1

8-3

8-2

8-1

84

8-0

N (W[~ |01

OHNTB\%

state about to be
expanded
g-value =5
h-value =3
f-value =8
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 2: updating the h-values

4-neighbor grid

87,654
/16|54
69432
5 6 211
6 78 0

state about to be
expanded
g-value =5
h-value =3
f-value =8
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 2: updating the h-values

o1 o
N (W[~ |01
Ok NW P~

o010 | |00
~N O | 0110 |
AN

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 3: moving along the path

8|7/6|/5|4
716(5|4|3
6| 5432
5 62 1
6| 5 I O

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 3: moving along the path

8/7/6/5/4
716543
65432
5 6l 21
6(7/8 MO

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 3: moving along the path

8/7/6/5]4
7161543
6/5/4]3]2
56l 2|1
6/7 8O

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* step 3: moving along the path

o010 | |00

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

Properties of RTAA* [Koenig and Likhachev, 2006]

m The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
Informed over time.

m The h-values remain consistent.

m The robot reaches the goal in safely explorable state
spaces.

m If the robot is reset into the start whenever it reaches the
goal then the number of times that it does not follow a
shortest path from the start to the goal is bounded from
above by a constant if the cost increases are bounded
from below by a positive constant.
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Real-Time Adaptive A* (RTAA*)

m RTAA* m LRTA*
8 8
4 4
6 6
5 /
6 38

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m RTAA* m LRTA*
8/ 7/6/5|4 8 7654
/ 3 /
2
1 4
6 8

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

Relationship of RTAA* and LRTA*

m RTAA* with only one expanded state per A* search
behaves exactly like LRTA* with only one expanded state
per A* search.

m If RTAA* and LRTA* have the same h-values before they
update the h-values then the h-values of RTAA* after the
update are dominated by the h-values of LRTA*.
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Real-Time Adaptive A* (RTAA*)

m DFS mazes of size 151 x 151
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Real-Time Adaptive A* (RTAA*)

RTAA* LRTA*

expansions move- planning | expansions move- planning
ments time per ments time per

search search

[ms] [ms]

248538 248538 0.20 248538 248538 0.27

9 104229 56708 2.01 87613 47291 2.80
17 85866 33853 4.37 79313 30470 6.25
25 89258 26338 6.86 82851 23270 10.23
33 96840 22022 9.41 92908 20016 14.31
41 105703 18629 11.99 102788 17274 18.50
49 117036 16638 14.46 113140 15398 22.67
— — —

57 128560 @fg D(16.83 ) 125013 14285 )Qa.e& D
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Real-Time Adaptive A* (RTAA*)

RTAA* LRTA*
expansions move- planning | expansions move- planning
ments time per ments time per
search search
[ms] [ms]
1 248538 248538 0.20 248538 248538 0.27
9 104229 56708 2.01 87613 47291 2.80
17 85866 33853 4.37 79313 30470 6.25
25 89258 26338 6.86 82851 23270 10.23
33 96840 22022|  9.41 92908 @) 14.31
41 105703 18629 11.99 2788 17274 18.50
49 117036 166321 4.46 113140 15398 22.67
57 128560 15367 16.83 125013 14285 26.69
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Real-Time Heuristic Search
Learning-Real Time A* (LRTAY)
Comparison of D* Lite and LRTA*
Real-Time Adaptive A* (RTAA¥)
Generalizations of LRTA*: Minimax LRTA* and RTDP
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[Barto, Bradtke and Singh, 1993]
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Generalizations

Properties of Learning Real-Time A* (LRTAY) [Korf, 1990]:

The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
Informed over time.

m The h-values remain consistent.
m The robot reaches the goal with O|V|?) movements in safely

explorable state spaces [Koenig, 2001], where |V| is the
number of states (= unblocked cells).

If the robot is reset into the start whenever it reaches the
goal then the number of times that it does not follow a
shortest path from the start to the goal is bounded from
above by a constant if the cost increases are bounded from
below by a positive constant.



Generalizations

m Assume that the robot is told
that it starts in D2, D4 or D6.
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Generalizations
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Generalizations
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Generalizations
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Planning with Incomplete Information

- planning with freespace assumption

- fast deterministic planning
- can make use of anytime/incremental/real-time implementations

- but making assumptions can sometimes be highly suboptimal
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- planning with freespace assumption

- fast deterministic planning
- can make use of anytime/incremental/real-time implementations

- but making assumptions can sometimes be highly suboptimal
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Path Clearance Problem

- quickly navigate to the goal without being detected by an adversary
- the robot can sense a possible adversary location at a distance

— go through it if no adversary present
- take a detour otherwise

environment size: 3.5km by 3.0km

_possible adversary loca

r % ,. < : "
N ;
~ N o LG
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Path Clearance Problem

- planning problem: where to go + what to sense
- typical approaches to planning

— assume no adversary present unless already detected
— assign high cost to traversing possible adversary locations
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- planning problem: where to go + what to sense
- typical approaches to planning

— assume no adversary present unless already detected
— assign high cost to traversing possible adversary locations
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Path Clearance Problem

- probabillistic planning
— minimizes the expected time/cost to goal

— corresponds to planning with incomplete information
- typically infeasible

size of belief state-space: 500*500*32°
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Planning with Incomplete Information

planning in belief state-spaces:
- exponential in the number of unknowns

- requires non-deterministic planning
R=C4;

E4=u

goal

2
3
41 S S
5

i




Maxim

Planning with Incomplete Information

can be solved efficiently by PPCP (Probabilistic Planning with
Clear Preferences) [Likhachev & Stentz, AAAr0g] If:

there exist clear preferences on incomplete information
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Planning with Incomplete Information

can be solved efficiently by PPCP (Probabilistic Planning with
Clear Preferences) [Likhachev & Stentz, AAAr0g] If:

there exist clear preferences on incomplete information

example of clearly preferred outcome of sensing (clear preference)
C D E F

Formally, clear preference:

arg min ,.(c(x,a,x’) + vi(x)),

where v*(x’) — optimal exp. cost
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P P C P [Likhachev & Stentz, AAAI'0G]

applies to an arbitrary graph (not just grid) with preferences
on uncertainty in outcome/costs & perfect sensing

solves the problem by running a series of A*-like searches

each search is done on the original graph (e.g., 2D for 1
navigation) whose size is exponentially smaller than the size .,

of the belief state-space 3
4

as a result, scales to much larger problems and with 5
much more uncertainty than if planning in the belief 6

state-space directly

converges to a solution that is optimal (minimizes the
expected cost-to-goal) under certain conditions
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Preferences on Incomplete Information

Landing site selection problem: where to go + what to sense

» Jand safely
= with minimum efforts

= as close to the desired goal as possible

closest to the goal goal
landing site of
desired condifence
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Landing site selection problem: where to go + what to sense

» Jand safely unknown whether landing is possible
= with minimum efforts original grap

15

= as close to the desired goal as possible

land

closest to the goal oal 0 0 E 4
landing site of ° 45" ’5

desired condifence
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Preferences on Incomplete Information

Landing site selection problem: where to go + what to sense

. unknown whether landing is possible
land safely oo -cep o HAVE GOOD LANDING SITE gisp

- with minimum efforts original grap

15

= as close to the desired goal as possible

land

closest to the goal oal 0 0 E 4
landing site of ° 45" ’5

desired condifence
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Preferences on Incomplete Information

Grocery shopping under uncertainty in sale:

PREFER TO HAVE A SALE
original graph belief state-space

Store A Agenr=Stored; » .
FISALE] = 0 Bought-wine; Agent=Home;
( }m0A Saley=1, Saley = u; Bought=wine,cheese,
wine = $20, SALE: wine = 10 = g ~_ Saley=1, Saleg=
— T ~_Saley=1, Saleg= u,
12 cheese= §12 Agent=Stored; i —*l\ X5 ) . e
Bought=-0; a=buy wine _10—"" Y Xs)
Home Sale,=1, 'EE:?B = ::;(_’_J___,_,-’" /,-'4’ =;{_' )
i 'l X \j_,-/ Agent=Stored; Agent—Home;
- ). Bought=wine; Boughi=wine,cheese;
7 Agent—StoreA; Suley= 0, Saleg= u; ™ ‘?ffe* ,ﬂ :"'ales d
5/ = 5 N LT B
2 Bought=0; Jox) = Y Xi)
33 // 2 Sa!el— 0, SaieB =u; -j Q,./"’__ 5/ _,// Y
Jo— o . - Agent=Home;
/‘/ X 3’ Y . a=h uy_wine Bought=wine,cheese;
Store B ' a=mgvetostored X . Sates~ 0, 3“""3 -6
J— [ "
PISALE) = 0.8 Agent=Home; {Y ™ mo Ewkweemrmes . j X,i )
wine = 5§15 Bought=0; l\\ Slaf/'l e
cheese= $16, SALE: cheese = $8, Sale,=n, Saleg= 17", \\\\ 3 Agent=StoreB; .
a=m&asewswreB Agent=StoreB; \ X, Bought=9;
Bought=0; N\ Saa‘ei 0, Saleg=1;
- \ N .
\ Sale. , a, Saleg=1; \ ’ﬁ‘.\ X? ;J :
r' Xd 3 \ —
3 N \
. \\ Agent=Home;
" — . Bought=wine,cheese,
X - 7 % s ley=1;
2  x ~.Sa e_,— u, Saley=
\ As )
4gem—5rareB 4 g;n-r%gr oreB; : 3:; X 1 2
Bought=0; Boughtr=0; .
Sale = u, Saleg= 0; - ~

Saley= 0, Saleg = 0;
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Preferences on Incomplete Information

Examples of preferences on incomplete information:

- Navigation in partially-known environments

- Route finding under uncertainty in traffic

- Air traffic management under uncertainty in weather conditions

- Grocery shopping under uncertainty in sale
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Using Clear Preferences in PPCP

search backwards for a path the policy after update:

fromS,..t0 S the cost of the found path given by g(A4)

start goal

assume: E4=u, B5=u
A B C D E F

v=4 v=3 v=1  v=0

=C

1 E4 = u, ]—>
5=y/
d B
h=3
s
4| 0 Lzl he2
g=6 | g=5 | g4
h=2
S o6
6

g(D4) = P(E4=0)(c(D4,east,E4=0)+g(E4)) +
P(E4=1)(c(D4,east,E4=1)+v(D4,E4=1,B5=u)) =

0.5%(1+1)+0.5%(2+2) =3 ., rrént estimate
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Using Clear Preferences in PPCP

search backwards for a path

from S

assume: E4=u, B5=u

start

A B

>

g =

= QL)

C

to S

D

goal

E

i
e~
o

o
b W

the policy after update:

the cost of the found path given by g(A4)

A

B

g(D4) = P(E4=0){c(D4,east,E4=0)+g(E4)) *
P(E4=1)(c(D4,east,E4=1)+v(D4,E4=1,B5=u))

0.5%(1+1)+0.5%(2+2) =3 |, rrént estimate
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Run of PPCP

search backwards for a path the policy after update:

from S, to Sgoa,

assume: E4=u, B5=u
A B C D E F

|
T
~ QNS i~

[l gl
als
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=
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PPCP repeatedly computes paths to states with

negative Bellman error on-the current policy until
6 none left

state with V(X) < Ex ¢ sucex,mpx{COX 17(X), X)) +v(X)}
(state with negative Bellman error)



Maxim

Run of PPCP

search backwards for a path the policy after update:
from D4 to S,
asiumBe. EC4:%’ BE5 _UF v=6 v=5 v=4 v=3 v=1 =0

:A 1 :B 1 :C 1 _D
E4=u, —» E4=u, |—» E4=u, —» =
B5=u B5=u B5=u =

improved estimate
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Run of PPCP

search backwards for a path the policy after update:
from Sstart to Sgoal
assume: E4=u, B5=u

A B C D E F

E4 u, —> E4 u,
BS u ; B5= 0
E4 u,
B5=

q(D4) = optimal expected cost-to-goal
0.5*(1+1) + 0.5%(2+10)=7

totally new path is found
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Run of PPCP

the converged (optimal) policy
after 7 iterations

v:10 v9 v8 v7 v1 vO

***

9 V= 10
20
B5=u B

V=

1
B B5=u B5=u
Theoretical properties:

all states on the policy have v(X) 2 Ey: ¢ syccx mptCOXm(X), X)) +v(X)}
the expected cost of the found policy is bounded from above by v(X.)

the found policy is guaranteed to be optimal if an optimal policy does
not require remembering preferred outcomes
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Solving Path Clearance using PPCP

environment size: 3.5km by 3.0km

s
"h 3

_possible adversary locati

. Al
¥ . r;'-
; y & 0
5 i t
. 5 S
gl
. By o Ok
. 1 Ty :
2R o

Sa /_g
e Tobot

=

size of belief state-space: 500*500+320
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Solving Path Clearance using PPCP

after first search (in few miIIisconds)
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Solving Path Clearance using PPCP

after second search (in few milliseconds)



Maxim

Solving Path Clearance using PPCP

fe seconds
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Solving Path Clearance using PPCP

after 30 secon nvered)
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Landing Site Selection using PPCP

Landing site selection problem: where to go + what to sense

« land safely PREFER TO HAVE GOOD LANDING SITE
= with minimum efforts
- as close to the desired goal as possible policy produced by the planner

closest to the goal goal
landing site of
desired condifence



Robot Navigation Maxim
In partially-known fractal environments

size: 17 by 17
(the size of the belief state-space is up to 17*17*318)
#of Percent Solved Time to Solution

unknowns Convergence (in secs) Cost

-
VI LAO* RTDP PPCP | VI LAO* RTDP PPC Same for All

6 092% 12 [00%  100% | 7.7  43.9 0.4 0.1 112,284
10 — 36% 92% 100% | —  123.1 19.7 0.2 117,221
14 — — 80% 100% | — — 25.8 0.2 113918

100% D—  — 523 07 112,884

Interesting questions:

- need for memory about preferred outcomes when navigating random environments?



Robot Navigation Maxim

In partially-known fractal environments

size: 500 by 500
(the size of the belief state-space is up to 500*500*325.000)

# of unknowns Traversal Cost

PPCP Freespace

[.000 (0.4%) .368.388 1.,394.455
2.500 (1.0%) [.824.853  1.865.935
5.000 (2.0%) 1,521,572 1,616,697

10,000 (4.0%) | 1.626.413 1,685,717

25,000 (10.0%) | 1,393,694 1,484,018

Interesting questions: freespace assumption vs. probabilistic plan.

- benefits of probabilistic planning are consistent but not high
- on the other hand, using PPCP for path clearance can save over 35% in execution cost
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Case Study:
Planning in Dynamic Environments

m Shows the actual application of some of the presented
techniques
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Robust goal-directed behavior In
Dynamic Environments
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Most Real-time Approaches

Project the dynamic obstacles onto the static 2D map by
assigning high cost to cells that lie on the obstacles’ expected
paths

Fast but can be highly suboptimal
Can cause the robot to get stuck

» W UGV3
2;% //..,,/' m 777 ¢ UGV4 - .'".
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Optimal Approaches

« Produce high dimensional time-parameterized trajectories all

the way to the goal (i.e. <X, Yy, &, ..., t> ) [Fiorini & Shiller, '98;
Fujimura & Samet, ‘93; van den Berg & Overmars, '06]

Should take into account vehicle dynamics
Computationally expensive and slow

By the time planning is finished, the situation, with respect to
dynamic obstacles, may change

—
— —

oal

proceed
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Key Idea In Time-bounded Lattice

m Main Observations:

« The uncertainty in the obstacle motion prediction is usually
quite high, so planning over time far into the future does not
make sense.

Uncertainty in past observations

Uncertainty in future trajectories

= The robot will be able to re-plan avoidance maneuvers as it
gets closer
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Key Idea In Time-bounded Lattice

= Combine planning dynamically feasible time-parameterized
trajectories with low-dimensional planning w/o time

XU Static obstacle

%

dynamic

obstacle %
O/iil O

—C

= Automatically reason about the extent of planning in time based on
uncertainty in future obstacle trajectories
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Key Idea In Time-bounded Lattice

= Combine planning dynamically feasible time-parameterized
trajectories with low-dimensional planning w/o time

- high-dimensional agent-centered search combined with low-
dimensional planning with freespace assumption

- freespace assumption refers to assuming “no dynamic obstacles”

= Automatically reason about the extent of planning in time based on
uncertainty in future obstacle trajectories
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Lattice Graph

m Lattice graph construction
[Pivtoraiko & Kelly, '05]:

Uses dynamically-feasible motion
primitives to produce successors

Motion primitives can be
generated for a particular robot
platform

C(s,s;) = 100
C(s;Sg) =5

Transition costs can assigned to
successors based on length,
heading change, etc

States that collide with obstacles
receive high costs and/or can be
discarded (not shown)
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Time-bounded Lattice

Start planning with time in high dimensional lattice ( <x, v,
9V, w, t>)

Determine when it is safe to ignore the obstacles based on
their estimated future position uncertainty (find T, .,)

All states witht > T, are projected onto a graph w/o time
(i.e., 2D grid)

ARA* is used to construct and search the graph

XO static obstacle
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Obstacle Representation

Time-parameterized pose distribution

Expected poses of obstacles can be extrapolated into the
future given past observations and their motion models

Multimodal hypotheses are e
supported (i.e. T,, Ty) A
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Obstacle Representation
3D Gaussian was chosen to 2507
represent the pose : o
uncertainty of the dynamic i N
obstacles 7
<Xy, 9> (3x3cov. matix) £ 7 X )
Differential drive motion o))
\; ;'c°°’d""::e m) y

model
EKF prediction step

Planner is not restricted to any particular obstacle uncertainty

model
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Estimating Collision Cost

For every action, we can now compute the probability of
colliding with a dynamic obstacle

The cost of the state transition is proportional to the
probabillity of collision

Static obstacle

of& O

dynamic
obstacle
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Computing T, ..,

= Probability of collision at time t is upper-bounded by P, ., - the
Integral over the robot footprint at the mean of the distribution

at time t
= T, IS timetwhen P, IS negligible

dynamic C&
obstacle &

| - O GL

static obstacle




Maxim

Collision Cost for 2D Grid

= Only take into account static obstacles

Xo Static obstacle

%

dynamic

obstacle %
& O/f\ O
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Advantages of Time-bounded
Lattice

« Qutput of the planner can be fed directly into vehicle
controls

« Simple low-d planning if dynamic obstacles are absent
Full 6D trajectories if obstacle motion prediction is accurate

« Automatically balances between the two extremes
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Example of Planning with Time-bounded Lattice




Maxim

Summary

m Planning with freespace assumption and its
anytime/incremental implementations

m Agent-centered search and its incremental implementations
m Probabilistic planning with preferences on uncertainty

each strategy results in “good” run-time behavior in some domains
but may result in highly suboptimal run-time behavior in other domains
In some domains may also be beneficial to combine the strategies
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Summary

m Solving complex planning problems by running a series
of A*-like searches (ARA*, PPCP, R*, MCP,...)
typically easily to implement
makes use of heuristics
automatically focusses on relevant states
provides theoretical guarantees
general
often provides anytime behavior



Concluding Remarks

m Joint work with

S. Chitta, B. Cohen, K. Daniel, A . Felner, D. Ferguson, G.
Gordon, S. Greenberg, W. Halliburton, A. Kushleyev, A. Mudgal,
A. Nash, A. Ranganathan, Y. Smirnov, A. Stentz, X. Sun, S.
Thrun and C. Tovey

m Funded in part by

NSF, DARPA, ARL, ONR, Willow Garage, IBM and JPL

m For more information see
idm-lab.org/projects.html
www.seas.upenn.edu/~maximi

m Download software from
idm-lab.org/project-a.ntml
www.seas.upenn.edu/~maximl/software.html (SBPL library)

SBPL and SBPL-based motion planners are also available as
part of ROS packages (http://www.ros.org/wiki/sbpl)
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