
Real-Time Planning in

Dynamic and Partially

Known Domains

Maxim Likhachev
University of Pennsylvania
maximl@seas.upenn.edu

Sven Koenig
University of Southern California

skoenig@usc.edu



Warning!

 We try to make everything easy to understand.

 We often do not mention crucial details.

 We use both 4- and 8-neighbor grids.

 We invite you to ask questions!



Warning!

 We use robotics to illustrate the planning techniques 

because

 incomplete information and uncertainty are important in robotics

 domains from robotics are easy to understand, and

 the behavior of planning techniques is easy to visualize.

 However, the planning techniques also apply to a variety 

of other domains, including more “symbolic” ones.



Real-time Planning in Dynamic and 

Partially-known Domains
 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

Maxim



 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

planning in 8D (<x,y> for each foothold) using R*

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

 severe time constraints (e.g., tens of msecs to few seconds)

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

 severe time constraints (e.g., tens of msecs to few seconds)

 robustness to uncertainties in execution, sensing, environment

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

 severe time constraints (e.g., tens of msecs to few seconds)

 robustness to uncertainties in execution, sensing, environment

 generality of approaches

 theoretical guarantees

 simplicity

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



 Challenges

 complexity/size (high-dim., expensive to compute costs, etc.)

 severe time constraints (e.g., tens of msecs to few seconds)

 robustness to uncertainties in execution, sensing, environment

 generality of approaches

 theoretical guarantees

 simplicity

usually satisfied by 

graph searches such as A*

ability to find some solution fast

ability to improve the solution before and during execution

ability to re-use search results 
ability to plan under uncertainty

This talk!

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



Common theme in this talk:

 Planning with a series of (efficient) graph searches

 Planning with variants of A* searches

Real-time Planning in Dynamic and 

Partially-known Domains

Maxim



Table of Contents

 Modeling Planning Domains

 Graphs, MDPs

 Planning Problems and Strategies

 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies

 Incremental Heuristic Search

15 Minute Break

 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Sven



Work vs Configuration Space

work space configuration space

[from Stuart Russell and Peter Norvig]

Sven



Work vs Configuration Space

 Configuration spaces are often

 continuous and

 high-dimensional.

Sven



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Sven



 Skeletonization methods

Discretizing Configuration Space

visibility graph

Sven



Discretizing Configuration Space

roadmap using random points [Kavraki et al, 1994] 

 Skeletonization methods: 

randomized and probability complete 

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start

goal

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start

goal

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven



 Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Sven



Discretizing Configuration Space

vertical strips grid

 Cell decomposition methods: 

systematic and resolution complete

[from Stuart Russell and Peter Norvig]         

Sven



Discretizing Configuration Space

8-neighbor grid 4-neighbor grid

Sven



Discretizing Configuration Space

(x,y,theta)

start

 Lattice-based methods combine road-map and cell based 

methods: The configurations are the centers of cells.

Sven



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Sven



A*

 A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-

values to focus its search.

 The h-values approximate the goal distances.

 We always assume that the h-values are consistent!

 The h-values h(s) are consistent 

iff they satisfy the triangle inequality:

h(s) = 0 if s is the goal and

h(s) ≤ c(s,a) + h(succ(s,a)) otherwise.

 Consistent h-values are admissible.

 The h-values h(s) are admissible

iff they do not overestimate the goal distances.

s goal 

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

Sven



A*

(Forward) A*

1. Create a search tree that contains only the start.

2. Pick a generated but not yet expanded state s 

with the smallest f-value.

3. If state s is the goal then stop.

4. Expand state s.

5. Go to 2.

Sven



A*

 Search problem with uniform cost

1

goal1start

4-neighbor grid

Sven



A*

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

 Possible consistent h-values

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4-neighbor grid

Sven



1

2

A*

 First iteration of A*

0

cost of the shortest path
in the search tree from the 

start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4-neighbor grid

order of expansions

Sven



2

A*

 Second iteration of A*

01

1

1

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

 Third iteration of A*

01

2

1

1

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

 Fourth iteration of A*

02

2

1

2

1

1

6

6

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

 Fifth iteration of A*

02

2

1

2

2

1

1

2

6

6

4

6

6

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

 Sixth iteration of A*

02

2

1

2

2

1

1

3

2 3

6

6

4

6

6

4

4

6

4 4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

 Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



A*
7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4 5 6

3

1

11

2

(7)

6

3 4 7

5

1

11

2

(8)

Uniform-cost search

Breadth-first search

4-neighbor grid

Sven



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Sven



Weighted A*

w = 2.5

13 expansions

11 movements

(w = 1.0)

20 expansions

10 movements

8-neighbor grid

A*

f(s) = g(s) + h(s)

Weighted A* [Pohl, 1970] 

f(s) = g(s) + w h(s)

Sven



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Maxim



Modeling Uncertainty

• So far, we assumed no uncertainty in the model
- execution is perfect

- localization is perfect

- environment is fully known

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost 

path 

from sstart to sgoal

Maxim



Modeling Uncertainty

• Uncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost 

Maxim



Modeling Uncertainty

• Uncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost 
example: s3, s4, s5 Є succ(s2, aSE),

P(s5|ase,s2) = 0.9,   c(s2,ase,s5) = 1.4

P(s3|ase,s2) = 0.05, c(s2,ase,s3) = 1.0

P(s4|ase,s2) = 0.05, c(s2,ase,s4) = 1.0

Maxim



Modeling Uncertainty

• Uncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

Moving-target search example

- State: <R,T>

- Uncertainty in the target moves

R

T

Maxim



Modeling Uncertainty
- execution is perfect

- localization is still assumed to be perfect

- environment is partially-known

S1 S2 S3

S4 S5

S6

convert into ???

- the costs and connectivity of the graph is not fully known

Incomplete Information State

Maxim



Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S – agent‟s state    

<x,y> position

H – a vector of hidden variables

status of cells B5 and E4

Maxim



Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S – agent‟s state    

<x,y> position

H – a vector of hidden variables

status of cells B5 and E4

fully observable state variables 

(always known)

not known at the time of planning

but probability distribution P(H) is given

Maxim



Modeling Uncertainty

Robot navigation in a partially-known environment

S – agent‟s state    

<x,y> position

H – a vector of hidden variables

status of cells B5 and E4

X=[S(X);H(X)] - belief state

current belief of the robot about 

hidden variables (i.e., P(H))

current (observable) state of the robot

Maxim



Modeling Uncertainty: Incomplete Info State

• Belief State-Space:

• An action can affect both the observable state of the robot (e.g.,
move action) as well as its knowledge about the environment (e.g.,
sensing action):

X=[S(X);H(X)] - belief state

Xk

X2

X X1

a

...

X1=[S1(X);H1(X)]

X=[S(X);H(X)]
X2=[S2(X);H2(X)]

Xk=[Sk(X);Hk(X)]

Maxim



X

Modeling Uncertainty: Incomplete Info State

• Belief State-Space:

Assuming perfect sensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

Maxim



X

Modeling Uncertainty: Incomplete Info State

• Belief State-Space:

Assuming perfect sensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

H(X): P(E4=free) = 0.5; P(B5=free) = 0.5;

H(X1): P(E4=free) = 1; P(B5=free) = 0.5;

Maxim



Modeling Uncertainty: Incomplete Info State

• Belief State-Space:

Assuming perfect sensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

Maxim



Modeling Uncertainty: Incomplete Info State

• Belief State-Space:

Assuming perfect sensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

MDP in which optimal policy 
is a tree (acyclic)

Maxim



Modeling Uncertainty

• Uncertainty in localization/execution/environment
- execution is imperfect

- localization is imperfect

- environment is partially-known

Partially-Observable MDPs (POMDPs)

Maxim



Modeling Uncertainty: POMDPs

• MDP + robot is uncertain about its state (and/or about
some of the action costs)

• Can always be converted into a belief state-space MDP

(where each state is a probability distribution over original states)

• optimal policy: mapping from a belief state onto action

• optimal policy can be found by solving belief MDP

• optimal policy can now be cyclic

This tutorial will NOT talk about how to solve general POMDPs

Maxim



Modeling Planning Domains

 Deterministic Models – Graphs

 Skeletonization Methods (Roadmaps)

 Cell Decomposition Methods

 Searching Graphs

 A*

 Weighted A*

 Nondeterministic Models – MDPs

 Searching MDPs

Maxim



Probabilistic Planning

• What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Without uncertainty, plan is a single path:
a sequence of states (a sequence of actions)

• In MDPs, plan is a policy π:
mapping from a state onto an action

Maxim



Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:
minimizes the worst cost-to-goal
π* = argminπ maxoutcomes of π{cost-to-goal}

• worst cost-to-goal for π1=(sstart,s2,s4,s3,sgoal) is:
1+1+3+1 = 6

• worst cost-to-goal for π2=(try to go through s1) is:
1+2+2+2+2+2+2 + … = ∞

Maxim



Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:
minimizes the worst cost-to-goal
π* = argminπ maxoutcomes of π{cost-to-goal}

• Optimal minimax policy π* = π1=(sstart,s2,s4,s3,sgoal)

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;
reduces to usual backward A* if 

no uncertainty in outcomes

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = ∞
h=3

g = ∞
h=2

g = ∞
h=2

g = ∞
h=1

g = ∞
h=0

CLOSED = {}
OPEN = {sgoal}
next state to expand: sgoal

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = ∞
h=2

g = ∞
h=2

g = ∞
h=1

g = ∞
h=0

CLOSED = {sgoal}
OPEN = {s3}
next state to expand: s3

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = ∞
h=2

g = ∞
h=1

g = ∞
h=0

CLOSED = {sgoal,s3}
OPEN = {s4}
next state to expand: s4

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = ∞
h=2

g = 5
h=1

g = ∞
h=0

CLOSED = {sgoal,s3,s4}
OPEN = {s2}
next state to expand: s2

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2}
OPEN = {sstart,s1}
next state to expand: sstart

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

in this example, the computed policy is a path, 
but in general it is a tree

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};
while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’  not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

Minimax A* guarantees 
to find an optimal (minimax) policy,

and never expands a state more than once, 
provided heuristics are consistent (just like A*)

Maxim



Computing Minimax Plans

• Minimax backward A*
- searches backwards which sometimes can be
hard/computationally very expensive (consider moving-target
search, what is a goal?)

Maxim



Computing Minimax Plans

• Pros/cons of minimax plans
- robust to uncertainty
- overly pessimistic
- harder to compute than normal paths

- especially if backwards minimax A* does not apply
- even if backwards minimax A* does apply, still more
expensive than computing a single path with A* (heuristics
are not guiding well)

Maxim



Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:
minimizes the expected cost-to-goal
π* = argminπ E{cost-to-goal}

• expected cost-to-goal for π1=(sstart,s2,s4,s3,sgoal) is
1+1+3+1=6

• cost-to-goal for π2=(try to go through s1) is:
0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2) + …=5.444

expectation over outcomes

Maxim



Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:
minimizes the expected cost-to-goal
π* = argminπ E{cost-to-goal}

• Optimal expected cost policy π* = π2=(go through s1)

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal expected cost-to-goal values v* satisfy:
v*(sgoal)=0
v*(s) = mina E{c(s,a,s’)+v*(s’)} for all s ≠ sgoal
(expectation over outcomes s’ of action a executed at state s)

Bellman optimality equation

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

Bellman update equation 
(or backup)

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=0

v=0v=0

v=0

v=0

Bellman update equation 
(or backup)

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=0v=0

v=0

v=0

after backing up s1

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=0v=0

v=1

v=0

after backing up s2

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=1v=0

v=1

v=0

after backing up s3

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=1v=4

v=1

v=0

after backing up s4

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=1v=4

v=1

v=2

after backing up sstart

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=1

v=2

after backing up s1

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

after backing up s2

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

backing up s3 and s4 has no 
effect since their Bellman 
errors are zero

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=5.1

after backing up sstart

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.41

v=1v=4

v=4.1

v=5.1

after backing up s1

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.1

after backing up s2

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.41

after backing up sstart

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.441

v=1v=4

v=4.41

v=5.41

after backing up s1

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.41

after backing up s2

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.441

after backing up sstart

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 
one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0
v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 
one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆
Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

optimal policy is given by greedy policy:
always select an action that minimizes

E{c(s,a,s’)+v(s’)}

expected cost of executing greedy policy is at most: 
v*(sstart)cmin/(cmin-∆)

where cmin is minimum edge cost

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP [Barto, Bradtke and Singh, 1993] (usually much much
more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;
2. Backup all states visited on the way;
3. Reset to sstart and repeat 1-3 until all states on the current greedy policy
have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP [Barto, Bradtke and Singh, 1993] (usually much much
more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;
2. Backup all states visited on the way;
3. Reset to sstart and repeat 1-3 until all states on the current greedy policy
have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

RTDP focusses its backups on what is 
relevant to the optimal plan rather than computing

ALL state values (like VI)

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP [Barto, Bradtke and Singh, 1993] (usually much much
more efficient):

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;
2. Backup all states visited on the way;
3. Reset to sstart and repeat 1-3 until all states on the current greedy policy
have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

expected cost of executing greedy policy is at most: 
v*(sstart)cmin/(cmin-∆)

where cmin is minimum edge cost

Maxim



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Sven



Planning Problems and Strategies

 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Greedy Agent-Centered Search

 Greedy agent-centered search starts at some state. It 
marks the robot state (and perhaps other states as well) 
as uninteresting and then moves to the closest 
interesting state. It repeats the process until all states 
are marked uninteresting. 

Sven



Greedy Agent-Centered Search

number of movements = 0

Sven



Greedy Agent-Centered Search

number of movements = 0

Sven



Greedy Agent-Centered Search

number of movements = 0

Sven



Greedy Agent-Centered Search

number of movements = 1

Sven



Greedy Agent-Centered Search

number of movements = 1

Sven



Greedy Agent-Centered Search

number of movements = 1

Sven



Greedy Agent-Centered Search

number of  movements = 2

Sven



Greedy Agent-Centered Search

number of movements = 2

Sven



Greedy Agent-Centered Search

number of movements = 2

Sven



Greedy Agent-Centered Search

number of movements = 3

Sven



Greedy Agent-Centered Search

number of movements = 4

Sven



Greedy Agent-Centered Search

number of movements = 4

Sven



Greedy Agent-Centered Search

number of movements = 4

Sven



Greedy Agent-Centered Search

number of movements = 5

Sven



Greedy Agent-Centered Search

number of movements = 6

Sven



Greedy Agent-Centered Search

number of movements = 7

Sven



Greedy Agent-Centered Search

number of movements = 7

Sven



Greedy Agent-Centered Search

number of movements = 7

Sven



Greedy Agent-Centered Search

number of movements = 8

Sven



Greedy Agent-Centered Search

number of movements = 8

Sven



Greedy Agent-Centered Search

number of movements = 8

Sven



Greedy Agent-Centered Search

number of movements = 9

Sven



Greedy Agent-Centered Search

number of movements = 9

Sven



Greedy Agent-Centered Search

number of movements = 9

Sven



Greedy Agent-Centered Search

number of movements = 10

Sven



Greedy Agent-Centered Search

number of movements = 11

Sven



Greedy Agent-Centered Search

number of movements = 12

Sven



Greedy Agent-Centered Search

number of movements = 12

Sven



Greedy Agent-Centered Search

number of movements = 12

Sven



Greedy Agent-Centered Search

number of movements = 13

Sven



Greedy Agent-Centered Search

number of movements = 14

Sven



Greedy Agent-Centered Search

number of movements = 14

Sven



Greedy Agent-Centered Search

 Theorem [Tovey and Koenig, 2003]

The worst-case number of movements of greedy agent-
centered search is |V| + 2 |V| ln |V| in known connected 
graphs, where |V| is the number of vertices.

Sven



Planning Problems and Strategies

 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Robot-Navigation Problems

A
B
C
D

1 2 3 4 5 6 7 8

E
F

the agent sees

+---

 Perfect actuation in four 
compass directions

 Perfect sensing in four 
compass directions with 
sensor range one

 Compass is available

 Minimize the worst-case 
number of movements for

 Grid of a given size

 Start cell

 Tie breaking

4-neighbor grid

Sven



 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Localization

 Localization determines the robot cell on a given map.

Sven



Localization

A
B
C
D

1 2 3 4 5 6 7 8

E
F

the agent sees

+---

4-neighbor grid

Sven



Localization

the agent could be in
{E2, E4, E6}

A
B
C
D

1 2 3 4 5 6 7 8

E
F

???

4-neighbor grid

Sven



Localization

the agent could be in
{E2, E4, E6}

A
B
C
D

1 2 3 4 5 6 7 8

E
F

???

4-neighbor grid

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Localization

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ? ?

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

4-neighbor grid

Sven



Localization

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ??

4-neighbor grid

Sven



Localization

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

??

4-neighbor grid

Sven



Localization

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

?

4-neighbor grid

Sven



Approx Optimal Localization

 Theorem [Tovey and Koenig, 2000]

It is in NP to determine whether there exists a 
localization plan that executes no more movements than 
a given value.

It is NP-hard to find a localization plan in grids whose 
worst-case number of movements to localization is within 
a factor O(log(|V|)) of optimum, where |V| is the number 
of states (= unblocked cells), even in connected grids in 
which localization is possible. 
(Contrast this theorem with [Dudek, Romanik, Whitesides, 1995].)

 Thus, it is intractable to find optimal localization plans via 
complete AND-OR searches.

Sven



Approx Optimal Localization

Approx optimal localization

Planning time Exponential

Plan-execution time Low-order polynomial

Sven



Greedy Localization

 Agent-centered search: 
interleaving of deterministic 
searches that result in a gain
in information with 
action executions.

start

goal

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Greedy Localization

 Greedy localization repeatedly makes the robot execute 
a shortest movement sequence to a closest informative 
unblocked cell, where an informative cell is one that 
allows the robot to make an observation that is 
guaranteed to reduce the number of possible robot cells 
[Genesereth and Nourbakhsh, 1993] [Koenig and Simmons, 1998].

Sven



A
B
C
D

1 2 3 4 5 6 7 8

E
F

???

Greedy Localization

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

4-neighbor grid

Sven



Greedy Localization

A
B
C
D

1 2 3 4 5 6 7 8

E
F

4-neighbor grid

Sven



Greedy Localization

 Greedy localization starts at some unblocked cell. It 
marks the robot cell (and perhaps other cells as well) as 
uninformative and then moves to the closest informative 
unblocked cell. It repeats the process until all unblocked 
cells are marked uninformative.

 Corollary [Tovey and Koenig, 2005]

The worst-case number of movements of greedy 
localization is O(|V| log |V|), where |V| is the number of 
states (= unblocked cells).

Sven



Greedy Localization

Approx optimal localization

Planning time Exponential

Plan-execution time Low-order polynomial

Greedy Localization

Planning time Low-order polynomial

Plan-execution time Low-order polynomial

Sven



Greedy Localization

 DFS mazes

Acyclic mazes generated with DFS

Sven



Greedy Localization

 DFS mazes

gridworld
size

obstacle
density

av. number
of subplans

av. number
of steps per

subplan

av. total
number of
movements

11 x 11 41.3
45.4
46.8
47.6
48.1
48.4
48.6

2.4
3.3
3.8
4.1
4.5
4.7
4.9

1.5
1.7
1.7
1.8
1.8
1.8
1.9

3.6
5.4
6.6
7.5
8.0
8.6
9.1

61 x 61

%
%
%
%
%
%
%

x
x
x
x
x
x
x

=
=
=
=
=
=
=

21 x 21
31 x 31
41 x 41
51 x 51

71 x 71

to localization to localization to localization

(5041 cells)

Sven



Greedy Localization

 Example for room-like terrain  [Tovey and Koenig, 2005]

The worst-case number of movements of greedy 
localization can be a factor Ω(|V| / log |V|) worse than the 
optimal worst-case number of movements to localization, 
where |V| is the number of states (= unblocked cells), 
even in connected grids in which localization is possible.

Sven



Greedy Localization

 Our grids

4-neighbor grid

start

0 0 0 0 0 1 010 . . .

?????????????????????? ????? ? ? ??

start

Sven



Greedy Localization

 Our grids

start

0 0 0 0 0 1 010 . . .

?????????????????????? ????? ? ? ?

4-neighbor grid

Sven



Greedy Localization

Approx optimal localization

Planning time Exponential

Plan-execution time Low-order polynomial

Greedy Localization

Planning time Low-order polynomial

Plan-execution time Low-order polynomial

Sven



Greedy Localization

 Our minimax model

 Perfect actuation, perfect sensing

 Minimize worst-case number of movements

 Sets of states

 POMDP-based (“Markov”) localization [Burgard, Fox and Thrun, 1997]

 Noisy actuation, noisy sensing

 Minimize average-case number of movements

 Probability distribution over states

Sven



Greedy Localization

 Our minimax model

 Greedy localization repeatedly makes the robot 
execute a shortest movement sequence that is 
guaranteed to reduce the number of possible robot 
cells.

 POMDP-based (“Markov”) localization [Burgard, Fox and Thrun, 1997]

 Greedy localization repeatedly makes the robot 
execute a shortest movement sequence that is 
guaranteed to reduce the entropy of the probability 
distribution over the possible robot cells.

Sven



Planning Problems and Strategies

 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Mapping

 Mapping determines a map, always knowing the robot 
cell.

Sven



Mapping

A
B
C
D

1 2 3 4 5 6 7 8

E
F

A
B
C
D

1 2 3 4 5 6 7 8

E
F

4-neighbor grid

Sven



Mapping

A
B
C
D

1 2 3 4 5 6 7 8

E
F

A
B
C
D

1 2 3 4 5 6 7 8

E
F

4-neighbor grid

Sven



Mapping

A
B
C
D

1 2 3 4 5 6 7 8

E
F

A
B
C
D

1 2 3 4 5 6 7 8

E
F

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

4-neighbor grid

Sven



Greedy Mapping

 Agent-centered search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

start

goal

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

4-neighbor grid

Sven



Greedy Mapping

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

4-neighbor grid

Sven



Greedy Mapping

4-neighbor grid

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

Sven



Greedy Mapping

4-neighbor grid

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

Sven



Greedy Mapping

4-neighbor grid

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

Sven



Greedy Mapping

4-neighbor grid

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

Sven



Greedy Mapping

4-neighbor grid

 Greedy mapping repeatedly makes the robot execute a 
shortest movement sequence to the closest informative 
unblocked cell, where an informative cell is one that allows 
the robot to observe the blockage status of at least one 
additional cell [Thrun et al., 1998] [Romero, Morales and Sucar, 2001].

Sven



Greedy Mapping

 Greedy mapping starts at some unblocked cell. It marks 
the robot cell (and perhaps other cells as well) as 
uninformative and then moves to the closest informative 
unblocked cell. It repeats the process until all unblocked 
cells are marked uninformative.

 Corollary [Tovey and Koenig, 2003]

The worst-case number of movements of greedy 
mapping is O(|V| log |V|), where |V| is the number of 
states (= unblocked cells).

Sven



Greedy Mapping

Greedy mapping

Planning time Low-order polynomial

Plan-execution time Low-order polynomial

Sven



Greedy Mapping

 Greedy mapping is reactive to changes in the robot cell. 
Thus, the robot does not need to move as instructed by 
greedy mapping.

 Other modules of a robot architecture can switch off 
greedy mapping and reactivate it later.

4-neighbor grid

Sven



Greedy Mapping

 Greedy mapping is reactive to changes in the robot‟s 
knowledge of the terrain, independent of how the 
knowledge was obtained.

 Greedy mapping immediately uses new terrain 
information, e.g. information provided by the user.

4-neighbor grid

Sven



Greedy Mapping

number of  states (= unblocked cells)

n
u

m
b

e
r 

o
f 
m

o
v
e

m
e

n
ts depth-first search

greedy mapping

Sven



Greedy Mapping

20 feet

28 feet

Sven



Planning Problems and Strategies

 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Stationary Target

 Stationary target-search navigates to a stationary target 
cell with no a priori given map, always knowing the robot 
cell. (Stationary target search is often called goal-
directed navigation.)

Sven



Stationary Target

A
B
C
D

1 2 3 4 5 6 7 8

E
F

A
B
C
D

1 2 3 4 5 6 7 8

E
F

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Assumption-based planning 
interleaves deterministic 
searches resulting from
making assumptions about
action outcomes with action 
executions.

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

start

goal

desired
trajectory

actual
trajectory

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Planning with the freespace assumption repeatedly 
makes the robot execute a shortest movement sequence 
to the goal under the assumption that cells with unknown 
blockage status are unblocked [Brumitt and Stentz, 1998] 

[Hebert, McLachlan, Chang, 1999] [Stentz and Hebert, 1995].

4-neighbor grid

Sven



Pl w the Freespace Assumption

 Theorem [Mudgal, Tovey and Koenig, 2004]

The worst-case number of movements of planning with 
the freespace assumption is O(|V| log |V|), where |V| is 
the number of states (= unblocked cells).

Sven



Pl w the Freespace Assumption

Planning with the freespace assumption

Planning time Low-order polynomial

Plan-execution time Low-order polynomial

Sven



Pl w the Freespace Assumption

number of states (= unblocked cells)

n
u

m
b

e
r 

o
f 
m

o
v
e

m
e

n
ts

planning with the
freespace assumption

Sven



Pl w the Freespace Assumption

20 feet

28 feet

Sven



Planning Problems and Strategies

 Greedy Agent-Centered Search

 Three Robot-Navigation Problems and Approaches
 Localization using Agent-Centered Search: 

Greedy Localization

 Mapping using Agent-Centered Search: 
Greedy Mapping

 Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

 Summary
 Agent-Centered Search

 Planning with the Freespace Assumption

 Real-Time Search

Sven



Agent-Centered Search

 Agent-centered search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

start

goal

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Real-Time Search

 Real-time search

interleaves deterministic 

searches that result in a gain

in information with 

action executions.

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

start

goal

Sven



Assumption-Based Planning

 Assumption-based planning 
interleaves deterministic 
searches resulting from
making assumptions about
action outcomes with action 
executions.

start

goal

desired
trajectory

actual
trajectory

4-neighbor grid

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

Sven



Real-Time Search

 Real-time search 

interleaves deterministic 

searches that result in a gain

in information with 

action executions.

start

goal

w

e

s n s n

w

e

s n

e

s

e

w

n

w

n

e

w

n

s

n
s

w

n

w

w

e

w

s

w

e

s

e

w

n

e

w

e

w

n

w

s n

4-neighbor grid

Sven



Issues

 Agent-centered search

 How to find similar plans efficiently?

 How much to plan…

 to guarantee that the objective is achieved and

 to trade off well between planning and plan-execution time?

 Assumption-based planning

 How to find similar plans efficiently?

 Which assumptions to make

 to guarantee that the objective is achieved and

 to trade off well between planning and plan-execution time?

Sven



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Sven



Incremental Heuristic Search

search task 1 slightly different 
search task 2

slightly different 
search task 3

Sven



Stationary Target

 Stationary target search navigates to a stationary target 
cell with no a priori given map, always knowing the robot 
cell.

Sven



Stationary Target

4-neighbor grid

Sven



Incremental Heuristic Search

 Incremental heuristic search speeds up A* searches for 
a sequence of similar search problems by exploiting 
experience with earlier search problems in the 
sequence. It finds shortest paths.

 In the worst case, incremental heuristic search cannot be 
more efficient than A* searches from scratch
[Nebel and Koehler 1995].

Sven



Incremental Heuristic Search

search task 1 slightly different 
search task 2

slightly different 
search task 3

search task 1 slightly
different
search task 2

slightly
different 
search task 3

slightly
different 
search task 4

Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Sven
p
la

n
n
in

g
 tim

e
 p

e
r e

x
p
a
n
s
io

n
 in

c
re

a
s
e
s

n
u
m

b
e
r o

f e
x
p
a
n
s
io

n
s
 d

e
c
re

a
s
e
s



Fringe Saving A* (FSA*)

 Fringe Saving A* (FSA*) [Sun and Koenig, 2007] speeds up A* 
searches for a sequence of similar search problems by 
starting each A* search at the point where it could differ 
from the previous one.

 FSA* is similar to but faster than iA* [Yap, unpublished].

Sven



Fringe Saving A* (FSA*)

start

goal

A* FSA*

start

old                             new
search                     search
tree                             tree

goal

Sven



2

Fringe Saving A* (FSA*)

 Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

Fringe Saving A* (FSA*)

 One cell becomes blocked

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

cost of the shortest path
In the search tree from the 

start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

Sven



2

Fringe Saving A* (FSA*)

 One cell becomes blocked

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

cost of the shortest path
In the search tree from the 

start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

Sven



Fringe Saving A* (FSA*)

π r2

time-consuming

operations

2 π r

fast

operations 

Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Sven
p
la

n
n
in

g
 tim

e
 p

e
r e

x
p
a
n
s
io

n
 in

c
re

a
s
e
s

n
u
m

b
e
r o

f e
x
p
a
n
s
io

n
s
 d

e
c
re

a
s
e
s



Adaptive A* (AA*)

 Adaptive A* (AA*) [Koenig and Likhachev, 2005] speeds up A* 
searches for a sequence of similar search problems by 
making the h-values more informed after each search.

 The principle behind AA* was earlier used in Hierarchical 
A* [Holte et al., 1996].

Sven



Adaptive A* (AA*)

start

goal

start

goal

A* AA*

Sven



Adaptive A* (AA*)

 Consider a state s that was expanded 
by A* with consistent h-values hold:

 distance(start,s) + distance(s,goal) ≥ distance(start,goal)

 distance(s,goal) ≥ distance(start,goal) – distance(start,s)

 distance(s,goal) ≥ f(goal) – g(s) = hnew(s)

 The h-values hnew are again consistent.

 The h-values hnew dominate the h-values hold.

 These properties continue to hold even if the start changes 
or the movement costs increase.

 The next A* search with h-values hnew expands no more 
states than an A* search with h-values hold and likely many 
fewer states. 

start goal

s

Sven



Adaptive A* (AA*)

first A* search second A* search
4-neighbor grid

g f

h

Sven



Adaptive A* (AA*)

first AA* search second AA* search
4-neighbor grid

g f

hold hnew

Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Sven
p
la

n
n
in

g
 tim

e
 p

e
r e

x
p
a
n
s
io

n
 in

c
re

a
s
e
s

n
u
m

b
e
r o

f e
x
p
a
n
s
io

n
s
 d

e
c
re

a
s
e
s



Lifelong Planning A* (LPA*)

 Lifelong Planning A* (LPA*) [Koenig and Likhachev, 2002]

speeds up A* searches for a sequence of similar search 
problems by recalculating only those g-values in the 
current search that are important for finding a shortest 
path and have changed from the previous search.

 This can often be understood as transforming the search 
tree from the previous search to the one of the current 
search. 

Sven



Lifelong Planning A* (LPA*)

8-neighbor grid

Sven



Lifelong Planning A* (LPA*)
[from slate.com]

8-neighbor grid

Sven

http://www.slate.com/id/2126829/


Lifelong Planning A* (LPA*)

8-neighbor grid

g

Sven



Lifelong Planning A* (LPA*)

8-neighbor grid

[from slate.com]

Sven

http://www.slate.com/id/2126829/


Lifelong Planning A* (LPA*)

artificial intelligence

heuristic search

How to search efficiently 
using h-values to focus the 

search?

algorithm theory

incremental search

How to search efficiently 
by reusing information 
from previous similar 

searches?

Sven



Lifelong Planning A* (LPA*)

uninformed search

breadth-first search

DynamicSWSF-FP
with early termination (our addition)

[Ramalingam and Reps, 1996]

heuristic search

A*
[Hart, Nilsson, Raphael, 1968]

Lifelong Planning A* (LPA*)
[Koenig and Likhachev, 2002]

co
m

p
le

te
 s

ea
rc

h
in

cr
em

en
ta

l 
se

ar
ch

Sven



Lifelong Planning A* (LPA*)
uninformed search heuristic search

co
m

p
le

te
 s

ea
rc

h
in

cr
em

en
ta

l 
se

ar
ch

Sven



Lifelong Planning A* (LPA*)
uninformed search heuristic search

co
m

p
le

te
 s

ea
rc

h
in

cr
em

en
ta

l 
se

ar
ch

[from slate.com]

Sven

http://www.slate.com/id/2126829/


Lifelong Planning A* (LPA*)

Sven



Lifelong Planning A* (LPA*)

 Grids of size 101 x 101

 Movement costs are one or two with equal probability.

number of 

movement 

cost changes

planning time 

of A*

first planning 

time of LPA*

replanning

time of LPA*

replanning

time of LPA* 

planning time 

of A*

0.2 % 0.299 ms 0.386 ms 0.029 ms 10.4 x

0.4 % 0.336 ms 0.419 ms 0.067 ms 5.0 x

0.6 % 0.362 ms 0.453 ms 0.108 ms 3.3 x

0.8 % 0.406 ms 0.499 ms 0.156 ms 2.6 x

1.0 % 0.370 ms 0.434 ms 0.174 ms 2.1 x

Sven



Lifelong Planning A* (LPA*)

start

old                             new
search                     search
tree                             tree

goal

start

goal

A* LPA*

Sven



Lifelong Planning A* (LPA*)

start

old                             new
search                     search
tree                             tree

goal

start

old                             new
search                     search
tree                             tree

goal

 Start of the search must remain unchanged.

 LPA* can expand more states and run slower than A* if
 the number of changes is large or

 the changes are close to the start of the search.

Sven



Stationary Target

…

8-neighbor grid

Sven



D* Lite

 LPA* needs to search from the destination of the robot to 

the robot itself because the start of the search needs to 

remain unchanged.

 LPA* is efficient because the robot observes blockages 

around itself. Thus, the changes are close to the goal of 

the search.

Sven



D* Lite

robot

old                             new
search                     search
tree                             tree

goal

LPA*

robot

old                             new
search                     search
tree                             tree

goal

LPA*

? !

Sven



D* Lite

…

5

5

5

5

4

4

4

4

3

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

8-neighbor grid

goal

distance

Sven



D* Lite

 Random grids of size 129 x 129

replanning time

uninformed search from scratch 296.0 ms

heuristic search from scratch 10.5 ms

incremental uninformed search 6.1 ms

incremental heuristic search

D* [Stentz, 1995]

D* was probably the first true incremental heuristic 

search algorithm, way ahead of its time.

D* Lite

4.2 ms

2.7 ms

s
p

e
e

d
-u

p
 1

1
0

x
Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Sven



D* Lite vs AA*
AA*

 Improve previous h-values

 Goal of the search must 
remain unchanged

 Movement cost increases 
only*

 Guaranteed no more 
expansions than A*

 More expansions on 
average

 Fast expansions

LPA*/D* Lite

 Adapt previous search tree

 Start of the search must 
remain unchanged

 Movement cost 
in/decreases

 Can result in more 
expansions than A*

 Fewer expansions on 
average

 Slow expansions

*actually, movement cost in/decreases but AA* is more efficient for movement cost increases

Sven



D* Lite vs AA*

 Torus-shaped DFS mazes of size 100 x 100

Acyclic mazes generated with DFS

Sven



D* Lite vs AA*

expansions

per search

3711

4104

391

31

Forward A*

Backward A*

(Forward) AA*

(Backward) D* Lite

planning time

per search

581

644

81

15

Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Sven



Moving Target

 Moving target search catches a moving target with no a 
priori given map, always knowing the robot cell.

Sven



D* Lite vs AA*
AA*

 Improve previous h-values

 Goal of the search must 
remain unchanged

 Movements cost increases 
only*

 Guaranteed no more 
expansions than A*

 More expansions on 
average

 Fast  expansions

LPA*/D* Lite

 Adapt previous search tree

 Start of the search must 
remain unchanged

 Movement cost 
in/decreases

 Can result in more 
expansions than A*

 Fewer expansions on 
average

 Slow expansions

*actually, movement cost in/decreases but AA* is more efficient for movement cost increases

Sven



D* Lite vs MTAA*

 Torus-shaped DFS mazes of size 100 x 100

 Randomly moving target that pauses every 10th move

Acyclic mazes generated with DFS

Sven



D* Lite vs MTAA*

expansions

per search

3703

4519

2334

2025

2229

806

Forward A*

Backward A*

Forward Lazy MTAA*

Backward Lazy MTAA*

Agent-Centric D* Lite

Target-Centric D* Lite

planning time

per search

570

722

465

411

1481

833

Sven



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Maxim



Dynamic and Partially-known Environments

• Planning in 

– partially-known environments is a repeated process

– dynamic environments is also a repeated process

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Maxim



Dynamic and Partially-known Environments

planning in dynamic environments

• Planning in 

– partially-known environments is a repeated process

– dynamic environments is also a repeated process

Tartanracing, CMU

Maxim



Dynamic and Partially-known Environments

planning in dynamic environments

• Need to re-plan fast!

• Two ways to help with this requirement

– anytime planning – return the best plan possible within T msecs

– incremental planning – reuse previous planning efforts

Tartanracing, CMU

Maxim



Dynamic and Partially-known Environments

planning in dynamic environments

• Need to re-plan fast!

• Two ways to help with this requirement

– anytime planning – return the best plan possible within T msecs

– incremental planning – reuse previous planning efforts

Tartanracing, CMU

Maxim



Anytime Search based on weighted A*

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

Maxim



Anytime Search based on weighted A*

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• Inefficient because 
–many state values remain the same between search iterations

–we should be able to reuse the results of previous searches

Maxim



Anytime Search based on weighted A*

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• ARA*
- an efficient version of the above that reuses state values within any search 
iteration

Maxim



A* with Reuse of State Values

• Alternative view of A* [Likhachev et. al., AIJ’08]: 

- basis for efficient reuse of search efforts in ARA*/LPA*/D* Lite 

and their extensions

- simple but useful trick

Maxim



ComputePath function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

all v-values initially are infinite;

A* with Reuse of State Values

• Alternative view of A*

Maxim



ComputePath function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

v-value – the value of a state 
during its expansion (infinite if 
state was never expanded)

A* with Reuse of State Values

• Alternative view of A*

Maxim



ComputePath function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Maxim



ComputePath function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*

Maxim



ComputePath function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)
• this A* expands overconsistent states in the order of their f-values 

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Maxim



ComputePathwithReuse function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 
• this A* expands overconsistent states in the order of their f-values 

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to 
make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values Maxim



S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1

g= 5
v= 
h=02

S4 S3

3

g= 2
v= 
h=2

g= 
v= 
h=1

1

Sstart

1

1

g=0
v=0
h=3

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
initially OPEN contains all overconsistent states

CLOSED = {}
OPEN = {s4,sgoal}
next state to expand: s4

A* with Reuse of State Values Maxim



S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1

g= 5
v= 
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= 
h=1

1

Sstart

1

1

g=0
v=0
h=3

CLOSED = {s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

A* with Reuse of State Values Maxim



S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1

g= 5
v= 5
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= 
h=1

1

Sstart

1

1

g=0
v=0
h=3

after ComputePathwithReuse terminates: 
all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}
OPEN = {s3}
done

A* with Reuse of State Values Maxim



S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1

g= 5
v= 5
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= 
h=1

1

Sstart

1

1

g=0
v=0
h=3

we can now compute a least-cost path

A* with Reuse of State Values Maxim



ComputePathwithReuse function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

the exact same 
thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

just make sure no state is 
expanded multiple times

Maxim



• Efficient series of weighted A* searches with decreasing ε:

Anytime Repairing A* (ARA*)

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

Maxim



• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

need to keep track of those

Maxim



• Efficient series of weighted A* searches with decreasing ε:

ARA*

ComputePathwithReuse function
while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

otherwise insert s’ into INCONS

v(s)=g(s);

• OPEN U INCONS =  all overconsistent states  

Maxim



• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN = OPEN U INCONS;

all overconsistent states
(exactly what we need!)

Maxim



• A series of weighted A* searches 

• ARA*

ε =2.5

13 expansions 
solution=11 moves

ε =1.5

15 expansions 
solution=11 moves

ε =1.0

20 expansions 
solution=10 moves

ε =2.5

13 expansions 
solution=11 moves

ε =1.5

1 expansion 
solution=11 moves

ε =1.0

9 expansions 
solution=10 moves

ARA* Maxim



• Motion planning for manipulators using ARA*:

ARA* Maxim

joint work with Willow Garage

Planning for 7DOF real robot arm

Planning for 20DOF planar arm

Available online as part of ROS packages (SBPL arm planner)

ARA*/Anytime D* available as part of SBPL library



• Planning for door opening using ARA*:

ARA* Maxim

joint work with Willow Garage



Incremental Heuristic Search

 Fringe Saving A* (FSA*) 

 Adaptive A* (AA*) 

 Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

 Comparison of D* Lite and Adaptive A*

 Eager and Lazy Moving-Target Adaptive A* (MTAA*)

 Anytime Replanning A* (ARA*)

 Anytime D*

Maxim



Anytime and Incremental Planning

• Anytime D* [Likhachev, AIJ’08]: combination of ARA* and D* 
Lite

– decreases  and updates edge costs at the same time

– re-computes a path by reusing previous state-values (using a 
modified version of A* that reuses state values)

set  to large value;

until goal is reached

ComputePathwithReuse();

publish -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to fix underconsistent states

Maxim



Anytime and Incremental Planning

• 4D (x, y, Ө, V) planning using Anytime D* in Urban Challenge’07

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Example of anytime planning

Maxim

ARA*/Anytime D* and navigation planners using it are available as part of SBPL library 

(as part of ROS packages and at www.seas.upenn.edu/~maximl/software.html)



Anytime and Incremental Planning

• 4D (x, y, Ө, V) planning using Anytime D* in Urban Challenge’07

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Example of re-planning

Maxim



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Sven



Approx Optimal Localization

 Agent-centered search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

Greedy

start

goal

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Real-Time Versions of A*

 Real-time search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

start

goal

Sven



Real-Time Versions of A*

 Real-time search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

start

goal

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Real-Time Versions of A*

 Real-time search
interleaves deterministic 
searches that result in a gain
in information with 
action executions.

start

goal

{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

Sven



Real-Time Versions of A*

 One could repeatedly move to the most promising 

neighboring state, using the h-values.

local minima are a problem

1245

23056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2 245

2056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2 245

2056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2

4-neighbor grid

Sven



Real-Time Versions of A*

 Real-time heuristic search [Korf, 1990] solves search 
problems with a constant planning time between 
movements by interleaving partial searches around the 
robot cells with movements. It updates the h-values after 
every search to avoid cycling without reaching the goal. 
It typically does not follow a shortest path.

 There are many different real-time heuristic search 
algorithms. We present one of them.

Sven



Real-Time Heuristic Search

 Learning-Real Time A* (LRTA*)

 Comparison of D* Lite and LRTA*

 Real-Time Adaptive A* (RTAA*)

 Generalizations of LRTA*: Minimax LRTA* and RTDP

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

1245

23056

34567

45678

3 0

1

2

3

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

1245

23056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

1245

23056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

4

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

local minima are overcome by updating the h-values

1245

23056

34567

45678

3 0

1

2

3

445

2056

34567

45678

5 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

4

45

2056

34567

45678

5 0

1

2

3

645

2056

34567

45678

5 0

1

2

3

6 65

2056

34567

45678

5 0

1

2

3

6

Sven



Learning Real-Time A* (LRTA*)

goal

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

Properties of Learning Real-Time A* (LRTA*) [Korf, 1990]:

 The h-values of the same state are monotonically 
nondecreasing over time and thus indeed become more 
informed over time.

 The h-values remain consistent.

 The robot reaches the goal with O(|V|2) movements in safely 
explorable state spaces, where |V| is the number of states 
(= unblocked cells) [Koenig, 2001].

 If the robot is reset into the start whenever it reaches the 
goal then the number of times that it does not follow a 
shortest path from the start to the goal is bounded from 
above by a constant if the cost increases are bounded from 
below by a positive constant.

Sven



Learning Real-Time A* (LRTA*)

 Theorem

LRTA* reaches the goal if it is reachable from every 

state (= the search space is safely explorable).

 Proof:

goal

Sven



Learning Real-Time A* (LRTA*)

 Theorem

LRTA* reaches the goal if it is reachable from every 

state (= the search space is safely explorable).

 Proof:
3

3

3

goal

9

Sven



Learning Real-Time A* (LRTA*)

 Theorem

LRTA* reaches the goal if it is reachable from every 

state (= the search space is safely explorable).

 Proof:

9

goal

99

Sven



Learning Real-Time A* (LRTA*)

 Theorem [Koenig, 2001]

The worst-case number of movements is O|V|2) if the 

goal is reachable from every state and all movement 

costs are one, where |V| is the number of states (= 

unblocked cells).

 Proof under the assumption that all movements change the state: 

Consider the sum of all h-values minus the h-value of the robot 

state. The initial sum is at least zero. The final sum is at most |V| 

diameter since the h-value of every state is at most its goal distance. 

Every movement increases the sum by at least one.

Sven



Learning Real-Time A* (LRTA*)

before: 5 4 afterwards: 5 4

s s‟ s s‟

5

4

s

s‟

x

sum = x+4

5

4

s

s‟

x

sum = x+5

Sven



Learning Real-Time A* (LRTA*)

s s‟ s s‟

5

6

s

s‟

x

sum = x+6

7

6

s

s‟

x

sum = x+7

before: 5 6 afterwards: 7 6

Sven



Learning Real-Time A* (LRTA*)

goal

 LRTA* repeatedly moves to the most promising 

neighboring state, using and updating the h-values.

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

We need larger lookaheads. 

The possible design choices differ as follows:

 Which states to search?
The number x of states to search is determined by the available time 
and is thus a parameter. We use the first x states expanded by an 
A* search. An A* search uses h-values to focus the search and 
always tries to disprove the path currently believed to be shortest.

 The h-values of which states to update?
We use Dijkstra‟s algorithm to update the values of all x states 
searched.

 How many moves to make before the next search?
We move the agent until it reaches a state different from the x states 
searched.

Sven



Learning Real-Time A* (LRTA*)

We need larger lookaheads. 

We make the following design choices [Koenig, 2004]:

 Which states to search?
The number x of states to search is determined by the available 
planning time between movements and is thus a parameter. We use 
the first x states expanded by an A* search. An A* search uses h-
values to focus the search and always tries to disprove the path 
currently believed to be shortest.

 The h-values of which states to update?
We use Dijkstra‟s algorithm to update the h-values of all x states 
searched.

 How many moves to make before the next search?
We move the robot until it reaches a state different from the x states 
searched.

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

3 0

1

2

3

1

3

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

first A* state expansion

245

2056

34567

45678

0

1

2

3

1

3

 Step 1: Forward A* search

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

second A* state expansion

45

2056

34567

45678

0

1

2

3

1

3

 Step 1: Forward A* search

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

 Step 1: Forward A* search

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

 Step 1: Forward A* search

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

 Step 1: Forward A* search

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

∞45

2056

34567

45678

0

1

2

3

3

∞∞

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

first iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

∞45

2056

34567

45678

0

1

2

3

3

1∞

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

second iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

1∞

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

third iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

1∞

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

fourth iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

13

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

fifth iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

13

4-neighbor grid

 Step 2: Updating the h-values with Dijkstra‟s algorithm

sixth iteration of Dijkstra‟s algorithm

Sven



Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

13

 Step 3: Moving along the path

4-neighbor grid

follow the path

Sven



Learning Real-Time A* (LRTA*)

follow the path

245

2056

34567

45678

3 0

1

2

3

1

3

 Step 3: Moving along the path

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising neighboring 

state, using and updating the h-values with a lookahead > 1.

145

23056

34567

45678

3 0

1

2

3

867

2056

34567

45678

7 0

1

2

3

5

2056

34567

45678

0

1

2

3

82 6 7

87

2076

34567

45678

7 0

1

2

3

887

2076

34567

45678

7 0

1

2

3

7

2076

34567

45678

0

1

2

3

88 8 7

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 LRTA* repeatedly moves to the most promising neighboring 

state, using and updating the h-values with a lookahead > 1.

goal

4-neighbor grid

Sven



Learning Real-Time A* (LRTA*)

 Safely explorable random grids of size 301 x 301

Grids with 25% random obstacles 
The h-values are generally not misleading.

Larger lookaheads are less helpful.

Sven



Learning Real-Time A* (LRTA*)

lookahead Manhattan distance octile distance

planning 

time

move-

ments

planning 

time

move-

ments

1 28280 499 28293 363

11 28698 315 28878 315

21 29153 302 29477 311

31 29615 299 … …

41 … … … …

Sven



Learning Real-Time A* (LRTA*)

 DFS mazes of size 301 x 301

Acyclic mazes generated with DFS
The h-values are generally misleading.

Larger lookaheads are very helpful.

Sven



Learning Real-Time A* (LRTA*)

lookahead Manhattan distance octile distance

planning 

time

move-

ments

planning 

time

move-

ments

1 985362 1987574 628175 1259958

11 313998 337704 277974 272842

21 279856 205370 273280 177143

31 … … 310131 135554

41 … … 348330 114917

Sven



Real-Time Heuristic Search

 Learning-Real Time A* (LRTA*)

 Comparison of D* Lite and LRTA*

 Real-Time Adaptive A* (RTAA*)

 Generalizations of LRTA*: Minimax LRTA* and RTDP

Sven



LRTA* vs D* Lite

D* Lite

 can detect that the goal is unreachable,

 cannot satisfy hard real-time requirements and

 has a worst-case number of movements of O(|V| log |V|).

LRTA*

 cannot easily detect that the goal is unreachable,

 can satisfy hard real-time requirements and

 has a worst-case number of movements of θ(|V|2).

Sven



LRTA* vs D* Lite

 Safely explorable random grids of size 301 x 301

Grids with 25% random obstacles
The h-values are generally not misleading.

Larger lookaheads are  less helpful.

Sven



LRTA* vs D* Lite

lookahead Manhattan distance octile distance

planning 

time

move-

ments

planning 

time

move-

ments

D* Lite 36826 309 40737 314

1 28280 499 28293 363

11 28698 315 28878 315

21 29153 302 29477 311

31 29615 299 … …

41 … … … …

Sven



LRTA* vs D* Lite

 DFS mazes of size 301 x 301

Acyclic mazes generated with DFS
The h-values are generally misleading.

Larger lookaheads are very helpful.

Sven



LRTA* vs D* Lite

lookahead Manhattan distance octile distance

planning 

time

move-

ments

planning 

time

move-

ments

D* Lite 357417 21738 373561 21140

1 985362 1987574 628175 1259958

11 313998 337704 277974 272842

21 279856 205370 273280 177143

31 … … 310131 135554

41 … … 348330 114917

Sven



Real-Time Heuristic Search

 Learning-Real Time A* (LRTA*)

 Comparison of D* Lite and LRTA*

 Real-Time Adaptive A* (RTAA*)

 Generalizations of LRTA*: Minimax LRTA* and RTDP

Sven



Real-Time Adaptive A* (RTAA*)

 We use AA* to create Real-Time Adaptive A* (RTAA*) 

[Koenig and Likhachev, 2006], a real-time heuristic search 
method with similar properties as LRTA*. RTAA* 
improves on LRTA* by updating the h-values much faster 
although they are not quite as informed. 

Sven



Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3467

23456

1245

05234

5

45678

4-neighbor grid

Sven



2

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3467

23456

1245

0534

5

45678

4-neighbor grid

Sven



3

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3467

23456

1245

0524

5

45678

4-neighbor grid

Sven



4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

23456

125

052

5

45678

4-neighbor grid

Sven



4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

23456

125

052

5

45678

4-neighbor grid

Sven



5

4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

23456

12

052

5

45678

4-neighbor grid

Sven



4

5

5

4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678

4-neighbor grid

Sven



4

5

5

4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678

4-neighbor grid

Sven



4

5

5

4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678
state about to be

expanded

4-neighbor grid

Sven



4

5

5

4

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

3

4

3467

236

12

052

5

45678

4-neighbor grid

Sven



∞

∞

∞

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

∞

∞

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

∞

5

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

∞

5

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

∞

6

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

7

5

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

∞

6

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

7

5

∞

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

∞

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



7

5

8

Real-Time Adaptive A* (RTAA*)

 LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



Real-Time Adaptive A* (RTAA*)

Properties of LRTA* [Korf, 1990]

 The h-values of the same state are monotonically 

nondecreasing over time and thus indeed become more 

informed over time.

 The h-values remain consistent.

 The robot reaches the goal in safely explorable state 

spaces.

 If the robot is reset into the start whenever it reaches the 

goal then the number of times that it does not follow a 

shortest path from the start to the goal is bounded from 

above by a constant if the cost increases are bounded 

from below by a positive constant.

Sven



Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

3467

23456

1245

05234

5

45678

4-neighbor grid

Sven



0

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

3467

23456

1245

0534

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



1

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

3467

23456

1245

054

5

45678

0

4-neighbor grid

bold = g-value

regular = h-value

Sven



2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

4

3467

23456

125

050

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

2

3467

23456

125

050

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



3

2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

2

3467

23456

12

050

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



4

3

3

2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



4

3

3

2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678

4-neighbor grid

bold = g-value

regular = h-value

Sven



4

3

3

2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678
state about to be

expanded

g-value = 5

h-value = 3

f-value = 8

4-neighbor grid

bold = g-value

regular = h-value

Sven



4

3

3

2

Real-Time Adaptive A* (RTAA*)

 RTAA* step 2: updating the h-values
 RTAA*: For each expanded state s: set hnew(s) = f(goal) – g(s).

 LRTA*: For each expanded state s: use Dijkstra to determine hnew(s).

1

2

3467

236

12

050

5

45678

f(state about to be expanded)

state about to be

expanded

g-value = 5

h-value = 3

f-value = 8

4-neighbor grid

bold = g-value

regular = h-value

Sven



Real-Time Adaptive A* (RTAA*)

 RTAA* step 2: updating the h-values

3467

236

12

05

8-4

8-3

8-3

8-2 8-1

8-2

8-0

5

45678
state about to be

expanded

g-value = 5

h-value = 3

f-value = 8

4-neighbor grid

Sven



4

5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 2: updating the h-values

7

6

3467

236

12

058

5

45678
state about to be

expanded

g-value = 5

h-value = 3

f-value = 8

4-neighbor grid

Sven



4

5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



4

5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



5

5

6

Real-Time Adaptive A* (RTAA*)

 RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



Real-Time Adaptive A* (RTAA*)

Properties of RTAA* [Koenig and Likhachev, 2006]

 The h-values of the same state are monotonically 
nondecreasing over time and thus indeed become more 
informed over time.

 The h-values remain consistent.

 The robot reaches the goal in safely explorable state 
spaces.

 If the robot is reset into the start whenever it reaches the 
goal then the number of times that it does not follow a 
shortest path from the start to the goal is bounded from 
above by a constant if the cost increases are bounded 
from below by a positive constant.

Sven



Real-Time Adaptive A* (RTAA*)

 RTAA*  LRTA*

5

5

6 7

6

3467

236

12

05

5

45678

8

7

5

8 7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Sven



Real-Time Adaptive A* (RTAA*)

 RTAA*  LRTA*

6 7

37

23

12

05

45678

8

7

8 7

7

23

12

05

45678

8

4-neighbor grid

Sven



Real-Time Adaptive A* (RTAA*)

Relationship of RTAA* and LRTA*

 RTAA* with only one expanded state per A* search 

behaves exactly like LRTA* with only one expanded state 

per A* search.

 If RTAA* and LRTA* have the same h-values before they 

update the h-values then the h-values of RTAA* after the 

update are dominated by the h-values of LRTA*.

Sven



Real-Time Adaptive A* (RTAA*)

 DFS mazes of size 151 x 151

Sven



Real-Time Adaptive A* (RTAA*)
RTAA* LRTA*

expansions move-

ments

planning 

time per 

search 

[ms]

expansions move-

ments

planning 

time per 

search 

[ms]

1 248538 248538 0.20 248538 248538 0.27

9 104229 56708 2.01 87613 47291 2.80

17 85866 33853 4.37 79313 30470 6.25

25 89258 26338 6.86 82851 23270 10.23

33 96840 22022 9.41 92908 20016 14.31

41 105703 18629 11.99 102788 17274 18.50

49 117036 16638 14.46 113140 15398 22.67

57 128560 15367 16.83 125013 14285 26.69

+7% -59%

Sven



Real-Time Adaptive A* (RTAA*)

RTAA* LRTA*

expansions move-

ments

planning 

time per 

search 

[ms]

expansions move-

ments

planning 

time per 

search 

[ms]

1 248538 248538 0.20 248538 248538 0.27

9 104229 56708 2.01 87613 47291 2.80

17 85866 33853 4.37 79313 30470 6.25

25 89258 26338 6.86 82851 23270 10.23

33 96840 22022 9.41 92908 20016 14.31

41 105703 18629 11.99 102788 17274 18.50

49 117036 16638 14.46 113140 15398 22.67

57 128560 15367 16.83 125013 14285 26.69

Sven



Real-Time Heuristic Search

 Learning-Real Time A* (LRTA*)

 Comparison of D* Lite and LRTA*

 Real-Time Adaptive A* (RTAA*)

 Generalizations of LRTA*: Minimax LRTA* and RTDP

Sven



Generalizations
deterministic non-deterministic probabilistic

ro
b
o
t

m
in

n
a
tu

re
m

a
x

ro
b
o
t

m
in

0.500.50 0.25 0.75

2 3 2 3 2 3

LRTA*
[Korf, 1990]

Minimax LRTA*
[Koenig and Simmons, 1995]

RTDP
[Barto, Bradtke and Singh, 1993]

Sven



Generalizations
deterministic probabilistic

ro
b
o
t

m
in

n
a
tu

re
m

a
x

6 5

ro
b
o
t

m
in

2 3

non-deterministic

2 3 2 3

LRTA*
[Korf, 1990]

Minimax LRTA*
[Koenig and Simmons, 1995]

RTDP
[Barto, Bradtke and Singh, 1993]

0.500.50 0.25 0.75

Sven



Generalizations
deterministic probabilistic

ro
b
o
t

m
in

n
a
tu

re
m

a
x

8

6 5

ro
b
o
t

m
in

2 3

non-deterministic

2 3 2 3

LRTA*
[Korf, 1990]

Minimax LRTA*
[Koenig and Simmons, 1995]

RTDP
[Barto, Bradtke and Singh, 1993]

0.500.50 0.25 0.75

Sven



Generalizations
deterministic non-deterministic probabilistic

ro
b
o
t

m
in

n
a
tu

re
m

a
x

8

6 5

ro
b
o
t

m
in

10

8

6 8 5 9

9

2 3 2 3 2 3

LRTA*
[Korf, 1990]

Minimax LRTA*
[Koenig and Simmons, 1995]

RTDP
[Barto, Bradtke and Singh, 1993]

0.500.50 0.25 0.75

Sven



Generalizations
deterministic non-deterministic probabilistic

ro
b
o
t

m
in

n
a
tu

re
m

a
x

6 5

ro
b
o
t

m
in

10

8

6 8 5 9

9

9

7

6 8 5 9

8

2 3 2 3 2 3

LRTA*
[Korf, 1990]

Minimax LRTA*
[Koenig and Simmons, 1995]

RTDP
[Barto, Bradtke and Singh, 1993]

8

0.500.50 0.25 0.75

Sven



Generalizations

Properties of Learning Real-Time A* (LRTA*) [Korf, 1990]:

 The h-values of the same state are monotonically 
nondecreasing over time and thus indeed become more 
informed over time.

 The h-values remain consistent.

 The robot reaches the goal with O|V|2) movements in safely 
explorable state spaces [Koenig, 2001], where |V| is the 
number of states (= unblocked cells).

 If the robot is reset into the start whenever it reaches the 
goal then the number of times that it does not follow a 
shortest path from the start to the goal is bounded from 
above by a constant if the cost increases are bounded from 
below by a positive constant.

Sven



Generalizations

 Assume that the robot is told
that it starts in D2, D4 or D6.

1

10

1

1

1

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ? ?

4-neighbor grid

Sven



Generalizations

1

10

1

2

1

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

???

4-neighbor grid

Sven



Generalizations

1

10

1

2

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ? ?

4-neighbor grid

Sven



Generalizations

1

10

1

2

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ??

4-neighbor grid

Sven



Generalizations

1

10

2

2

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

??

4-neighbor grid

Sven



Generalizations

1

10

2

2

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

?

4-neighbor grid

Sven



Generalizations

1

10

2

2

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

 Assume that the robot is told
that it starts in D2, D4 or D6.

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ? ?

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ??

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

??

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

?

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

 Assume that the robot is told
that it starts in D2, D4 or D6.

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ? ?

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

? ??

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

??

4-neighbor grid

Sven



Generalizations

1

10

2

3

3

0 0

0 0

1

1

1{E2,E4,E6}

{D2,D4,D6}

{C2,C4,C6}

{B2} {B4,B6}

{B5} {B7}{B3,B5}

{B2} {B4}

s: +---n: +-+-

s: +-+-n: +-+-

n
--++ -+++

e

-+-+ -+--w: -+-+ e: -+++

w
--++ -+++

{C4,C6}

{D4,D6}

{E4,E6}

s: +---n: +-+-

s: +-+-n: +-+-

s: +-+-n: -+++

start

goal

goal goal

goal goal

A
B
C
D

1 2 3 4 5 6 7 8

E
F

?

4-neighbor grid

Sven



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Maxim



Planning with Incomplete Information
• planning with freespace assumption

- fast deterministic planning

- can make use of anytime/incremental/real-time implementations

- but making assumptions can sometimes be highly suboptimal

Maxim



Planning with Incomplete Information
• planning with freespace assumption

- fast deterministic planning

- can make use of anytime/incremental/real-time implementations

- but making assumptions can sometimes be highly suboptimal

S

G

Pinch point

?

Maxim



Path Clearance Problem
• quickly navigate to the goal without being detected by an adversary

• the robot can sense a possible adversary location at a distance 

− go through it if no adversary present

− take a detour otherwise

environment size: 3.5km by 3.0km

Maxim



Path Clearance Problem
• planning problem: where to go + what to sense 

• typical approaches to planning

− assume no adversary present unless already detected

− assign high cost to traversing possible adversary locations

Maxim



Path Clearance Problem
• planning problem: where to go + what to sense 

• typical approaches to planning

− assume no adversary present unless already detected

− assign high cost to traversing possible adversary locations

Maxim



Path Clearance Problem
• probabilistic planning 

− minimizes the expected time/cost to goal

− corresponds to planning with incomplete information

− typically infeasible 

size of belief state-space: 500*500*320

Maxim



Xs

X3

R=A4;

E4=u

B5=u R=B5;

E4=u

B5=free

east
X1

R=B4;

E4=u

B5=u

X2

R=C4;

E4=u

B5=ueast

...

X4

R=B4;

E4=u

B5=obs

planning in belief state-spaces:

• exponential in the number of unknowns

• requires non-deterministic planning

Planning with Incomplete Information
Maxim



can be solved efficiently by PPCP (Probabilistic Planning with 
Clear Preferences) [Likhachev & Stentz, AAAI‟06] if: 

there exist clear preferences on incomplete information

Planning with Incomplete Information
Maxim



can be solved efficiently by PPCP (Probabilistic Planning with 
Clear Preferences) [Likhachev & Stentz, AAAI‟06] if: 

there exist clear preferences on incomplete information

R

R

R

Formally, clear preference: 

arg min x’ (c(x,a,x’) + v*(x’)),

where v*(x’) – optimal exp. cost

example of clearly preferred outcome of sensing (clear preference)

Planning with Incomplete Information
Maxim



 applies to an arbitrary graph (not just grid) with preferences 

on uncertainty in outcome/costs & perfect sensing

 solves the problem by running a series of A*-like searches

 each search is done on the original graph (e.g., 2D for 

navigation) whose size is exponentially smaller than the size 

of the belief state-space

 as a result, scales to much larger problems and with 

much more uncertainty than if planning in the belief 

state-space directly 

 converges to a solution that is optimal (minimizes the 

expected cost-to-goal) under certain conditions

PPCP [Likhachev & Stentz, AAAI‟06]

Maxim



Preferences on Incomplete Information
Landing site selection problem: where to go + what to sense

goalclosest to the goal

landing site of 

desired condifence

 land safely 

 with minimum efforts

 as close to the desired goal as possible

Maxim



Preferences on Incomplete Information
Landing site selection problem: where to go + what to sense

goalclosest to the goal

landing site of 

desired condifence

original graph

policy produced by the planner

 land safely 

 with minimum efforts

 as close to the desired goal as possible

unknown whether landing is possible

Maxim



Preferences on Incomplete Information
Landing site selection problem: where to go + what to sense

goalclosest to the goal

landing site of 

desired condifence

original graph

policy produced by the planner

 land safely 

 with minimum efforts

 as close to the desired goal as possible

unknown whether landing is possible
PREFER TO HAVE GOOD LANDING SITE

Maxim



Preferences on Incomplete Information

Grocery shopping under uncertainty in sale:

original graph belief state-space
PREFER TO HAVE A SALE

Maxim



Preferences on Incomplete Information

Examples of preferences on incomplete information:

• Navigation in partially-known environments

• Route finding under uncertainty in traffic

• Air traffic management under uncertainty in weather conditions

• Grocery shopping under uncertainty in sale

…

Maxim



Using Clear Preferences in PPCP
the policy after update:search backwards for a path 

from Sstart to Sgoal

assume: E4=u, B5=u
R=A4

E4 = u,

B5=u

v=6 v=5 v=4 v=3 v=1 v=0
1

2

R=B4

E4 = u,

B5=u

R=C4

E4 = u,

B5=u

R=D4

E4 = u,

B5=u

R=E4

E4 = 0,

B5=u

R=F4

E4 = 0,

B5=u

R=D4

E4 = 1,

B5=u

1 1 1 1

v=2

the cost of the found path given by g(A4)

g(D4) = P(E4=0)(c(D4,east,E4=0)+g(E4)) + 

P(E4=1)(c(D4,east,E4=1)+v(D4,E4=1,B5=u))   =

0.5*(1+1)+0.5*(2+2) = 3
current estimate

Normal A* requires monotonicity of g-values :

g(D4) = c(D4,east,E4=0) + g(E4) > g(E4) 

clear preferences also provide monotonicity:

g(D4) > g(E4) 

which makes A*-like search possible

Maxim



g(D4) = P(E4=0)(c(D4,east,E4=0)+g(E4)) + 

P(E4=1)(c(D4,east,E4=1)+v(D4,E4=1,B5=u))   =

0.5*(1+1)+0.5*(2+2) = 3

R=A4

E4 = u,

B5=u

v=6 v=5 v=4 v=3 v=1 v=0
1

2

R=B4

E4 = u,

B5=u

R=C4

E4 = u,

B5=u

R=D4

E4 = u,

B5=u

R=E4

E4 = 0,

B5=u

R=F4

E4 = 0,

B5=u

R=D4

E4 = 1,

B5=u

1 1 1 1

v=2

BA

current estimate

the policy after update:search backwards for a path 

from Sstart to Sgoal

assume: E4=u, B5=u

Using Clear Preferences in PPCP

the cost of the found path given by g(A4)

Normal A* requires monotonicity of g-values :

g(D4) = c(D4,east,E4=0) + g(E4) > g(E4) 

clear preferences also provide monotonicity:

g(D4) > g(E4) 

which makes A*-like search possible

clear preferences say: A* ≤ B* 

therefore we can set B = max(A,B)

A ≤ B

g(D4) = P(A) ·A + P(B)·B ≥ A > g(E4) 

Maxim



R=A4

E4 = u,

B5=u

v=6 v=5 v=4 v=3 v=1 v=0
1

2

R=B4

E4 = u,

B5=u

R=C4

E4 = u,

B5=u

R=D4

E4 = u,

B5=u

R=E4

E4 = 0,

B5=u

R=F4

E4 = 0,

B5=u

R=D4

E4 = 1,

B5=u

1 1 1 1

v=2

the policy after update:search backwards for a path 

from Sstart to Sgoal

assume: E4=u, B5=u

Run of PPCP

state with v(X) < EX’ Є succ(X,π(X)){c(X,π(X),X’)+v(X’)}

(state with negative Bellman error)

PPCP repeatedly computes paths to states with 

negative Bellman error on the current policy until 
none left

Maxim



search backwards for a path 

from D4 to Sgoal

assume: E4=1, B5=u

R=A4

E4 = u,

B5=u

v=6 v=5 v=4 v=3 v=1 v=0
1

2

R=B4

E4 = u,

B5=u

R=C4

E4 = u,

B5=u

R=D4

E4 = u,

B5=u

R=E4

E4 = 0,

B5=u

R=F4

E4 = 0,

B5=u

R=D4

E4 = 1,

B5=u

1 1 1 1

v=10
1R=C4

E4 = 1,

B5=u

v=9

1
R=C3

E4 = 1,

B5=u
v=8

R=F3

E4 = 1,

B5=u

v=1
1 … 1

v=0
R=F4

E4 = 1,

B5=u

1

improved estimate

Run of PPCP
the policy after update:

Maxim



search backwards for a path 

from Sstart to Sgoal

assume: E4=u, B5=u

R=A4

E4 = u,

B5=u

v=9 v=8
1 R=B4

E4 = u,

B5=u

1 …

v=7 v=1 v=0
R=B5

E4 = u,

B5=0

R=F5

E4 = u,

B5=0

R=F4

E4 = u,

B5=0

1 1 1

2 v=4
R=B4

E4 = u,

B5=1

g(D4) = optimal expected cost-to-goal
0.5*(1+1) + 0.5*(2+10)=7

totally new path is found

Run of PPCP
the policy after update:

Maxim



the converged (optimal) policy

after 7 iterations

R=A4

E4 = u,

B5=u

v=10 v=9 v=8 v=7 v=1 v=0
1

2

R=B4

E4 = u,

B5=u

R=C4

E4 = u,

B5=u

R=D4

E4 = u,

B5=u

R=E4

E4 = 0,

B5=u

R=F4

E4 = 0,

B5=u

R=D4

E4 = 1,

B5=u

1 1 1 1

v=10
1R=C4

E4 = 1,

B5=u

v=9

1
R=C3

E4 = 1,

B5=u
v=8

R=F3

E4 = 1,

B5=u

v=1
1 … 1

v=0
R=F4

E4 = 1,

B5=u

1

Run of PPCP

all states on the policy have v(X) ≥ EX’ Є succ(X,π(X)){c(X,π(X),X’)+v(X’)}

the expected cost of the found policy is bounded from above by v(Xstart)

the found policy is guaranteed to be optimal if an optimal policy does 

not require remembering preferred outcomes

Theoretical properties:

Maxim



environment size: 3.5km by 3.0km

size of belief state-space: 500*500*320

Solving Path Clearance using PPCP

Maxim



after first search (in few milliseconds)

Solving Path Clearance using PPCP

Maxim



after second search (in few milliseconds)

Solving Path Clearance using PPCP

Maxim



after 5 seconds

Solving Path Clearance using PPCP

Maxim



after 30 seconds (converged)

Solving Path Clearance using PPCP

Maxim



Solving Path Clearance using PPCP

Maxim



Landing Site Selection using PPCP
Maxim

Landing site selection problem: where to go + what to sense

goalclosest to the goal

landing site of 

desired condifence

 land safely 

 with minimum efforts

 as close to the desired goal as possible

PREFER TO HAVE GOOD LANDING SITE

policy produced by the planner



Robot Navigation 

in partially-known fractal environments

size: 17 by 17 

(the size of the belief state-space is up to 17*17*318)

Interesting questions:

- need for memory about preferred outcomes when navigating random environments?

Maxim



Robot Navigation 

in partially-known fractal environments

Interesting questions: freespace assumption vs. probabilistic plan.

- benefits of probabilistic planning are consistent but not high

- on the other hand, using PPCP for path clearance can save over 35% in execution cost

size: 500 by 500 

(the size of the belief state-space is up to 500*500*325,000)

Maxim



Table of Contents

 Modeling Planning Domains
 Graphs, MDPs

 Planning Problems and Strategies
 Localization, Mapping, Navigation in Unknown Terrain

 Agent-Centered Search, Assumptive Planning

 Efficient Implementations of Planning Strategies
 Incremental Heuristic Search

15 Minute Break
 Real-Time Heuristic Search

 Planning with Preferences on Uncertainty

 Planning with Varying Abstractions

Maxim



Case Study: 

Planning in Dynamic Environments

 Shows the actual application of some of the presented 

techniques 

Maxim



Robust goal-directed behavior in 

Dynamic Environments

Maxim



Most Real-time Approaches
 Project the dynamic obstacles onto the static 2D map by 

assigning high cost to cells that lie on the obstacles‟ expected 

paths

 Fast but can be highly suboptimal

 Can cause the robot to get stuck

???

Maxim



Optimal Approaches
 Produce high dimensional time-parameterized trajectories all 

the way to the goal ( i.e. <x, y, ϑ, … , t> ) [Fiorini & Shiller, ‟98; 

Fujimura & Samet, „93; van den Berg & Overmars, ‟06]

 Should take into account vehicle dynamics

 Computationally expensive and slow

 By the time planning is finished, the situation, with respect to 

dynamic obstacles, may change

Maxim



Key Idea in Time-bounded Lattice
 Main Observations:

 The uncertainty in the obstacle motion prediction is usually 

quite high, so planning over time far into the future does not 

make sense.

 Uncertainty in past observations

 Uncertainty in future trajectories

 The robot will be able to re-plan avoidance maneuvers as it 

gets closer

Maxim



 Combine planning dynamically feasible time-parameterized 

trajectories with low-dimensional planning w/o time

 Automatically reason about the extent of planning in time based on 
uncertainty in future obstacle trajectories

Key Idea in Time-bounded Lattice

Maxim



 Combine planning dynamically feasible time-parameterized 

trajectories with low-dimensional planning w/o time

 high-dimensional agent-centered search combined with low-

dimensional planning with freespace assumption

 freespace assumption refers to assuming “no dynamic obstacles”

 Automatically reason about the extent of planning in time based on 
uncertainty in future obstacle trajectories

Key Idea in Time-bounded Lattice

Maxim



Lattice Graph
 Lattice graph construction 

[Pivtoraiko & Kelly, ‟05]:

 Uses dynamically-feasible motion 
primitives to produce successors

 Motion primitives can be 
generated for a particular robot 
platform

 Transition costs can assigned to 
successors based on length, 
heading change, etc

 States that collide with obstacles 
receive high costs and/or can be 
discarded (not shown)

Maxim



Time-bounded Lattice
 Start planning with time in high dimensional lattice ( <x, y, 

ϑ, ν, ω, t> )

 Determine when it is safe to ignore the obstacles based on 

their estimated future position uncertainty (find Tmax)

 All states with t > Tmax are projected onto a graph w/o time 

(i.e., 2D grid)

 ARA* is used to construct and search the graph

Maxim



Obstacle Representation
 Time-parameterized pose distribution

 Expected poses of obstacles can be extrapolated into the 

future given past observations and their motion models

 Multimodal hypotheses are 

supported (i.e. T2, T3)

Maxim



Obstacle Representation

 Planner is not restricted to any particular obstacle uncertainty 

model

 3D Gaussian was chosen to 
represent the pose 
uncertainty of the dynamic 
obstacles
 < x, y, ϑ > (3x3 cov. matrix)

 Differential drive motion 
model

 EKF prediction step

Maxim



Estimating Collision Cost
 For every action, we can now compute the probability of 

colliding with a dynamic obstacle

 The cost of the state transition is proportional to the 

probability of collision

Maxim



Computing Tmax
 Probability of collision at time t is upper-bounded by Pmax - the 

integral over the robot footprint at the mean of the distribution 

at time t

 Tmax is time t when Pmax is negligible

Maxim



Collision Cost for 2D Grid
 Only take into account static obstacles

Maxim



Advantages of Time-bounded 

Lattice

 Output of the planner can be fed directly into vehicle 

controls

 Simple low-d planning if dynamic obstacles are absent

 Full 6D trajectories if obstacle motion prediction is accurate 

 Automatically balances between the two extremes

Maxim



Example of Planning with Time-bounded Lattice

Maxim



Summary

 Planning with freespace assumption and its 

anytime/incremental implementations

 Agent-centered search and its incremental implementations

 Probabilistic planning with preferences on uncertainty

 each strategy results in “good” run-time behavior in some domains

 but may result in highly suboptimal run-time behavior in other domains

 in some domains may also be beneficial to combine the strategies 

Maxim



Summary

 Solving complex planning problems by running a series 

of A*-like searches (ARA*, PPCP, R*, MCP,…)

 typically easily to implement 

 makes use of heuristics

 automatically focusses on relevant states

 provides theoretical guarantees

 general 

 often provides anytime behavior

Maxim



Concluding Remarks
 Joint work with 

 S. Chitta, B. Cohen, K. Daniel, A . Felner, D. Ferguson, G. 

Gordon, S. Greenberg, W. Halliburton, A. Kushleyev, A. Mudgal, 

A. Nash, A. Ranganathan, Y. Smirnov, A. Stentz, X. Sun, S. 

Thrun and C. Tovey

 Funded in part by 

 NSF, DARPA, ARL, ONR, Willow Garage, IBM and JPL

 For more information see

 idm-lab.org/projects.html 

 www.seas.upenn.edu/~maximl

 Download software from 

 idm-lab.org/project-a.html

 www.seas.upenn.edu/~maximl/software.html (SBPL library)

 SBPL and SBPL-based motion planners are also available as 

part of ROS packages (http://www.ros.org/wiki/sbpl)

http://www.seas.upenn.edu/~maximl/software.html
http://www.seas.upenn.edu/~maximl/software.html
http://www.seas.upenn.edu/~maximl/software.html

