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Introduction

Bad news: single trees are usually not among the top predictors.

Good news: ensembles or committees of trees typically perform
much better.

Why does averaging the predictions of multiple trees help
to reduce error?

To answer this question we first study the bias-variance
decomposition of prediction error.
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Sample 1 and the True Regression Function
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f (x) = sin(2πx) yi = f (xi ) + εi with εi ∼ N(0, σ = 0.3)
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Sample 2 and the True Regression Function
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f (x) = sin(2πx) yi = f (xi ) + εi with εi ∼ N(0, σ = 0.3)
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Linear Fit on Sample 1
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Linear Fit on Sample 2
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Polynomial of Degree 5 on Sample 1
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Polynomial of Degree 5 on Sample 2
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All Together Now

●

●

● ●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

y

Ad Feelders ( Universiteit Utrecht ) Data Mining 9 / 25



Average of degree 5 polynomials
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Average predictions of degree 5 polynomials estimated on 10,000 samples
of size 10 (on the left), and sin(2πx) (on the right).
Can you see the difference?
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Polynomial of Degree 9 on Sample 1
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Polynomial of Degree 9 on Sample 2
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A High Variance Predictor!
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Reducible and Irreducible Error

Consider a model created by an algorithm on a single data set, sampled from some
population. What is the mean squared prediction error of this model on the
population? For simplicity, we restrict our analysis to some fixed point x .

EP(Y | x)

[
(Y − f̂ (x))2

]
= (f (x)− f̂ (x))2 (Reducible Error)

+ EP(Y | x)
[
(Y − f (x))2

]
, (Irreducible Error)

where f (x) ≡ E[Y | x ] is the true (population) regression function, and the
expectation is taken with respect to P(Y | x). f̂ (x) is the model prediction at x .

The irreducible error is the error of the best possible prediction (which is
f (x) ≡ E[Y | x ]), and is equal to the variance of Y around the regression line at
the point x .
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Reducible and Irreducible Error

Ad Feelders ( Universiteit Utrecht ) Data Mining 15 / 25



Bias-Variance Decomposition of Estimation Error

Now let’s focus on reducible error.

Consider the collection of models created by an algorithm on different data
sets, sampled from the same population. We use each sample to estimate
f (x). What is the mean squared estimation error of these models?

ED

[
(f (x)− f̂ (x))2

]
= (f (x)− ED [f̂ (x)])2 (Squared Bias)

+ ED

[
(f̂ (x)− ED [f̂ (x)])2

]
(Variance)

where expectation is taken with respect to repeated sampling from the
same population.

Mean Squared Error = Squared Bias + Variance
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Bias and Variance of f̂ as estimator of f
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Bias-Variance Decomposition

Some observations:

Simple (inflexible) models tend to have high bias and low variance.

Complex (flexible) models tend to have low bias and high variance.

As sample size increases, variance goes down, but bias doesn’t.

Hence, we can afford to fit more complex models
if the data set is large.

In practice, we have to find the right trade-off between bias and
variance in order to get small prediction error.
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Reducing Variance by Bagging

Classification trees are high variance classifiers.

Variance can be reduced by averaging.

Average how?

Bootstrapping!
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Reducing Variance by Bagging

Bagging is short for Bootstrap Aggregating.

Training:

1 Draw a sample with replacement from the training set.
The sample should be of the same size as the training set.

2 Grow a tree on this bootstrap sample (pruning not necessary).

3 Repeat these steps M times to create M different trees.

Prediction:

1 Predict on a test sample using each of the M trees in turn.

2 Take the majority vote of the M predictions as the final prediction.
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Reducing Variance by Bagging

For regression problems, generate M bootstrap samples, and combine the
predictions by averaging:

f̂bag(x) =
1

M

M∑
m=1

f̂m(x),

where f̂m(x) is the prediction of the model trained on the m − th
bootstrap sample.

Notice that we never actually average models, we average their predictions.
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Reducing Variance by Bagging

The true regression function is f (x), so the output of each model can be
written as the true value plus an error term in the form:

f̂m(x) = f (x) + em(x)

em(x) = f̂m(x)− f (x)

The expected squared error of the m − th model then becomes

EP(x)

[
(f̂m(x)− f (x))2

]
= EP(x)

[
em(x)2

]
,

where the expectation is taken with respect to the distribution of x .

Note: the models f̂m are fixed now!
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Reducing Variance by Bagging

The average error made by the models acting individually is therefore:

Eav =
1

M

M∑
m=1

EP(x)

[
em(x)2

]
Similarly, the expected error of the committee is given by

Ebag = EP(x)

( 1

M

M∑
m=1

f̂m(x)− f (x)

)2


= EP(x)

( 1

M

M∑
m=1

em(x)

)2
 =

1

M2
EP(x)

( M∑
m=1

em(x)

)2

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Reducing Variance by Bagging

If we assume that the errors have zero mean and are uncorrelated, so that:

EP(x) [em(x)en(x)] = 0, for all m 6= n,

then we obtain

Ebag =
1

M2

M∑
m=1

EP(x)

[
em(x)2

]
=

1

M
Eav

This is a sensational reduction!

In practice, the errors of individual models tend to be positively correlated,
and the reduction in overall error tends to be much smaller than suggested
by this formula.
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Random Forests

Random forests can be regarded as an attempt to “de-correlate” the
predictions of the individual trees, so

EP(x) [em(x)en(x)]

is closer to zero.

Each time we have to determine the best split in a node, we first
randomly select a subset of the features.

The size of this subset is a hyper-parameter of the random forest
algorithm.

We then determine the best split on this random subset of features,
and perform that split.

Otherwise, the procedure is identical to that described for bagging.
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