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Do you like noodles?

Do you like
noodles?

Race  Gender | Yes No
Black Male 10 40
Female | 30 20

White Male 100 100
Female | 120 80
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Do you like noodles? Undirected

GLR|A

Strange: Gender and Race are prior to Answer, but this model says they
are independent given Answer!
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Do you like noodles?

Marginal table for Gender and Race:

Race
Gender | Black White
Male 50 200
Female 50 200

From this table we conclude that Race and Gender are independent in the
data.

cpr(G,R)=1
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Do you like noodles?

Table for Gender and Race given Answer=yes:

cpr(G,R) = 0.4

Race
Gender | Black White
Male 10 100
Female 30 120

Table for Gender and Race given Answer=no:

cpr(G,R)=1.6

Race
Gender | Black White
Male 40 100
Female 20 80

From these tables we conclude that Race and Gender are dependent given Answer.

Ad Feelders ( Universiteit Utrecht )

Data Mining

5/49



Do you like noodles? Directed

GILUR GARIA

Gender and Race are marginally independent
(but dependent given Answer).
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Explaining away

@ Smoking (S) and asbestos exposure (A) are independent, but become
dependent if we observe that someone has lung cancer (L).

o If we observe L, this raises the probability of both S and A.

@ If we subsequently observe S, then the probability of A drops
(explaining away effect).
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Directed Independence Graphs

G = (K,E), K is a set of vertices and E is a set of edges with ordered
pairs of vertices.

e No directed cycles (DAG)
@ parent/child

@ ancestor/descendant

@ ancestral set

Because G is a DAG, there exists a complete ordering of the vertices that
is respected in the graph (edges point from lower ordered to higher
ordered nodes).
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Parents Of Node i: pa(/)
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Ancestors Of Node i: an(/)
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Ancestral Set Of Node i: an™ (/)
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Children Of Node i: ch(/)

Ad Feelders ( Universiteit Utrecht ) Data Mining 12 /49



Descendants Of Node i: de(/)
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N
Construction of DAG

Suppose that prior knowledge tells us the variables can be labeled
X1, Xo, ..., Xk such that X is prior to Xj 1.
(for example: causal or temporal ordering)

Corresponding to this ordering we can use the product rule to factorize the
joint distribution of Xi, X5,..., Xi as

P(X)=P(X1)P(Xa | X1) -+ P(Xk | Xk—1, Xk—2, .-, X1)

Note that:

@ This is an identity of probability theory, no independence assumptions
have been made yet!

@ The joint probability of any initial segment X1, Xa,...,X; (1 <j < k)
is given by the corresponding initial segment of the factorization.
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Constructing a DAG from pairwise independencies

Starting from the complete graph (containing arrows i — j for all i < j)

an arrow from i to j is removed if P(X; | Xj_1,...,X1) does not depend
on X;, in other words, if

JAL AL A

More loosely

[ J AL i | prior variables ]

Compare this to pairwise independence

J AL i|rest

in undirected independence graphs.
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N
Construction Of DAG

P(X) = P(X1)P(X2|X1) P(X3| X1, X2) P(Xa| X1, X2, X3)
Suppose the following independencies are given:
Q X 1L X
Q@ Xy U X3|(X1, X2)
Q X1 1L X31X>
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Construction Of DAG

G

P(X) = P(X1) P(Xa|X1) P(X3| X1, X2) P(Xa| X1, X2, X3)

P(X2)

Q@ If X7 1L X5, then P(XQ’X]_) = P(Xg)
The edge 1 — 2 is removed.
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Construction Of DAG

s

P(X) = P(X1)P(X2) P(X3| X1, X2) P(X4| X1, X2, X3)
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Construction Of DAG

G

P(X) = P(X1)P(X2) P(X3| X1, X2) P(Xa| X1, X2, X3)

P(X4|X1,X2)

e If X4 Al X3’(X1,X2), then P(X4|X1,X2,X3) = P(X4’X1,X2).
The edge 3 — 4 is removed.
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Construction Of DAG

P(X) = P(X1)P(X2) P(X3| X1, X2) P(Xa| X1, X2)
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Construction Of DAG

P(X) = P(X1)P(X2) P(X3| X1, X2) P(Xa| X1, X2)

P(X3|X2)

e If X1 Al X3’X2, then P(X3‘X1,X2) = P(X3|X2)
The edge 1 — 3 is removed.
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N
Construction Of DAG

We end up with this independence graph and corresponding factorization:

P(X) = P(X1)P(X2) P(X3| X2) P(Xa| X1, X2)
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-
Joint probability distribution of Bayesian Network

We can write the joint probability distribution more elegantly as

k
P(X1,. ., X)) = [T P(Xi | Xoa(i))
i=1
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Independence Properties of DAGs: d-separation and Moral
Graphs

Can we infer other/stronger independence statements from the directed
graph like we did using separation in the undirected graphical models?

Yes, the relevant concept is called d-separation.
@ establishing d-separation directly (Pearl)

@ establishing d-separation via the moral graph and “normal” separation
We discuss the second approach.
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|
Independence Properties of DAGs: Moral Graph

Given a DAG G = (K, E) we construct the moral graph G™ by marrying
parents, and deleting directions, that is,

@ For each i € K, we connect all vertices in pa(i) with undirected edges.

© We replace all directed edges in E with undirected ones.

& &

Moral Graph
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|
Independence Properties of DAGs: Moral Graph

The directed independence graph G possesses the conditional
independence properties of its associated moral graph G™. Why?

We have the factorisation:
k
P(X) = HP(XI | Xpa(i))
i=1
k
= Hgi(XiaXpa(i))
i=1

by setting gi( X, Xpa(i)) = P(Xi | Xpa(i))-
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Independence Properties of DAGs: Moral Graph

We have the factorisation:
k
P(X) = [ [ &i(Xi, Xoa(i))
i=1

@ We thus have a factorisation of the joint probability distribution in
terms of functions gj(X5;) where a; = {i} U pa(i).

@ By application of the factorisation criterion the sets a; become cliques
in the undirected independence graph.

@ These cliques are formed by moralization.
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Moralisation: Example
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Moralisation: Example

{i} U pa(i) becomes a complete subgraph in the moral graph
(by marrying all unmarried parents).
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Moralisation Continued

Warning: the complete moral graph can obscure independencies!

To verify
ilLj|Ss
construct the moral graph of the induced subgraph on:
A=an"({i,j}US),

that is, A contains /, j, S and all their ancestors.

Let G = (K,E) and A C K. The induced subgraph Ga contains nodes A
and edges E’, where

i—-jEE &i—jcEandicAandjcA.
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Moralisation Continued

Since for £ € A, pa(¢) € A, we know that the joint distribution of X4 is
given by

P(Xa) = T P(Xe | Xoae))
LeA
which corresponds to the subgraph G4 of G.

© This is a product of factors P(Xy|Xpa(r)), involving the variables
X{K}Upa(f) onIy.

@ So it factorizes according to G77, and thus the independence
properties for undirected graphs apply.

© Hence, if S separates i from j in G}, then i 1L j | S.
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Full moral graph may obscure independencies: example

P(G,R,A) = P(G)P(R)P(A| G,R)
Does G L R hold? Summing out A we obtain:

=Y P(G,RA=2) (sum rule)
- Z P(G)P(R)P(A=a| G,R) (BN factorisation)

Z P(A=a| G,R) (rule of summation)
= P(G)P(R) (. P(A=2al G, R)=1)
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Poll

@ Are X3 and X, independent?
@ Are X1 and X3 independent?
© Are X3 and Xj independent given X5?
@ Are X1 and X3 independent given Xg7
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Equivalence

When no marrying of parents is required (there are no “immoralities” or

“v-structures” ), then the independence properties of the directed graph are
identical to those of its undirected version.

These three graphs express the same independence properties:

Data Mining
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Learning Bayesian Networks

© Parameter learning: structure known/given; we only need to estimate
the conditional probabilities from the data.

@ Structure learning: structure unknown; we need to learn the networks
structure as well as the corresponding conditional probabilities from
the data.
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Maximum Likelihood Estimation

Find value of unknown parameter(s) that maximize the probability of the
observed data.

n independent observations on binary variable X € {1,2}. We observe
n(1) outcomes X =1 and n(2) = n — n(1) outcomes X = 2.

What is the maximum likelihood estimate of p(1)?

The likelihood function (probability of the data) is given by:

L= p(1)" (1 = p(1))"
Taking the log we get

£ = n(1)log p(1) + (n — n(1))log(L - p(1))
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Maximum Likelihood Estimation

Take derivative with respect to p(1), equate to zero, and solve for p(1).

dl n(1) n—n(1)

(1) ~ p1) 1-p(1)

=0,

d log x

since 298% = 1 (where log is the natural logarithm).

Solving for p(1), we get

This is just the fraction of one’s in the sample!

Ad Feelders ( Universiteit Utrecht ) Data Mining 37/49



N
ML Estimation of Multinomial Distribution

Let X € {1,2,...,J}.

Estimate the probabilities p(1), p(2),. .., p(J) of getting outcomes

1,2,...,J. If in n trials, we observe n(1) outcomes of 1, n(2) of 2, ...,
n(J) of J, then the obvious guess is to estimate
N n{ .
p(J):E7)7 J:1727"'7J'

This is indeed the maximum likelihood estimate.
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BN-Factorisation

For a given BN-DAG, the joint distribution factorises according to

k
P(X) =[] p(Xi | Xpa())
i=1
So to specify the distribution we have to estimate the probabilities

p(X,' | Xpa(i)) = ].,2, ey k

for the conditional distribution of each variable given its parents.
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N
ML Estimation of BN

The joint probability for n independent observations is

P(X®,. x) = TTP(xD)
j=1

HHP(XU | X0

j=1i=1

where XU) denotes the j-th row in the data table.

The likelihood function is therefore given by

L = H H P(xi | Xpa(i)) "(Xf«,Xpa(i))

i=1 X, Xpa(i)

where n(x;, X)) is a count of the number of records with X; = x;, and Xp,(iy = Xpa(i)-
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N
ML Estimation of BN

Taking the log of the likelihood function, we get

,C Z Z Xla pa() |ng(Xl| 3( ))

=1 XiXpa(i)

@ Maximize the log-likelihood function with respect to the
unknown parameters p(X; | Xpa(j))-

@ This decomposes into a collection of independent multinomial
estimation problems.

@ Separate estimation problem for each X; and configuration of X,,(;).
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Example BN and Factorisation

P(X1, X2, X3, Xa) = p1(X1)p2(X2) p3j12(X3| X1, X2) paj3(Xa| X3)
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Example BN: Parameters

P(X1, X2, X3, Xa) = p1(X1)p2(X2)p3j12(X3| X1, X2) paj3 (Xa| X3)

Now we have to estimate the following parameters (X4 ternary, rest binary):
pi(1) p1(2) =1-pi(1)

p2(1) p2(2) =1—p2(1)

P312(1l1,1)  p312(2[1,1) =1 — p3jp2(1[1,1)

p312(101,2)  p3j12(2[1,2) = 1 — p3j12(1]1,2)

p31,2(112,1)  p312(212,1) = 1 — pg12(12,1)

P31,2(112,2)  p312(2[2,2) =1 — p3j12(1[2,2)

P4|3(1|1) P4\3(2|1) P4\3(3‘1) =1- P4|3(1|1) - P4\3(2‘1)
pa3(1]2) paj3(2]2) Pa3(3[2) = 1 — paj3(1]2) — pay3(2]2)
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-
Example Data Set

obs X1 X2 X3 X4
1)1 1 1 1
211 1 1 1
311 1 2 1
411 2 2 1
511 2 2 2
6|2 1 1 2
7|2 1 2 3
8|2 1 2 3
9|2 2 2 3
10 | 2 2 1 3
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

obs Xl X2 X3 X4
11 1 1
2|1 1 1
311 2 1
4|1 2 2 1
511 2 2 2
6|2 1 2
712 2 3
812 2 3
912 2 2 3
10 | 2 2 1 3
. nxx=1) 6

P2(1) = ., "1
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Maximum Likelihood Estimation

obs X1 X2 X3 X4
101 1 1 1
211 1 1 1
311 1 2 1
411 2 2 1
511 2 2 2
6|2 1 1 2
712 1 2 3
8|2 1 2 3
9|2 2 2 3
10 | 2 2 1 3
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Maximum Likelihood Estimation

Ad Feelders

obs X1 X2 X3 X4
101 1 1
.l
301 1 2 1
411 2 2 1
511 2 2 2
6|2 1 1 2
712 1 2 3
8|2 1 2 3
9|2 2 2 3
10 | 2 2 1 3

P n -
P3j12(11,1) = — — ==

( Universiteit Utrecht )
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N
ML Estimation of BN

The maximum likelihood estimate of p(x; | xpa(j)) is given by:

n(X,', Xpa(i))

/IJ\(X,‘ ‘ Xpa(i)) = n(Xpa(i)) 9

where

® n(X;, Xpa(j)) is the number of records in the data with
X,' = Xj and Xpa(i) = Xpa(i) and

® n(xXpa(j)) is the number of records in the data with Xp,(i) = Xpa(i)-
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