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Do you like noodles?

Do you like
noodles?

Race Gender Yes No

Black Male 10 40
Female 30 20

White Male 100 100
Female 120 80
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Do you like noodles? Undirected

G R

A

G ⊥⊥ R | A

Strange: Gender and Race are prior to Answer, but this model says they
are independent given Answer!
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Do you like noodles?

Marginal table for Gender and Race:

Race
Gender Black White

Male 50 200
Female 50 200

From this table we conclude that Race and Gender are independent in the
data.

cpr(G,R)= 1
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Do you like noodles?

Table for Gender and Race given Answer=yes:

Race
Gender Black White

Male 10 100
Female 30 120

cpr(G,R) = 0.4

Table for Gender and Race given Answer=no:

Race
Gender Black White

Male 40 100
Female 20 80

cpr(G,R)=1.6

From these tables we conclude that Race and Gender are dependent given Answer.
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Do you like noodles? Directed

G R

A

G ⊥⊥ R, G 6⊥⊥ R |A

Gender and Race are marginally independent
(but dependent given Answer).
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Explaining away

S A

L

Smoking (S) and asbestos exposure (A) are independent, but become
dependent if we observe that someone has lung cancer (L).

If we observe L, this raises the probability of both S and A.

If we subsequently observe S, then the probability of A drops
(explaining away effect).
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Directed Independence Graphs

G = (K ,E ), K is a set of vertices and E is a set of edges with ordered
pairs of vertices.

No directed cycles (DAG)

parent/child

ancestor/descendant

ancestral set

Because G is a DAG, there exists a complete ordering of the vertices that
is respected in the graph (edges point from lower ordered to higher
ordered nodes).
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Parents Of Node i : pa(i)

i
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Ancestors Of Node i : an(i)

i
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Ancestral Set Of Node i : an+(i)

i
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Children Of Node i : ch(i)

i
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Descendants Of Node i : de(i)

i
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Construction of DAG

Suppose that prior knowledge tells us the variables can be labeled
X1,X2, . . . ,Xk such that Xi is prior to Xi+1.
(for example: causal or temporal ordering)

Corresponding to this ordering we can use the product rule to factorize the
joint distribution of X1,X2, . . . ,Xk as

P(X ) = P(X1)P(X2 | X1) · · ·P(Xk | Xk−1,Xk−2, . . . ,X1)

Note that:

1 This is an identity of probability theory, no independence assumptions
have been made yet!

2 The joint probability of any initial segment X1,X2, . . . ,Xj (1 ≤ j ≤ k)
is given by the corresponding initial segment of the factorization.
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Constructing a DAG from pairwise independencies

Starting from the complete graph (containing arrows i → j for all i < j)
an arrow from i to j is removed if P(Xj | Xj−1, . . . ,X1) does not depend
on Xi , in other words, if

j ⊥⊥ i | {1, . . . , j} \ {i , j}

More loosely

j ⊥⊥ i | prior variables

Compare this to pairwise independence

j ⊥⊥ i | rest

in undirected independence graphs.
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2|X1)P(X3|X1,X2)P(X4|X1,X2,X3)

Suppose the following independencies are given:

1 X1 ⊥⊥ X2

2 X4 ⊥⊥ X3|(X1,X2)

3 X1 ⊥⊥ X3|X2
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2|X1)︸ ︷︷ ︸
P(X2)

P(X3|X1,X2)P(X4|X1,X2,X3)

1 If X1 ⊥⊥ X2, then P(X2|X1) = P(X2).

The edge 1→ 2 is removed.
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2)P(X3|X1,X2)P(X4|X1,X2,X3)
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2)P(X3|X1,X2)P(X4|X1,X2,X3)︸ ︷︷ ︸
P(X4|X1,X2)

2 If X4 ⊥⊥ X3|(X1,X2), then P(X4|X1,X2,X3) = P(X4|X1,X2).

The edge 3→ 4 is removed.
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2)P(X3|X1,X2)P(X4|X1,X2)
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Construction Of DAG

1 2

34

P(X ) = P(X1)P(X2)P(X3|X1,X2)︸ ︷︷ ︸
P(X3|X2)

P(X4|X1,X2)

3 If X1 ⊥⊥ X3|X2, then P(X3|X1,X2) = P(X3|X2)

The edge 1→ 3 is removed.
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Construction Of DAG

We end up with this independence graph and corresponding factorization:

1 2

34

P(X ) = P(X1)P(X2)P(X3|X2)P(X4|X1,X2)
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Joint probability distribution of Bayesian Network

We can write the joint probability distribution more elegantly as

P(X1, . . . ,Xk) =
k∏

i=1

P(Xi | Xpa(i))
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Independence Properties of DAGs: d-separation and Moral
Graphs

Can we infer other/stronger independence statements from the directed
graph like we did using separation in the undirected graphical models?

Yes, the relevant concept is called d-separation.

establishing d-separation directly (Pearl)

establishing d-separation via the moral graph and “normal” separation

We discuss the second approach.
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Independence Properties of DAGs: Moral Graph

Given a DAG G = (K ,E ) we construct the moral graph Gm by marrying
parents, and deleting directions, that is,

1 For each i ∈ K , we connect all vertices in pa(i) with undirected edges.

2 We replace all directed edges in E with undirected ones.

DAG Moral Graph
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Independence Properties of DAGs: Moral Graph

The directed independence graph G possesses the conditional
independence properties of its associated moral graph Gm. Why?

We have the factorisation:

P(X ) =
k∏

i=1

P(Xi | Xpa(i))

=
k∏

i=1

gi (Xi ,Xpa(i))

by setting gi (Xi ,Xpa(i)) = P(Xi | Xpa(i)).

Ad Feelders ( Universiteit Utrecht ) Data Mining 26 / 49



Independence Properties of DAGs: Moral Graph

We have the factorisation:

P(X ) =
k∏

i=1

gi (Xi ,Xpa(i))

We thus have a factorisation of the joint probability distribution in
terms of functions gi (Xai ) where ai = {i} ∪ pa(i).

By application of the factorisation criterion the sets ai become cliques
in the undirected independence graph.

These cliques are formed by moralization.
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Moralisation: Example

X1 X2

X4 X3

X5
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Moralisation: Example

X1 X2

X4 X3

X5

{i} ∪ pa(i) becomes a complete subgraph in the moral graph
(by marrying all unmarried parents).
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Moralisation Continued

Warning: the complete moral graph can obscure independencies!

To verify
i ⊥⊥ j | S

construct the moral graph of the induced subgraph on:

A = an+({i , j} ∪ S),

that is, A contains i , j , S and all their ancestors.

Let G = (K ,E ) and A ⊆ K . The induced subgraph GA contains nodes A
and edges E ′, where

i → j ∈ E ′ ⇔ i → j ∈ E and i ∈ A and j ∈ A.
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Moralisation Continued

Since for ` ∈ A, pa(`) ∈ A, we know that the joint distribution of XA is
given by

P(XA) =
∏
`∈A

P(X` | Xpa(`))

which corresponds to the subgraph GA of G .

1 This is a product of factors P(X`|Xpa(`)), involving the variables
X{`}∪pa(`) only.

2 So it factorizes according to Gm
A , and thus the independence

properties for undirected graphs apply.

3 Hence, if S separates i from j in Gm
A , then i ⊥⊥ j | S .
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Full moral graph may obscure independencies: example

G R

A

P(G ,R,A) = P(G )P(R)P(A | G ,R)

Does G ⊥⊥ R hold? Summing out A we obtain:

P(G ,R) =
∑
a

P(G ,R,A = a) (sum rule)

=
∑
a

P(G )P(R)P(A = a | G ,R) (BN factorisation)

= P(G )P(R)
∑
a

P(A = a | G ,R) (rule of summation)

= P(G )P(R) (
∑

a P(A = a | G ,R) = 1)
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Poll

X1 X2

X4 X3

X5

1 Are X3 and X4 independent?

2 Are X1 and X3 independent?

3 Are X3 and X4 independent given X5?

4 Are X1 and X3 independent given X5?
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Equivalence

When no marrying of parents is required (there are no “immoralities” or
“v-structures”), then the independence properties of the directed graph are
identical to those of its undirected version.

These three graphs express the same independence properties:

A B C

A B C

A B C
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Learning Bayesian Networks

1 Parameter learning: structure known/given; we only need to estimate
the conditional probabilities from the data.

2 Structure learning: structure unknown; we need to learn the networks
structure as well as the corresponding conditional probabilities from
the data.
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Maximum Likelihood Estimation

Find value of unknown parameter(s) that maximize the probability of the
observed data.

n independent observations on binary variable X ∈ {1, 2}. We observe
n(1) outcomes X = 1 and n(2) = n − n(1) outcomes X = 2.
What is the maximum likelihood estimate of p(1)?
The likelihood function (probability of the data) is given by:

L = p(1)n(1)(1− p(1))n−n(1)

Taking the log we get

L = n(1) log p(1) + (n − n(1)) log(1− p(1))
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Maximum Likelihood Estimation

Take derivative with respect to p(1), equate to zero, and solve for p(1).

dL
dp(1)

=
n(1)

p(1)
− n − n(1)

1− p(1)
= 0,

since d log x
dx = 1

x (where log is the natural logarithm).

Solving for p(1), we get

p(1) =
n(1)

n
.

This is just the fraction of one’s in the sample!
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ML Estimation of Multinomial Distribution

Let X ∈ {1, 2, . . . , J}.

Estimate the probabilities p(1), p(2), . . . , p(J) of getting outcomes
1, 2, . . . , J. If in n trials, we observe n(1) outcomes of 1, n(2) of 2, . . .,
n(J) of J, then the obvious guess is to estimate

p(j) =
n(j)

n
, j = 1, 2, . . . , J.

This is indeed the maximum likelihood estimate.
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BN-Factorisation

For a given BN-DAG, the joint distribution factorises according to

P(X ) =
k∏

i=1

p(Xi | Xpa(i))

So to specify the distribution we have to estimate the probabilities

p(Xi | Xpa(i)) i = 1, 2, . . . , k

for the conditional distribution of each variable given its parents.
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ML Estimation of BN

The joint probability for n independent observations is

P(X (1), . . . ,X (n)) =
n∏

j=1

P(X (j))

=
n∏

j=1

k∏
i=1

p(X
(j)
i | X

(j)
pa(i)),

where X (j) denotes the j-th row in the data table.

The likelihood function is therefore given by

L =
k∏

i=1

∏
xi ,xpa(i)

p(xi | xpa(i))n(xi ,xpa(i))

where n(xi , xpa(i)) is a count of the number of records with Xi = xi , and Xpa(i) = xpa(i).
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ML Estimation of BN

Taking the log of the likelihood function, we get

L =
k∑

i=1

∑
xi ,xpa(i)

n(xi , xpa(i)) log p(xi | xpa(i))

Maximize the log-likelihood function with respect to the
unknown parameters p(xi | xpa(i)).

This decomposes into a collection of independent multinomial
estimation problems.

Separate estimation problem for each Xi and configuration of Xpa(i).
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Example BN and Factorisation

1 2

3

4

P(X1,X2,X3,X4) = p1(X1)p2(X2)p3|12(X3|X1,X2)p4|3(X4|X3)
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Example BN: Parameters

P(X1,X2,X3,X4) = p1(X1)p2(X2)p3|12(X3|X1,X2)p4|3(X4|X3)

Now we have to estimate the following parameters (X4 ternary, rest binary):

p1(1) p1(2) = 1− p1(1)

p2(1) p2(2) = 1− p2(1)

p3|1,2(1|1, 1) p3|1,2(2|1, 1) = 1− p3|1,2(1|1, 1)
p3|1,2(1|1, 2) p3|1,2(2|1, 2) = 1− p3|1,2(1|1, 2)
p3|1,2(1|2, 1) p3|1,2(2|2, 1) = 1− p3|1,2(1|2, 1)
p3|1,2(1|2, 2) p3|1,2(2|2, 2) = 1− p3|1,2(1|2, 2)

p4|3(1|1) p4|3(2|1) p4|3(3|1) = 1− p4|3(1|1)− p4|3(2|1)
p4|3(1|2) p4|3(2|2) p4|3(3|2) = 1− p4|3(1|2)− p4|3(2|2)
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Example Data Set

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3
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Maximum Likelihood Estimation

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

p̂1(1) =
n(x1 = 1)

n
=

5

10
=

1

2
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Maximum Likelihood Estimation

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

p̂2(1) =
n(x2 = 1)

n
=

6

10

Ad Feelders ( Universiteit Utrecht ) Data Mining 46 / 49



Maximum Likelihood Estimation

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

p̂3|1,2(1|1, 1) =
n(x1 = 1, x2 = 1, x3 = 1)

n(x1 = 1, x2 = 1)
=

2

3
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Maximum Likelihood Estimation

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

p̂3|1,2(1|1, 1) =
n(x1 = 1, x2 = 1, x3 = 1)

n(x1 = 1, x2 = 1)
=

2

3
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ML Estimation of BN

The maximum likelihood estimate of p(xi | xpa(i)) is given by:

p̂(xi | xpa(i)) =
n(xi , xpa(i))

n(xpa(i))
,

where

n(xi , xpa(i)) is the number of records in the data with
Xi = xi and Xpa(i) = xpa(i), and

n(xpa(i)) is the number of records in the data with Xpa(i) = xpa(i).
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