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Basic Tree Construction Algorithm (control flow)

Construct tree
nodelist <— {{training data}}
Repeat
current node < select node from nodelist
nodelist <— nodelist — current node
if impurity(current node) > 0
then
S < set of candidate splits in current node
s* < arg maxscs impurity reduction(s,current node)
child nodes < apply(s*,current node)
nodelist <— nodelist U child nodes
fi
Until nodelist = @
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-
Overfitting and Pruning

The tree growing algorithm continues splitting until all leaf nodes
contain examples of a single class.

This results in a tree with zero resubstitution error.

°
@ Is this a good tree for predicting the class of new examples?
@ Not unless the problem is truly “deterministic”!

°

Problem of overfitting.
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An Overfitted Tree on Bug Prediction Data
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Proposed Solutions

How can we prevent overfitting?
@ Stopping rules, e.g. don’t expand a node if:

e the impurity reduction of the best split is below some threshold, or
o the number of training examples falling into that node is too small.

@ Pruning: grow a very large tree and merge back nodes.
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Stopping Rules

Disadvantage: sometimes you first have to make a weak split to be able to

follow up with a good split.

Since we only look one step ahead we may miss the good follow-up split.

T2
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Pruning

@ To avoid the problem of stopping rules, we first grow a very large
tree Tmax on the training sample, and then prune this large tree.

@ Objective: select the pruned subtree that has lowest true error rate.
@ Problem: how to find this pruned subtree?

o Cost-complexity pruning (Breiman et al.; CART),
also called weakest link pruning.
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-
Terminology: Tree T

T denotes the collection of leaf nodes of tree T.
T = {ts, te, t7,tg, to}, | T| =5
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Terminology: Pruning T in node t,
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Terminology: T after pruning in tp: T — T,
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|
Terminology: Branch T,

Ty, = {ts, tg, to}, | Tp,| =3
st Wiing s



Cost-complexity pruning

A pruned subtree of T is a tree obtained by pruning T in O or more
nodes.

@ The total number of pruned subtrees of a balanced binary tree with ¢
leaf nodes is
11.5028369" |

@ With just 40 leaf nodes we have approximately 12 million
pruned subtrees.
@ Exhaustive search not recommended.

@ Basic idea of cost-complexity pruning: reduce the number of pruned
subtrees we have to consider by selecting the ones that are the “best
of their kind” (in a sense to be defined shortly...)
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Total cost of a tree

Strike a balance between fit and complexity. Total cost C,(T) of tree T

[ Ca(T)=R(T)+a|T]|

Total cost consists of two components:
@ resubstitution error R(T), and

e a penalty for the complexity of the tree | T|, (o > 0).

. _ number of wrong classifications made by T
Note: R(T) = number of examples in the training sample
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Tree with lowest total cost

@ Depending on the value of «, different pruned subtrees will have
the lowest total cost.

@ For a = 0 (no complexity penalty) the tree with smallest
resubstitution error wins.

@ For higher values of «, a less complex tree that makes a few more
errors might win.

As it turns out, we can find a nested sequence of pruned subtrees of Ty,
such that the trees in the sequence minimize total cost for consecutive
intervals of « values.
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Smallest minimizing subtree

Theorem:

For any value of «, there exists a smallest minimizing subtree T («a) of
Tmax that satisfies the following conditions:

© T(«) minimizes total cost for that value of a:
Co(T()) = minT< 1, Ca(T)

@ T(«) is a pruned subtree of all trees that minimize total cost:
if Co(T) = Co(T(c)) then T(a) < T.

Note: 7' < T means T’ is a pruned subtree of T.
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Sequence of subtrees

Construct a decreasing sequence of pruned subtrees of Tax
Toax > T1 > T > T3> ... > {t1}

(where t; is the root node of the tree) such that Ty is the smallest
minimizing subtree for a € [k, ak41).

Note: From a computational viewpoint, the important property is that

Ty41 is guaranteed to be a pruned subtree of T,. No backtracking is
required.
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Decomposition of total cost

The total cost of a tree is the sum of the contributions of its leaf nodes:
Ca(T)=R(T)+a|T| =D (R(t) + )
teT

R(t) is the number of errors we make in node t if we predict the majority
class, divided by the total number of observations in the training sample.
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Effect on cost of pruning in node t

Before pruning in t After pruning in t

Co{t}) = R(t) + a

Ti

Cal(Tt) = Zpeq,(R(H) + @)
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Finding the T, and corresponding oy

T:: branch of T with root node t.
After pruning in t, its contribution to total cost is:

Ca({t}) = R(t) + o,

The contribution of T; to the total cost is:

Ca(Te) = Y (R(t) + @) = R(Te) +al T¢|
t'eTy

The tree obtained by pruning in t becomes better than T when

Ca({t}) = Ca(Tt)
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Computing contributions to total cost of T
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Solving for «

The total cost of T and T — T; become equal when

Ca({t}) = Ca(Tt)v
At what value of a does this happen?
R(t)+a=R(T:) + a|'f't|

Solving for o we get
R(t) — R(T:)
T -1

Note: for this value of « total cost of T and T — T; is the same, but
T — T; is preferred because we want the smallest minimizing subtree.
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Computing g(t): the “critical” « value for node t

@ For each non-terminal node t we compute its “critical” alpha value:

R(t) — R(T,
g(t) — ( )... ( t)
| Te| =1
In words:
increase in error due to pruning in t
g(t)

 decrease in # leaf nodes due to pruning in t

@ Subsequently, we prune in the nodes for which g(t) is the smallest
(the “weakest links").

@ This process is repeated until we reach the root node.
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Computing g(t): the “critical” « value for node t

g(t1) =

Ad Feelders
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Computing g(t): the “critical” « value for node t

Calculation examples:
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Finding the weakest links

g(t1) =
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Pruning in the weakest links

t, (100{100

t, (90 60 g | 10|40

By pruning the weakest links we obtain the next tree in the sequence.
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Repeating the same procedure

t, (100{100

g, (90] 60 i, | 10]40

t, |80 |0 t; | 1060

g(t) = 5.8(t) = 1.
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Computing g(t): the “critical” « value for node t

Calculation examples:

_ R(t1) —R(Ty) 1/2—-1/10 2
g(tl)— |7~_t1|_1 — 3_1 70
_ R(t)—R(T) _3/10-1/20 1
glt2) = \Qﬂ2y—1 2-1 4
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-
Going back to the root

t, | 100[100

We have arrived at the root so we're done.
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|
The best tree for o € [0, 55)

g, (90] 60

ts

60

t, (100|100
g, (10]40
1060 ) t,| 10 t 40
g, |10 ] 0

The big tree is the best for values of o below %.
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The best tree for a € [%, %)

t, (100{100

g, (90] 60 i, | 10]40

When « reaches % this tree becomes the best.
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The best tree for a € [55, 00)

t, | 100{100

When « reaches % the root wins and we're done.
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Computing the Pruning Sequence

Ti+ T(a=0); a1+ 0; k<« 1
While Ty > {tl} do
For all non-terminal nodes t € T
R(t)—R(T s
gk(t)(_ (‘)7-kt|(—f7)
Q41 < ming gi(t)
Visit the nodes in post-order and prune
whenever g (t) = a1 to obtain Tyiq
k< k+1
od

Note: Ty ; is the branch of T) with root node t,
and Ty is the pruned tree in iteration k.
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Algorithm to compute T; from T .«

If we don't continue splitting until all nodes are pure,
then T3 = T(a = 0) may not be the same as Tpax.

Compute T; from T,,ax
T < Tmax
Repeat
Pick any pair of terminal nodes ¢ and r

with common parent t in T’
such that R(t) = R(¢) + R(r), and set
T' < T'— T (i.e. prune T'in t)
Until no more such pair exists
T1 + T
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Selection of the final tree: using a test set

Pick the tree T from the sequence with the lowest error rate R*(T) on
the test set.

This is an estimate of the true error rate R*(T) of T.

The standard error of this estimate is

ts _ Rts
SE(RtS): R (]‘ R )7

Ntest

where n:est is the number of observations in the test set.

Ad Feelders ( Universiteit Utrecht ) Data Mining 35 /57



N
Selection of the final tree: the 1-SE rule

selected
o
o o \0 o ‘ o o

Estimated error rate

Size of tree in the sequence

1-SE rule: select the smallest tree with R® within one standard error of
the minimum.
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Bug Prediction Tree Pruning Sequence

size of tree

1 2 3 6 7 10 15 20 26 30 46 50 67

1.0

X-val Relative Error
0.8

0.6

0.4

T T T T T T T T T T T T T
Inf  0.12 0.023 0.013 0.0089 0.0059 0.0028 0
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Bug Prediction Tree after Pruning
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Cross-Validation

@ When the data set is relatively small, it is a bit of a waste to set aside
part of the data for testing.

@ A way to avoid this problem is to use cross-validation.
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Cross-Validation

@ Divide data into v folds.
@ Train on v — 1 folds.
© Predict on the remaining fold.

© Leave out each of the v folds in turn.
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Cross-Validation

First iteration: train on folds 1-4, predict on fold 5
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Cross-Validation

Second iteration:

fold | X | Y| Y
1
2
3
4 y(#)
5
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Cross-Validation

Third iteration:
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Cross-Validation

Fourth iteration:
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Cross-Validation

Fifth iteration:
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Cross-Validation

In the end we have out-of-sample predictions for all cases!

fold

X

Y

A

Y

1

[C2 I S GO \O)

v
V()
WE)
V(@)
v(5)

@ Perform cross-validation for different hyper-parameter settings

(e.g. different values for «).

@ Compute prediction error for each parameter setting.

© Pick setting with lowest error.

@ Train with selected setting on complete data set.
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v-fold cross-validation (general)

Let C be a complexity parameter of a learning algorithm (like a in the
classification tree algorithm). To select the best value of C from a range
of values cy,. .., cy, we proceed as follows.

© Divide the data into v groups Gy, ..., G,.

@ For each value ¢; of C
@® Foreachgroupj=1,...,v
@ Train with C = ¢ on all data except group G;.
@ Predict on group G;.

@ Compute the CV prediction error for C = ¢;.
© Select the value ¢* of C with the smallest CV prediction error.

@ Train on the complete training sample with C = ¢*
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Selecting the best pruned subtree with cross-validation

Grow a tree on the full data set, and compute a1, vy, ..., ak and
Ti>T>...> Tk.

Recall that Ty is the smallest minimizing subtree for a € [ak, ak+1)-

Determine the grid of complexity values as follows:

= 0,

Co = /3,

€3 = /304,

ey ck is the “representative” value for Ty.
CK-1 = \/QK-10K,

CK = OQ.
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Selecting the best pruned subtree with cross-validation

Divide the data set into v groups Gi, Go, ..., G, and for each group G;

© Grow a tree on all data except G;, and determine the smallest
minimizing subtrees TU)(c;), TU)(c2),..., TW(ck) for this reduced
data set.

@ Compute the error of TU)(¢) (k=1,...,K) on G;.

From among ¢y, ..., ck, determine the value c* that minimizes
cross-validation error, and select the tree T(a = ¢*) from the original
pruning sequence.
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Regression Trees

We can also apply tree-based models to problems with numeric targets.

Three elements are necessary to specify a tree growing algorithm:
@ A way to select a split at every non-terminal node.
@ A rule for determining when a node is terminal.

@ A rule for assigning a predicted value y(t) to every terminal node t.
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N
Prediction Rule

In leaf nodes, we predict the average target value of all cases falling into

that node. )
() =y(t) = —= D Vi
N(t) ;

where N(t) is the number of cases falling into node t.

We predict the value of ¢ that minimizes the residual sum of squares
(RSS):

RSS(t) = Z(y,- — )2

Exercise: show that ¢ = y(t) minimizes RSS.
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-
Splitting Rule

The mean squared error (MSE) of a tree T is given by:

R(T) = 30 (i~ 7(0))

teT i€t

where N is the size of the learning sample.

The contribution of node t to the MSE of T is

SO we can write

Ad Feelders ( Universiteit Utrecht ) Data Mining 52 /57



-
Splitting Rule

The best split s* of t is that split which most decreases R(T).

The decrease in R(T) of a (binary) split s in node t is given by:
AR(s,t) = R(t) — R(¢) — R(r),

where £ and r denote the left and right child created by the split
respectively.
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|
Stopping and Pruning

Continue until all nodes are pure? Not likely!

Don't split node t if N(t) < nmin, where nmin is some small number
(e.g. nmin =5).

Pruning is identical to cost-complexity pruning for classification problems,
using cost function
Cu(T)=R(T)+aT]|.

Note that in classification problems R(T) denoted the classification error
on the training sample, whereas in regression problems R(T) is the mean
squared error on the training sample.

Ad Feelders ( Universiteit Utrecht ) Data Mining 54 /57



-
Bug Prediction Data of Eclipse Classes

Change metrics:

numberOfVersionsUntil  numberOfFixesUntil numberOfRefactoringsUntil
numberOfAuthorsUntil linesAddedUntil maxLinesAddedUntil
avglLinesAddedUntil linesRemovedUntil maxLinesRemovedUntil
avgLinesRemovedUntil codeChurnUntil maxCodeChurnUntil
avgCodeChurnUntil ageWithRespectTo weightedAgeWithRespectTo

Distribution of number of bugs (N = 997):

bugs (O 1 2 3 4 5 6 7 8 9
count | 791 138 31 15 8 2 4 3 3 2
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Bug Prediction Regression Tree Pruning Sequence

size of tree

1 4 9 13 19 24 32 41 46 53 58 66 77 81 87
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Bug Prediction Pruned Regression Tree

Top: average number of bugs
Bottom: percentage of training examples
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