Data Mining
Classification Trees (2)

Ad Feelders

Universiteit Utrecht

Ad Feelders (Universiteit Utrecht) Data Mining 1/57

Basic Tree Construction Algorithm (control flow)

Construct tree
nodelist <— {{training data}}
Repeat
current node < select node from nodelist
nodelist <— nodelist — current node
if impurity(current node) > 0
then
S < set of candidate splits in current node
s* < arg maxscs impurity reduction(s,current node)
child nodes < apply(s*,current node)
nodelist <— nodelist U child nodes
fi
Until nodelist = @

Ad Feelders (Universiteit Utrecht) Data Mining 2/57

-
Overfitting and Pruning

The tree growing algorithm continues splitting until all leaf nodes
contain examples of a single class.

This results in a tree with zero resubstitution error.

°
@ Is this a good tree for predicting the class of new examples?
@ Not unless the problem is truly “deterministic”!

°

Problem of overfitting.

Ad Feelders (Universiteit Utrecht) Data Mining 3/57

-
An Overfitted Tree on Bug Prediction Data
@
6 T
é 6 & @
0 b o 66 ¢

I e
o ee & B|eles s
6o & (sl & & TINMIMTIE !
66| & s[[e||” &T¢ 18]
1816 8] 5]|0d|

6 6 0|

) g

® IE

©

| ®

8]

T R e R e
Ad Feelders (Universiteit Utrecht) Data Mining 4/57

Proposed Solutions

How can we prevent overfitting?
@ Stopping rules, e.g. don’t expand a node if:

e the impurity reduction of the best split is below some threshold, or
o the number of training examples falling into that node is too small.

@ Pruning: grow a very large tree and merge back nodes.

Ad Feelders (Universiteit Utrecht) Data Mining 5/57

Stopping Rules

Disadvantage: sometimes you first have to make a weak split to be able to

follow up with a good split.

Since we only look one step ahead we may miss the good follow-up split.

T2

Ad Feelders (Universiteit Utrecht)

x1

Data Mining

6/57

Pruning

@ To avoid the problem of stopping rules, we first grow a very large
tree Tmax on the training sample, and then prune this large tree.

@ Objective: select the pruned subtree that has lowest true error rate.
@ Problem: how to find this pruned subtree?

o Cost-complexity pruning (Breiman et al.; CART),
also called weakest link pruning.

Ad Feelders (Universiteit Utrecht) Data Mining 7/57

-
Terminology: Tree T

T denotes the collection of leaf nodes of tree T.
T = {ts, te, t7,tg, to}, | T| =5

Ad Feelders (Universiteit Utrecht) Data Mining 8/57

Terminology: Pruning T in node t,

Ad Feelders (Universiteit Utrecht) Data Mining 9/57

-
Terminology: T after pruning in tp: T — T,

Ad Feelders (Universiteit Utrecht) Data Mining 10 /57

|
Terminology: Branch T,

Ty, = {ts, tg, to}, | Tp,| =3
st Wiing s

Cost-complexity pruning

A pruned subtree of T is a tree obtained by pruning T in O or more
nodes.

@ The total number of pruned subtrees of a balanced binary tree with ¢
leaf nodes is
11.5028369" |

@ With just 40 leaf nodes we have approximately 12 million
pruned subtrees.
@ Exhaustive search not recommended.

@ Basic idea of cost-complexity pruning: reduce the number of pruned
subtrees we have to consider by selecting the ones that are the “best
of their kind” (in a sense to be defined shortly...)

Ad Feelders (Universiteit Utrecht) Data Mining 12 /57

N
Total cost of a tree

Strike a balance between fit and complexity. Total cost C,(T) of tree T

[Ca(T)=R(T)+a|T]|

Total cost consists of two components:
@ resubstitution error R(T), and

e a penalty for the complexity of the tree | T|, (o > 0).

. _ number of wrong classifications made by T
Note: R(T) = number of examples in the training sample

Ad Feelders (Universiteit Utrecht) Data Mining 13 /57

Tree with lowest total cost

@ Depending on the value of «, different pruned subtrees will have
the lowest total cost.

@ For a = 0 (no complexity penalty) the tree with smallest
resubstitution error wins.

@ For higher values of «, a less complex tree that makes a few more
errors might win.

As it turns out, we can find a nested sequence of pruned subtrees of Ty,
such that the trees in the sequence minimize total cost for consecutive
intervals of « values.

Ad Feelders (Universiteit Utrecht) Data Mining 14 /57

Smallest minimizing subtree

Theorem:

For any value of «, there exists a smallest minimizing subtree T («a) of
Tmax that satisfies the following conditions:

© T(«) minimizes total cost for that value of a:
Co(T()) = minT< 1, Ca(T)

@ T(«) is a pruned subtree of all trees that minimize total cost:
if Co(T) = Co(T(c)) then T(a) < T.

Note: 7' < T means T’ is a pruned subtree of T.

Ad Feelders (Universiteit Utrecht)

Data Mining 15 /57

Sequence of subtrees

Construct a decreasing sequence of pruned subtrees of Tax
Toax > T1 > T > T3> ... > {t1}

(where t; is the root node of the tree) such that Ty is the smallest
minimizing subtree for a € [k, ak41).

Note: From a computational viewpoint, the important property is that

Ty41 is guaranteed to be a pruned subtree of T,. No backtracking is
required.

Ad Feelders (Universiteit Utrecht) Data Mining 16 /57

Decomposition of total cost

The total cost of a tree is the sum of the contributions of its leaf nodes:
Ca(T)=R(T)+a|T| =D (R(t) +)
teT

R(t) is the number of errors we make in node t if we predict the majority
class, divided by the total number of observations in the training sample.

Ad Feelders (Universiteit Utrecht) Data Mining 17 /57

Effect on cost of pruning in node t

Before pruning in t After pruning in t

Co{t}) = R(t) + a

Ti

Cal(Tt) = Zpeq,(R(H) + @)

Ad Feelders (Universiteit Utrecht) Data Mining 18 /57

Finding the T, and corresponding oy

T:: branch of T with root node t.
After pruning in t, its contribution to total cost is:

Ca({t}) = R(t) + o,

The contribution of T; to the total cost is:

Ca(Te) = Y (R(t) + @) = R(Te) +al T¢|
t'eTy

The tree obtained by pruning in t becomes better than T when

Ca({t}) = Ca(Tt)

Ad Feelders (Universiteit Utrecht) Data Mining 19 /57

Computing contributions to total cost of T

i, (90

60

i

tg | O

60

t, (100[100

4

10 | 40

10160) t, | 10

ty

CG({t2}) = R(2) +a = 1% +a

Ca (th)

Ad Feelders

= R(Ty) +04|—7_t2’ = 04|7~_tQ’ + Zt’eﬂz R(t)=3a+0

(Universiteit Utrecht)

40

10 | O

Data Mining

20 /57

Solving for «

The total cost of T and T — T; become equal when

Ca({t}) = Ca(Tt)v
At what value of a does this happen?
R(t)+a=R(T:) + a|'f't|

Solving for o we get
R(t) — R(T:)
T -1

Note: for this value of « total cost of T and T — T; is the same, but
T — T; is preferred because we want the smallest minimizing subtree.

Ad Feelders (Universiteit Utrecht) Data Mining

21/57

Computing g(t): the “critical” « value for node t

@ For each non-terminal node t we compute its “critical” alpha value:

R(t) — R(T,
g(t) — ()... (t)
| Te| =1
In words:
increase in error due to pruning in t
g(t)

 decrease in # leaf nodes due to pruning in t

@ Subsequently, we prune in the nodes for which g(t) is the smallest
(the “weakest links").

@ This process is repeated until we reach the root node.

Ad Feelders (Universiteit Utrecht) Data Mining 22 /57

Computing g(t): the “critical” « value for node t

g(t1) =

Ad Feelders

4

g, (90] 60
t, |80 |0 t
| 0 |60

% g(t) = Qovg(t3)

(Universiteit Utrecht)

100100
y (10]40
0]60 V|10] 0| 1 40
Gy [10] 0
350 &(t5) = 5.
Data Mining

23 /57

Computing g(t): the “critical” « value for node t

Calculation examples:

Ad Feelders

g(t1) =

g(t2) =

(Universiteit Utrecht)

R(t) — R(Te) _1/2-0 _

5-1

1

-8

R(t) — R(Ty) 3/10—0 3

3-1

R(ts) — R(T) _1/20-0 1

2-1

| —i_tl ’ -1
|;f-t2’ -1 -
’7i3’ -1
|i—t5’ -1
Data Mining

2-1

20

_R(t3)—R(Ty) _1/20-0 _ 1

20

20

24 /57

Finding the weakest links

g(t1) =

Ad Feelders

4

g, (90] 60
t, |80 |0 t
| 0 |60

% g(t) = zo,g(ts)

(Universiteit Utrecht)

100 {100

y (10]40
10 60% 00| ¢ 40
Gy [10] 0
350 &(t5) = 5.
Data Mining

25 /57

Pruning in the weakest links

t, (100{100

t, (90 60 g | 10|40

By pruning the weakest links we obtain the next tree in the sequence.

Ad Feelders (Universiteit Utrecht) Data Mining 26 /57

Repeating the same procedure

t, (100{100

g, (90] 60 i, | 10]40

t, |80 |0 t; | 1060

g(t) = 5.8(t) = 1.

Ad Feelders (Universiteit Utrecht) Data Mining 27 /57

Computing g(t): the “critical” « value for node t

Calculation examples:

_ R(t1) —R(Ty) 1/2—-1/10 2
g(tl)— |7~_t1|_1 — 3_1 70
_ R(t)—R(T) _3/10-1/20 1
glt2) = \Qﬂ2y—1 2-1 4

Ad Feelders (Universiteit Utrecht) Data Mining 28 /57

-
Going back to the root

t, | 100[100

We have arrived at the root so we're done.

Ad Feelders (Universiteit Utrecht) Data Mining 29 /57

|
The best tree for o € [0, 55)

g, (90] 60

ts

60

t, (100|100
g, (10]40
1060) t,| 10 t 40
g, |10] 0

The big tree is the best for values of o below %.

Ad Feelders

(Universiteit Utrecht)

Data Mining

30/57

The best tree for a € [%, %)

t, (100{100

g, (90] 60 i, | 10]40

When « reaches % this tree becomes the best.

Ad Feelders (Universiteit Utrecht) Data Mining 31/57

The best tree for a € [55, 00)

t, | 100{100

When « reaches % the root wins and we're done.

Ad Feelders (Universiteit Utrecht) Data Mining 32/57

Computing the Pruning Sequence

Ti+ T(a=0); a1+ 0; k<« 1
While Ty > {tl} do
For all non-terminal nodes t € T
R(t)—R(T s
gk(t)(_ (‘)7-kt|(—f7)
Q41 < ming gi(t)
Visit the nodes in post-order and prune
whenever g (t) = a1 to obtain Tyiq
k< k+1
od

Note: Ty ; is the branch of T) with root node t,
and Ty is the pruned tree in iteration k.

Ad Feelders (Universiteit Utrecht) Data Mining 33/57

Algorithm to compute T; from T .«

If we don't continue splitting until all nodes are pure,
then T3 = T(a = 0) may not be the same as Tpax.

Compute T; from T,,ax
T < Tmax
Repeat
Pick any pair of terminal nodes ¢ and r

with common parent t in T’
such that R(t) = R(¢) + R(r), and set
T' < T'— T (i.e. prune T'in t)
Until no more such pair exists
T1 + T

Ad Feelders (Universiteit Utrecht) Data Mining 34 /57

Selection of the final tree: using a test set

Pick the tree T from the sequence with the lowest error rate R*(T) on
the test set.

This is an estimate of the true error rate R*(T) of T.

The standard error of this estimate is

ts _ Rts
SE(RtS): R (]‘ R)7

Ntest

where n:est is the number of observations in the test set.

Ad Feelders (Universiteit Utrecht) Data Mining 35 /57

N
Selection of the final tree: the 1-SE rule

selected
o
o o \0 o ‘ o o

Estimated error rate

Size of tree in the sequence

1-SE rule: select the smallest tree with R® within one standard error of
the minimum.

Ad Feelders (Universiteit Utrecht) Data Mining 36 /57

Bug Prediction Tree Pruning Sequence

size of tree

1 2 3 6 7 10 15 20 26 30 46 50 67

1.0

X-val Relative Error
0.8

0.6

0.4

T T T T T T T T T T T T T
Inf 0.12 0.023 0.013 0.0089 0.0059 0.0028 0

Ad Feelders (Universiteit Utrecht) Data Mining 37/57

Bug Prediction Tree after Pruning

0
0.50
100%
ves }-numberOfVersionsUntil. < 54
0
0.31
62%

-codeChurnUntil. >= -45

0
0.28
58%,

r—codeChurnuntil. < 25

0
0.40
29%

ageWithRespectTo. >= 327

1
0.52
18%

maxLinesRemoveduntil. < 44

[0 0 1 i il
017 0.20 0.38 0.95 0.71 0.82
29% 11% 14% 5% 3% 38%,

recht) Data Mining 38/57

Ad Feelders (Universiteit

Cross-Validation

@ When the data set is relatively small, it is a bit of a waste to set aside
part of the data for testing.

@ A way to avoid this problem is to use cross-validation.

Ad Feelders (Universiteit Utrecht) Data Mining 39/57

Cross-Validation

@ Divide data into v folds.
@ Train on v — 1 folds.
© Predict on the remaining fold.

© Leave out each of the v folds in turn.

Ad Feelders (Universiteit Utrecht) Data Mining 40 /57

Cross-Validation

First iteration: train on folds 1-4, predict on fold 5

Ad Feelders (Universiteit Utrecht)

fold | X | Y| Y

1

2

3

4

5 y(5)
Data Mining

41 /57

Cross-Validation

Second iteration:

fold | X | Y| Y
1
2
3
4 y(#)
5

Ad Feelders (Universiteit Utrecht) Data Mining 42 /57

Cross-Validation

Third iteration:

Ad Feelders (Universiteit Utrecht)

fold | X | Y| Y
1
2
3 y®)
4
5

Data Mining

43 /57

Cross-Validation

Fourth iteration:

Ad Feelders (Universiteit Utrecht)

fold | X | Y| Y
1
2 y(2)
3
4
5

Data Mining

44 /57

Cross-Validation

Fifth iteration:

Ad Feelders (Universiteit Utrecht)

fold | X | Y| Y
1 y(1)
2
3
4
5

Data Mining

45 /57

Cross-Validation

In the end we have out-of-sample predictions for all cases!

fold

X

Y

A

Y

1

[C2 I S GO \O)

v
V()
WE)
V(@)
v(5)

@ Perform cross-validation for different hyper-parameter settings

(e.g. different values for «).

@ Compute prediction error for each parameter setting.

© Pick setting with lowest error.

@ Train with selected setting on complete data set.

Ad Feelders (Universiteit Utrecht)

Data Mining

46 /57

v-fold cross-validation (general)

Let C be a complexity parameter of a learning algorithm (like a in the
classification tree algorithm). To select the best value of C from a range
of values cy,. .., cy, we proceed as follows.

© Divide the data into v groups Gy, ..., G,.

@ For each value ¢; of C
@® Foreachgroupj=1,...,v
@ Train with C = ¢ on all data except group G;.
@ Predict on group G;.

@ Compute the CV prediction error for C = ¢;.
© Select the value ¢* of C with the smallest CV prediction error.

@ Train on the complete training sample with C = ¢*

Ad Feelders (Universiteit Utrecht) Data Mining 47 /57

Selecting the best pruned subtree with cross-validation

Grow a tree on the full data set, and compute a1, vy, ..., ak and
Ti>T>...> Tk.

Recall that Ty is the smallest minimizing subtree for a € [ak, ak+1)-

Determine the grid of complexity values as follows:

= 0,

Co = /3,

€3 = /304,

ey ck is the “representative” value for Ty.
CK-1 = \/QK-10K,

CK = OQ.

Ad Feelders (Universiteit Utrecht) Data Mining 48 /57

Selecting the best pruned subtree with cross-validation

Divide the data set into v groups Gi, Go, ..., G, and for each group G;

© Grow a tree on all data except G;, and determine the smallest
minimizing subtrees TU)(c;), TU)(c2),..., TW(ck) for this reduced
data set.

@ Compute the error of TU)(¢) (k=1,...,K) on G;.

From among ¢y, ..., ck, determine the value c* that minimizes
cross-validation error, and select the tree T(a = ¢*) from the original
pruning sequence.

Ad Feelders (Universiteit Utrecht) Data Mining 49 /57

Regression Trees

We can also apply tree-based models to problems with numeric targets.

Three elements are necessary to specify a tree growing algorithm:
@ A way to select a split at every non-terminal node.
@ A rule for determining when a node is terminal.

@ A rule for assigning a predicted value y(t) to every terminal node t.

Ad Feelders (Universiteit Utrecht) Data Mining 50 /57

N
Prediction Rule

In leaf nodes, we predict the average target value of all cases falling into

that node.)
() =y(t) = —= D Vi
N(t) ;

where N(t) is the number of cases falling into node t.

We predict the value of ¢ that minimizes the residual sum of squares
(RSS):

RSS(t) = Z(y,- —)2

Exercise: show that ¢ = y(t) minimizes RSS.

Ad Feelders (Universiteit Utrecht) Data Mining 51 /57

-
Splitting Rule

The mean squared error (MSE) of a tree T is given by:

R(T) = 30 (i~ 7(0))

teT i€t

where N is the size of the learning sample.

The contribution of node t to the MSE of T is

SO we can write

Ad Feelders (Universiteit Utrecht) Data Mining 52 /57

-
Splitting Rule

The best split s* of t is that split which most decreases R(T).

The decrease in R(T) of a (binary) split s in node t is given by:
AR(s,t) = R(t) — R(¢) — R(r),

where £ and r denote the left and right child created by the split
respectively.

Ad Feelders (Universiteit Utrecht) Data Mining 53 /57

|
Stopping and Pruning

Continue until all nodes are pure? Not likely!

Don't split node t if N(t) < nmin, where nmin is some small number
(e.g. nmin =5).

Pruning is identical to cost-complexity pruning for classification problems,
using cost function
Cu(T)=R(T)+aT]|.

Note that in classification problems R(T) denoted the classification error
on the training sample, whereas in regression problems R(T) is the mean
squared error on the training sample.

Ad Feelders (Universiteit Utrecht) Data Mining 54 /57

-
Bug Prediction Data of Eclipse Classes

Change metrics:

numberOfVersionsUntil numberOfFixesUntil numberOfRefactoringsUntil
numberOfAuthorsUntil linesAddedUntil maxLinesAddedUntil
avglLinesAddedUntil linesRemovedUntil maxLinesRemovedUntil
avgLinesRemovedUntil codeChurnUntil maxCodeChurnUntil
avgCodeChurnUntil ageWithRespectTo weightedAgeWithRespectTo

Distribution of number of bugs (N = 997):

bugs (O 1 2 3 4 5 6 7 8 9
count | 791 138 31 15 8 2 4 3 3 2

Ad Feelders (Universiteit Utrecht) Data Mining 55 /57

Bug Prediction Regression Tree Pruning Sequence

size of tree

1 4 9 13 19 24 32 41 46 53 58 66 77 81 87
HEE N NN NN NN NN

N
~
— o
S < 7
]
5
=
s
5
= M\
B
<27 TR “
x o
©
<

TTTTTTTIT T I T I T T T T T T I T T T T T I T T T T T T T T T T T T T T T T T TTTTITTTTT
Inf 0.027 0.0058 0.003 0.0024 0.0014 0.00055 0.00018 O

p

Ad Feelders (Universiteit Utrecht) Data Mining 56 /57

Bug Prediction Pruned Regression Tree

Top: average number of bugs
Bottom: percentage of training examples

0.38
100%

(ves FnumberOfversionsuntil. < 142 -no]

2.7
5%

codeChurnUntil. < 2325

0.24 19 5.l
95% 4% 1%

Ad Feelders (Universiteit Utrecht) Data Mining 57 /57

