Data Mining Classification Trees (2)

Ad Feelders

Universiteit Utrecht

Basic Tree Construction Algorithm (control flow)

Construct tree

```
nodelist \leftarrow \{\{training data\}\}
Repeat
   current node ← select node from nodelist
    nodelist \leftarrow nodelist - current node
   if impurity(current node) > 0
   then
       S \leftarrow \text{set of candidate splits in current node}
       s^* \leftarrow arg \max_{s \in S} impurity reduction(s, current node)
       child nodes ← apply(s*,current node)
       nodelist \leftarrow nodelist \cup child nodes
   fi
Until nodelist = \emptyset
```

Overfitting and Pruning

- The tree growing algorithm continues splitting until all leaf nodes contain examples of a single class.
- This results in a tree with zero resubstitution error.
- Is this a good tree for predicting the class of new examples?
- Not unless the problem is truly "deterministic"!
- Problem of overfitting.

An Overfitted Tree on Bug Prediction Data

Proposed Solutions

How can we prevent overfitting?

- Stopping rules, e.g. don't expand a node if:
 - the impurity reduction of the best split is below some threshold, or
 - the number of training examples falling into that node is too small.
- Pruning: grow a very large tree and merge back nodes.

Stopping Rules

Disadvantage: sometimes you first have to make a weak split to be able to follow up with a good split.

Since we only look one step ahead we may miss the good follow-up split.

 x_1

Pruning

- To avoid the problem of stopping rules, we first grow a very large tree T_{max} on the training sample, and then *prune* this large tree.
- Objective: select the pruned subtree that has lowest *true* error rate.
- Problem: how to find this pruned subtree?
- Cost-complexity pruning (Breiman et al.; CART), also called weakest link pruning.

Terminology: Tree *T*

 \tilde{T} denotes the collection of leaf nodes of tree T.

$$\tilde{T} = \{t_5, t_6, t_7, t_8, t_9\}, |\, \tilde{T}| = 5$$

Terminology: Pruning *T* in node *t*₂

Terminology: T after pruning in t_2 : $T - T_{t_2}$

Terminology: Branch T_{t_2}

$$\tilde{T}_{t_2} = \{t_5, t_8, t_9\}, |\tilde{T}_{t_2}| = 3$$

Cost-complexity pruning

- A pruned subtree of T is a tree obtained by pruning T in 0 or more nodes.
- \bullet The total number of pruned subtrees of a balanced binary tree with ℓ leaf nodes is

$$\lfloor 1.5028369^{\ell} \rfloor$$

- With just 40 leaf nodes we have approximately 12 million pruned subtrees.
- Exhaustive search not recommended.
- Basic idea of cost-complexity pruning: reduce the number of pruned subtrees we have to consider by selecting the ones that are the "best of their kind" (in a sense to be defined shortly...)

Total cost of a tree

Strike a balance between fit and complexity. Total cost $C_{\alpha}(T)$ of tree T

$$C_{\alpha}(T) = R(T) + \alpha |\tilde{T}|$$

Total cost consists of two components:

- resubstitution error R(T), and
- a penalty for the complexity of the tree $\alpha | \tilde{T} |, (\alpha \geq 0)$.

Note: $R(T) = \frac{\text{number of wrong classifications made by } T}{\text{number of examples in the training sample}}$

Tree with lowest total cost

- Depending on the value of α , different pruned subtrees will have the lowest total cost.
- For $\alpha = 0$ (no complexity penalty) the tree with smallest resubstitution error wins.
- ullet For higher values of α , a less complex tree that makes a few more errors might win.

As it turns out, we can find a nested sequence of pruned subtrees of $T_{\rm max}$, such that the trees in the sequence minimize total cost for consecutive intervals of α values.

Smallest minimizing subtree

Theorem:

For any value of α , there exists a smallest minimizing subtree $T(\alpha)$ of T_{max} that satisfies the following conditions:

- $T(\alpha)$ minimizes total cost for that value of α : $C_{\alpha}(T(\alpha)) = \min_{T \leq T_{\text{max}}} C_{\alpha}(T)$
- ② $T(\alpha)$ is a pruned subtree of all trees that minimize total cost: if $C_{\alpha}(T) = C_{\alpha}(T(\alpha))$ then $T(\alpha) \leq T$.

Note: $T' \leq T$ means T' is a pruned subtree of T.

Sequence of subtrees

Construct a decreasing sequence of pruned subtrees of $T_{\sf max}$

$$T_{\mathsf{max}} > T_1 > T_2 > T_3 > \ldots > \{t_1\}$$

(where t_1 is the root node of the tree) such that T_k is the smallest minimizing subtree for $\alpha \in [\alpha_k, \alpha_{k+1})$.

Note: From a computational viewpoint, the important property is that T_{k+1} is guaranteed to be a pruned subtree of T_k . No backtracking is required.

Decomposition of total cost

The total cost of a tree is the sum of the contributions of its leaf nodes:

$$C_{\alpha}(T) = R(T) + \alpha |\tilde{T}| = \sum_{t \in \tilde{T}} (R(t) + \alpha)$$

R(t) is the number of errors we make in node t if we predict the majority class, divided by the total number of observations in the training sample.

17 / 57

Effect on cost of pruning in node t

Before pruning in t

After pruning in t

 $C_{\alpha}(\{t\}) = R(t) + \alpha$

Finding the T_k and corresponding α_k

 T_t : branch of T with root node t.

After pruning in t, its contribution to total cost is:

$$C_{\alpha}(\lbrace t \rbrace) = R(t) + \alpha,$$

The contribution of T_t to the total cost is:

$$C_{\alpha}(T_t) = \sum_{t' \in \tilde{T}_t} (R(t') + \alpha) = R(T_t) + \alpha |\tilde{T}_t|$$

The tree obtained by pruning in t becomes better than T when

$$C_{\alpha}(\{t\}) = C_{\alpha}(T_t)$$

Computing contributions to total cost of T

$$C_{\alpha}(\{t_{2}\}) = R(t_{2}) + \alpha = \frac{3}{10} + \alpha$$

$$C_{\alpha}(T_{t_{2}}) = R(T_{t_{2}}) + \alpha |\tilde{T}_{t_{2}}| = \alpha |\tilde{T}_{t_{2}}| + \sum_{t' \in \tilde{T}_{t_{2}}} R(t') = 3\alpha + 0$$

Ad Feelders (Universiteit Utrecht)

Solving for α

The total cost of T and $T - T_t$ become equal when

$$C_{\alpha}(\lbrace t \rbrace) = C_{\alpha}(T_t),$$

At what value of α does this happen?

$$R(t) + \alpha = R(T_t) + \alpha |\tilde{T}_t|$$

Solving for α we get

$$\alpha = \frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1}$$

Note: for this value of α total cost of T and $T - T_t$ is the same, but $T - T_t$ is preferred because we want the *smallest* minimizing subtree.

21 / 57

Ad Feelders (Universiteit Utrecht) Data Mining

• For each non-terminal node t we compute its "critical" alpha value:

$$g(t) = rac{R(t) - R(T_t)}{| ilde{T}_t| - 1}$$

In words:

$$g(t) = \frac{\text{increase in error due to pruning in } t}{\text{decrease in } \# \text{ leaf nodes due to pruning in } t}$$

- Subsequently, we prune in the nodes for which g(t) is the smallest (the "weakest links").
- This process is repeated until we reach the root node.

$$g(t_1) = \frac{1}{8}, g(t_2) = \frac{3}{20}, g(t_3) = \frac{1}{20}, g(t_5) = \frac{1}{20}.$$

Calculation examples:

$$g(t_1) = \frac{R(t_1) - R(T_{t_1})}{|\tilde{T}_{t_1}| - 1} = \frac{1/2 - 0}{5 - 1} = \frac{1}{8}$$

$$g(t_2) = \frac{R(t_2) - R(T_{t_2})}{|\tilde{T}_{t_2}| - 1} = \frac{3/10 - 0}{3 - 1} = \frac{3}{20}$$

$$g(t_3) = \frac{R(t_3) - R(T_{t_3})}{|\tilde{T}_{t_3}| - 1} = \frac{1/20 - 0}{2 - 1} = \frac{1}{20}$$

$$g(t_5) = \frac{R(t_5) - R(T_{t_5})}{|\tilde{T}_{t_7}| - 1} = \frac{1/20 - 0}{2 - 1} = \frac{1}{20}$$

Finding the weakest links

$$g(t_1) = \frac{1}{8}, g(t_2) = \frac{3}{20}, g(t_3) = \frac{1}{20}, g(t_5) = \frac{1}{20}.$$

Ad Feelders (Universiteit Utrecht)

Pruning in the weakest links

By pruning the weakest links we obtain the next tree in the sequence.

Repeating the same procedure

$$g(t_1) = \frac{2}{10}, g(t_2) = \frac{1}{4}.$$

Calculation examples:

$$g(t_1) = rac{R(t_1) - R(T_{t_1})}{| ilde{T}_{t_1}| - 1} = rac{1/2 - 1/10}{3 - 1} = rac{2}{10}$$
 $g(t_2) = rac{R(t_2) - R(T_{t_2})}{| ilde{T}_{t_2}| - 1} = rac{3/10 - 1/20}{2 - 1} = rac{1}{4}$

Going back to the root

We have arrived at the root so we're done.

The best tree for $\alpha \in [0, \frac{1}{20})$

The big tree is the best for values of α below $\frac{1}{20}$.

The best tree for $\alpha \in \left[\frac{1}{20}, \frac{2}{10}\right)$

When α reaches $\frac{1}{20}$ this tree becomes the best.

The best tree for $\alpha \in \left[\frac{2}{10}, \infty\right)$

When α reaches $\frac{2}{10}$ the root wins and we're done.

Computing the Pruning Sequence

$$\begin{split} T_1 \leftarrow T(\alpha = 0); & \alpha_1 \leftarrow 0; \ k \leftarrow 1 \\ \text{While } & T_k > \{t_1\} \text{ do} \\ \text{For all non-terminal nodes } & t \in T_k \\ & g_k(t) \leftarrow \frac{R(t) - R(T_{k,t})}{|\tilde{T}_{k,t}| - 1} \\ & \alpha_{k+1} \leftarrow \min_t g_k(t) \\ \text{Visit the nodes in post-order and prune } \\ & \text{whenever } g_k(t) = \alpha_{k+1} \text{ to obtain } T_{k+1} \\ & k \leftarrow k + 1 \\ \text{od} \end{split}$$

Note: $T_{k,t}$ is the branch of T_k with root node t, and T_k is the pruned tree in iteration k.

Algorithm to compute T_1 from T_{max}

If we don't continue splitting until all nodes are pure, then $T_1=T(\alpha=0)$ may not be the same as T_{max} .

```
Compute T_1 from T_{\text{max}}
T' \leftarrow T_{\text{max}}
Repeat
Pick any pair of terminal nodes \ell and r
with common parent t in T'
such that R(t) = R(\ell) + R(r), and set
T' \leftarrow T' - T_t (i.e. prune T' in t)
Until no more such pair exists
T_1 \leftarrow T'
```

Selection of the final tree: using a test set

Pick the tree T from the sequence with the lowest error rate $R^{ts}(T)$ on the test set.

This is an *estimate* of the true error rate $R^*(T)$ of T.

The standard error of this estimate is

$$SE(R^{ts}) = \sqrt{\frac{R^{ts}(1 - R^{ts})}{n_{test}}},$$

where n_{test} is the number of observations in the test set.

Selection of the final tree: the 1-SE rule

1-SE rule: select the smallest tree with R^{ts} within one standard error of the minimum.

Bug Prediction Tree Pruning Sequence

Ad Feelders

Bug Prediction Tree after Pruning

- When the data set is relatively small, it is a bit of a waste to set aside part of the data for testing.
- A way to avoid this problem is to use cross-validation.

- Divide data into *v* folds.
- 2 Train on v-1 folds.
- Predict on the remaining fold.
- Leave out each of the v folds in turn.

First iteration: train on folds 1-4, predict on fold 5

fold	X	Y	Ŷ
1			
2			
2 3 4			
4			
5			$\hat{\gamma}^{(5)}$

Second iteration:

fold	X	Y	Ŷ
1			
2 3			
3			
4			$\hat{Y}^{(4)}$
5			

Third iteration:

fold	X	Y	Ŷ
1			
2			
3			$\hat{\gamma}^{(3)}$
4			
5			

Fourth iteration:

fold	X	Y	Ŷ
1			
2			$\hat{\gamma}^{(2)}$
2 3 4			
5			

Fifth iteration:

fold	X	Y	Ŷ
1			$\hat{Y}^{(1)}$
2			
1 2 3 4			
4			
5			

In the end we have out-of-sample predictions for all cases!

fold	X	Y	Ŷ
1			$\hat{Y}^{(1)}$
2			$\hat{\gamma}^{(2)}$
3			$\hat{Y}^{(3)}$
4			$\hat{Y}^{(4)}$
5			$\hat{Y}^{(5)}$

- **9** Perform cross-validation for different hyper-parameter settings (e.g. different values for α).
- Compute prediction error for each parameter setting.
- Pick setting with lowest error.
- Train with selected setting on complete data set.

<ロト <個 > ∢ 重 > ∢ 重 > 、 重 ・ 少 Q (

v-fold cross-validation (general)

Let C be a complexity parameter of a learning algorithm (like α in the classification tree algorithm). To select the best value of C from a range of values c_1, \ldots, c_m we proceed as follows.

- **1** Divide the data into v groups G_1, \ldots, G_v .
- For each value c_i of C
 - For each group $j = 1, \ldots, v$
 - **1** Train with $C = c_i$ on all data except group G_i .
 - 2 Predict on group G_i .
 - **2** Compute the CV prediction error for $C = c_i$.
- **3** Select the value c^* of C with the smallest CV prediction error.
- Train on the complete training sample with $C = c^*$

Selecting the best pruned subtree with cross-validation

Grow a tree on the full data set, and compute $\alpha_1, \alpha_2, \ldots, \alpha_K$ and $T_1 > T_2 > \ldots > T_K$.

Recall that T_k is the smallest minimizing subtree for $\alpha \in [\alpha_k, \alpha_{k+1})$.

Determine the grid of complexity values as follows:

$$c_2 = \sqrt{\alpha_2 \alpha_3}, c_3 = \sqrt{\alpha_3 \alpha_4},$$

 c_k is the "representative" value for T_k .

$$c_{K-1} = \sqrt{\alpha_{K-1}\alpha_K},$$

 $c_K = \infty$.

 $c_1 = 0$.

Selecting the best pruned subtree with cross-validation

Divide the data set into v groups G_1, G_2, \ldots, G_v and for each group G_j

- Grow a tree on all data except G_j , and determine the smallest minimizing subtrees $T^{(j)}(c_1), T^{(j)}(c_2), \ldots, T^{(j)}(c_K)$ for this reduced data set.
- ② Compute the error of $T^{(j)}(c_k)$ (k = 1, ..., K) on G_j .

From among c_1, \ldots, c_K , determine the value c^* that minimizes cross-validation error, and select the tree $T(\alpha = c^*)$ from the original pruning sequence.

Regression Trees

We can also apply tree-based models to problems with numeric targets.

Three elements are necessary to specify a tree growing algorithm:

- A way to select a split at every non-terminal node.
- ② A rule for determining when a node is terminal.
- **3** A rule for assigning a predicted value $\hat{y}(t)$ to every terminal node t.

Prediction Rule

In leaf nodes, we predict the average target value of all cases falling into that node.

$$\hat{y}(t) = \bar{y}(t) = \frac{1}{N(t)} \sum_{i \in t} y_i,$$

where N(t) is the number of cases falling into node t.

We predict the value of c that minimizes the residual sum of squares (RSS):

$$RSS(t) = \sum_{i \in t} (y_i - c)^2.$$

Exercise: show that $c = \bar{y}(t)$ minimizes RSS.

Splitting Rule

The mean squared error (MSE) of a tree T is given by:

$$R(T) = \frac{1}{N} \sum_{t \in \tilde{T}} \sum_{i \in t} (y_i - \bar{y}(t))^2$$

where N is the size of the learning sample.

The contribution of node t to the MSE of T is

$$R(t) = \frac{1}{N} \sum_{i \in t} (y_i - \bar{y}(t))^2,$$

so we can write

$$R(T) = \sum_{t \in \tilde{T}} R(t).$$

Splitting Rule

The best split s^* of t is that split which most decreases R(T).

The decrease in R(T) of a (binary) split s in node t is given by:

$$\Delta R(s,t) = R(t) - R(\ell) - R(r),$$

where ℓ and r denote the left and right child created by the split respectively.

Stopping and Pruning

Continue until all nodes are pure? Not likely!

Don't split node t if N(t) < nmin, where nmin is some small number (e.g. nmin = 5).

Pruning is identical to cost-complexity pruning for classification problems, using cost function

$$C_{\alpha}(T) = R(T) + \alpha |\tilde{T}|.$$

Note that in classification problems R(T) denoted the classification error on the training sample, whereas in regression problems R(T) is the mean squared error on the training sample.

Bug Prediction Data of Eclipse Classes

Change metrics:

numberOfVersionsUntil numberOfAuthorsUntil avgLinesAddedUntil avgLinesRemovedUntil avgCodeChurnUntil numberOfFixesUntil linesAddedUntil linesRemovedUntil codeChurnUntil ageWithRespectTo numberOfRefactoringsUntil
maxLinesAddedUntil
maxLinesRemovedUntil
maxCodeChurnUntil
weightedAgeWithRespectTo

Distribution of number of bugs (N = 997):

bugs	0	1	2	3	4	5	6	7	8	9
count	791	138	31	15	8	2	4	3	3	2

Bug Prediction Regression Tree Pruning Sequence

Bug Prediction Pruned Regression Tree

Top: average number of bugs

Bottom: percentage of training examples

