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Comparison with Graphical Models

In graphical modelling, we are interested in

Global models, that is, the associations between all variables
simultaneously.

Associations at the variable level: X and Y are dependent means that
the value of X provides information about the value of Y
(and vice versa).

In frequent item set mining, we are interested in

Local patterns, that is, the associations between sets of items.

Associations at the value level: if all items in the set X have the value
1, then all items in the set Y have the value 1 as well
(with a certain support and confidence).

Diapers → Beer , support = 20%, confidence = 85%
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Association Rules

Table db with schema R = {I1, . . . , In}, Ii is a binary attribute (item).
For X ,Y ⊆ R, with X ∩ Y = ∅, let:

s(X ) denote the support of X , i.e., the number of tuples that have
value 1 for all items in X .

for an association rule X → Y , define

the support is s(X ∪ Y )
the confidence is s(X ∪ Y )/s(X )

Task: find all association rules with support ≥ t1 and confidence ≥ t2,
where t1 and t2 are thresholds to be set by the user.
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Association Rule Algorithm: sketch

There are two thresholds we have to satisfy:

1 Find all sets Z with sufficient support.
These sets are called frequent.

2 Test for all non-empty subsets X of frequent sets Z whether the rule
X → Y (with Y = Z \ X ) holds with sufficient confidence.
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Finding Frequent Sets

The first problem is then: how do we find the frequent sets?

Suppose we simply check all subsets of R. Then we would have to count

|P(R)| = 2|R|

subsets on the data base.

For example, if we can check 1024 sets/sec. then:

For 10 items, we are done in 1 second;

For 20 items, we need 1024 seconds, or 17 minutes;

For 100 items, we need (roughly) 4× 1018 years, which (far) exceeds
the age of the universe!
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The Apriori Property

Theorem

X is frequent ⇒ ∀Y ⊆ X : Y is frequent.

Proof

Y ⊆ X ⇒ s(Y ) ≥ s(X )

Therefore, if Y ⊆ X and s(X ) ≥ t1, then s(Y ) ≥ t1.

Conversely, if Y ⊆ X and s(Y ) < t1, then s(X ) < t1.
In other words, we can search levelwise for the frequent sets. The level is the
number of items in the set:

A set X is a candidate frequent set iff all its subsets are frequent.

Denote by C (k) the sets of k items that are potentially frequent (the candidate
sets) and by F (k) the frequent sets of k items.
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Apriori Pseudocode

Algorithm 1 Apriori(t1, R, db)

1: C (1)← R
2: k ← 1
3: while C (k) 6= ∅ do
4: F (k)← ∅
5: for all X ∈ C (k) do
6: if s(X ) ≥ t1 then

F (k)← F (k) ∪ {X} {Here you have to scan the database!}
7: end if
8: end for
9: C (k + 1)← ∅

10: for all X ∈ F (k) do
11: for all Y ∈ F (k) that share k − 1 items with X do
12: if All Z ⊂ X ∪ Y of k items are frequent then

C (k + 1)← C (k + 1) ∪ {X ∪ Y }
13: end if
14: end for
15: end for
16: k ← k + 1
17: end while
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Example: the data

Note that we switch to a more convenient representation of the
transactions.

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Minimum support = 2
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Example: Level 1

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

A 6 !

B 7 !

C 6 !

D 2 !

E 2 !

Ad Feelders ( Universiteit Utrecht ) Data Mining 9 / 51



Example: Level 2

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

AB 4 !

AC 4 !

AD 1 %

AE 2 !

BC 4 !

BD 2 !

BE 2 !

CD 0 %

CE 1 %

DE 0 %
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Example: Level 3

Candidate Support Frequent?

AB 4 !

AC 4 !

AD 1 %

AE 2 !

BC 4 !

BD 2 !

BE 2 !

CD 0 %

CE 1 %

DE 0 %

Candidate Support Frequent?

ABC 2 !

ABE 2 !

Level 3: For example, ABD and BCD are not level 3 candidates.
Level 4: There are no level 4 candidates.
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Order, order

Lines 10-11 of the algorithm leads to multiple generations of the set X ∪Y .

For example, the candidate ABC is generated 3 times

1 by combining AB with AC

2 by combining AB with BC

3 by combining AC with BC
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Order, order

The solution is to place an order on the items.

for all X ∈ F (k) do
for all Y ∈ F (k) that share the first k − 1 items with X do

if All Z ⊂ X ∪ Y of k items are frequent then
C (k + 1)← C (k + 1) ∪ {X ∪ Y }

end if
end for

end for

Now the candidate ABC is generated just once, by combining AB with AC
(using alphabetical order).

The order itself is arbitrary, as long as it is applied consistently.
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The search space ordered by set inclusion

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E
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Item sets counted by Apriori

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E
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The Complexity of Levelwise Search

We rejected the naive algorithm because its complexity was O(2|R|). So, what is
the complexity of level wise search?

Take a database with just 1 tuple consisting completely of 1’s and set minimum
support to 1. Then, all subsets of R are frequent! Hence, the worst case
complexity of level wise search is O(2|R|).

However, suppose that db is sparse (by far the most values are 0), then we expect
that the frequent sets have some maximal size m with m << |R|.

If that expectation is met, we have a worst case complexity of:

O

m+1∑
j=1

(
|R|
j

) = O(|R|m+1) << O(2|R|).
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Generating Association Rules

Generating association rules from the frequent sets is done as follows:

Generate Association Rules
For each frequent set Z do

For all non-empty X ⊂ Z do
If s(Z )/s(X ) ≥ t2 then

Output X → Y where Y = Z \ X
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Continuing the Example

One of the frequent sets is Z = ABE. This generates:

X X → Y Confidence

AB AB → E 2/4 = 50%
AE AE → B 2/2 = 100%
BE BE → A 2/2 = 100%
A A → BE 2/6 = 33%
B B → AE 2/7 = 29%
E E → AB 2/2 = 100%

Suppose t2 = 0.75.

If we already know conf(AB → E)= 0.5, do we still need to check A → BE
and B → AE?
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Complexity of the Generation

Clearly, this algorithms is again exponential. For every Z , we consider all
(2|Z | − 2) non-empty proper subsets X of Z . However:

|Z | ≤ m << |R|
Quite often one generates only those association rules with a
singleton Y . This makes the generation algorithm linear.
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Drowning in Association Rules: Example

One frequent set may induce many association rules.

ABE generates:

Itemset Rule Confidence

AB AB → E 2/4 = 50%
AE AE → B 2/2 = 100%
BE BE → A 2/2 = 100%
A A → BE 2/6 = 33%
B B → AE 2/7 = 29%
E E → AB 2/2 = 100%
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Drowning in Association Rules

Mining for association rules has its own dilemma:

High confidence and high support rules are probably already known.

Low confidence and/or low support thresholds lead to a flood of
results (could be more than the original database!)

Moreover, not all discovered rules will be interesting: suppose you discover
that 60% of the people that buy bread also buy cheese. How interesting is
this if you know that 60% of all people buy cheese?
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Managing the Flood

Rank or (partially) order the results on support and confidence.

Filter for interesting rules (what is interesting?)

Mine for less rules (condensed representations)
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An Interestingness Measure: Lift

The lift of an association rule tells us how much the rule increases the
probability of the consequent:

lift(X → Y ) =
P(Y | X )

P(Y )
=

P(X ∪ Y )

P(X )P(Y )

For example, if a rule has a confidence P(Y |X ) of 0.9 while P(Y ) = 0.2,
then the lift of the rule is 4.5

Note the slight abuse of notation: X and Y are not random variables, but
item sets, and P(X ) denotes the probability (relative frequency) that all
items in the set X have the value 1.
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Generating Less Results

Condensed representations:

Maximal Frequent Itemsets

Closed Frequent Itemsets
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Maximal Frequent Itemset

An itemset I is maximal frequent iff

I is frequent and

no proper superset of I is frequent

Clearly, each frequent itemset is a subset of at least one maximal frequent
itemset. Hence, the set of all maximal frequent itemsets is a condensed
representation of the set of all frequent itemsets.

But given the maximal frequent item sets and their support, we can not
infer the support of every frequent item set.
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Closed Frequent Itemsets

An item set is closed if every superset has lower support.

More formally:

For an itemset I , denote by σ(I ) the set of tuples in which all items in
I are “bought”, i.e., σ(I ) is the set of tuples that support I .

An itemset I is closed iff for all proper supersets J, σ(I ) is a proper
superset of σ(J): itemset I can’t be extended without decreasing the
support.

An itemset I is a closed frequent itemset iff it is both frequent and
closed.
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Closure Operator

Two operators:
σ(I ) = {t ∈ db | ∀i ∈ I , i ∈ t}

“The set of transactions that contain all items in I”.

f (T ) = {i ∈ R | ∀t ∈ T , i ∈ t}

“The set of items included in all transactions in T”.
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Closure Operator

Let c(I ) be the set of all items that are contained in all transactions which
contain all items in I , that is

c(I ) = f (σ(I ))

c(I ) is called the closure of I .

An itemset I is closed if and only if c(I ) = I
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Example of Closure Operator

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE

c({A,B}) = {A,B,C ,E}

Why?

c({A,B}) = f (σ({A,B})) = f ({3, 5})
= {A,B,C ,E}

Note that I ⊆ c(I ) and I has the same support as c(I ).
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Running Example

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

σ({A,B}) = {3, 5} f ({3, 5}) = {A,B,C ,E}
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Example of Closure Operator

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE

c({A,C}) = {A,C}

Why?

c({A,C}) = f (σ({A,C})) = f ({1, 3, 5})
= {A,C}

{A,C} is closed since c({A,C}) = {A,C}
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Running Example

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

tid Items

1 A C D
2 BCE

3 A B C E
4 BE

5 A B C E

σ({A,C}) = {1, 3, 5} f ({1, 3, 5}) = {A,C}
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Example

The closed frequent itemsets for

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE

with minimum support 2 are

{C}, {A,C}, {B,E}, {B,C ,E}, {A,B,C ,E}
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Example

The closed frequent itemsets for

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE

with minimum support 2 are

{C}, {A,C}, {B,E}, {B,C ,E}, {A,B,C ,E}
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Closure properties

Theorem

If c(X ) = Z then s(X ) = s(Z ).

Proof.

The closure of an item set X is the set of items Z ⊇ X that is contained
in all transactions that contain X . So if c(X ) = Z , then σ(X ) = σ(Z ).

It follows that s(X ) = s(Z ).
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Closure properties

Theorem

If c(X ) = Z then Z is closed.

Proof.

1 Assume c(X ) = Z .

2 It follows that σ(X ) = σ(Z ).

3 So c(X ) = f (σ(X )) = f (σ(Z )) = c(Z ) = Z
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Apriori-Close (A-Close) Property

Theorem

If X ⊂ Y and s(X ) = s(Y ) then c(X ) = c(Y ).

Proof.

1 Assume X ⊂ Y and s(X ) = s(Y ).

2 Since X ⊂ Y , it follows that σ(Y ) ⊆ σ(X ).

3 From s(X ) = s(Y ) it follows that σ(Y ) = σ(X ).

4 Hence c(X ) = f (σ(X )) = f (σ(Y )) = c(Y ).
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A-Close Algorithm

Phase 1: Discover all frequent closed itemsets in db.

Phase 2: Derive all frequent itemsets from the frequent closed
itemsets found in phase 1.
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A-Close: Phase 1

Determine a set of generators that will produce all frequent closed
itemsets by application of the closure operator c.

An itemset Y is a generator of a closed itemset Z if c(Y ) = Z ,
and there is no X ⊂ Y with c(X ) = Z .
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A-Close: Phase 1

Levelwise construction: Gk+1 is constructed using Gk .

Using their support, and the support of their k-subsets in Gk , infrequent
candidates and candidates that have the same support as one of their
subsets are deleted from Gk+1.
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Example: G1

Candidate Support

A 3
B 4
C 4
D 1
E 4

=⇒

Generator Support

A 3
B 4
C 4
E 4

Minimum support = 2
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Example: G2

Candidate Support

AB 2
AC 3
AE 2
BC 3
BE 4
CE 3

=⇒

Generator Support

AB 2
AE 2
BC 3
CE 3

AC is pruned, because subset A has the same support (and therefore the
same closure)
BE is pruned because it has the same support as B (and E).

Level 3 pre-candidate ABE is pruned, because its subset BE is not a level 2
generator.
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Why can ABE be pruned?

1 BE is a subset of ABE and BE is not a generator.

2 BE is not a generator, because it has the same support as its subset B.

3 Since B has the same support as BE, it follows that AB has the same
support as ABE.

4 Therefore ABE is not a generator and can be pruned.
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General Justification

1 Let X ∪ {A} be a pre-candidate, where X is an itemset, and A is a
single item.

2 Suppose X is not a generator, because there is some Y ⊂ X with
s(Y ) = s(X ).

3 Then s(Y ∪ {A}) = s(X ∪ {A}) and since Y ∪ {A} ⊂ X ∪ {A}, it
follows that X ∪ {A} is not a generator.
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Apriori-Close: computing generators

Algorithm 2 Apriori-Close(t1, R, db)

1: C (1)← R
2: k ← 1
3: while C (k) 6= ∅ do
4: G (k)← ∅
5: for all X ∈ C (k) do
6: if s(X ) ≥ t1 and (k = 1 or for all Z ⊂ X of k − 1 items:

s(X ) < s(Z )) then
G (k)← G (k) ∪ {X}

7: end if
8: end for
9: C (k + 1)← ∅

10: for all X ∈ G (k) do
11: for all Y ∈ G (k) that share the first k − 1 items with X do
12: if All Z ⊂ X ∪ Y of k items ∈ G (k) then

C (k + 1)← C (k + 1) ∪ {X ∪ Y }
13: end if
14: end for
15: end for
16: k ← k + 1
17: end while
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Example: Computing Closures

Generator Closure Support

A AC 3
B BE 4
C C 4
E BE 4

AB ABCE 2
AE ABCE 2
BC BCE 3
CE BCE 3

=⇒

Closure Support

AC 3
BE 4
C 4

ABCE 2
BCE 3

c(I ) = ∩t ∈ db : I ⊆ t
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Phase 2

To determine all frequent itemsets and their support, we use two
properties:

All maximal frequent itemsets are closed (proof?)

The support of an itemset equals the support of the smallest closed
itemset in which it is contained (its closure).

Select maximal itemsets, generate all their subsets, and determine their
support.
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Example: Phase 2

Closure Support

AC 3
BE 4
C 4

ABCE 2
BCE 3

{A,B,C ,E} is the only maximal frequent itemset.

Subset Support

ABC 2
ABE 2
ACE 2

+ the generators and closed itemsets themselves.
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Example

Transaction Items

1 ABCD
2 ABCD
3 ABCD
4 ABCD
5 ABCD
6 BCDE
7 BCDE
8 BCDE
9 BCDE

10 BCDE

Minsup = 4. Use A-close to find all closed frequent itemsets and their
support.
How does it compare to Apriori?
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Example: G1 and G2

Generator Support

A 5
B 10
C 10
D 10
E 5

Candidate Support

AB 5
AC 5
AD 5
AE 0
BC 10
BD 10
BE 5
CD 10
CE 5
DE 5

All level 2 candidates are pruned, AE because it is infrequent, the
remaining itemsets because they have a subset with the same support.

Apriori would only prune AE (and its supersets).
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Example: Computing Closures

Generator Closure Support

A ABCD 5
B BCD 10
C BCD 10
D BCD 10
E BCDE 5

Only 3 closed frequent itemsets.

How many frequent itemsets are there?
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Comparison of A-Close with Apriori

Comparable to Apriori on sparse, weakly correlated data (e.g.
supermarket basket data).

Significantly better on dense, correlated data.

Why?

For strongly correlated data, the difference between the number of
frequent itemsets, and the number of closed frequent itemsets is
larger.
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