Data Mining
Frequent Pattern Mining (2)
Sequences and Trees

Ad Feelders

Universiteit Utrecht

Ad Feelders (Universiteit Utrecht) Data Mining 1/45

-
Frequent Pattern Mining

Q Item Set Mining v
@ Sequence Mining v
@ Tree Mining v/

@ Graph Mining X

Ad Feelders (Universiteit Utrecht) Data Mining 2/45

-
Frequent Pattern Mining: the bigger picture

@ Item Set Mining: the patterns are sets of items, and an item set
occurs in a transaction if it is a subset of the transaction.

@ Sequence Mining: the patterns are sequences of events, and an event
sequence occurs in a data sequence if it is a subsequence of the data
sequence.

© Tree Mining: the patterns are trees, and a pattern tree occurs in a
data tree if it is a subtree of the data tree.

Anti-monotonicity property:
P1 C P> = s(P1) = s(P2),

where P; and P, are patterns, C denotes a generic subpattern relation,
and s(-) denotes support.

Ad Feelders (Universiteit Utrecht) Data Mining 3/45

Sequence Mining

@ Alphabet X (set of labels).

@ Sequence s = 515>...5, where s; € X

@ Prefix: s[1:i]=s15...5;, 0 <i < n (initial segment).

Q Suffix: s[i: n| = sisit1...5,, 1 < i< n+1 (final segment).

Ad Feelders (Universiteit Utrecht) Data Mining 4/45

Subsequence

Lets=s15...sp,and r=rim...r, be two sequences over ¥.
We say r is a subsequence of s, denoted r C s, if there exists a
one-to-one mapping
¢ [1,m] — [1,n],
such that
Q r[i] = s[4(i)], and
@ i <j=d(i) < d()).

Each position in r is mapped to a position in s with the same label, and
the order of positions in the sequence is preserved. There may however be
gaps between ¢(i) and ¢(i +1) (i=1,...,m—1).

Ad Feelders (Universiteit Utrecht) Data Mining 5/45

Subsequence: Example

Let ¥ = {A,C,G, T} and let s = ACTGAACG.

© r; = CGAAG is a subsequence of s. The correspondmg mapping is
¢(1) =2, (2) =4, $(3) =5, $(4) =6, and ¢>() =
L2 3 4

5 6
T Te oA [+ <]
‘C‘(‘A‘.-\‘G‘
1 3 4 5
@ r, = GAGA is not a subsequence of s.
2 4 6 8

[plelnfofalafe]e]

6 /45

|
Frequent Sequence Mining Task

Given a database D = {si,s2,...,sy} of N sequences, and given some
sequence r, the support of r in the database D is defined as the total
number of sequences in D that contain r:

sup(r) = [{si€ D :r C s;}|

Given a minimum support threshold minsup, compute

F(minsup, D) = {r | sup(r) > minsup}

Ad Feelders (Universiteit Utrecht) Data Mining 7/45

-
Anti-Monotonicity Property

For a database of sequences D, and two sequences r; and rp, we have
r1 C rp = sup(ry) > sup(ra),
because Vs € D :rp Cs=ry Cs.

Hence, in a level-wise search for frequent sequences, there is no point in
expanding infrequent ones.

Ad Feelders (Universiteit Utrecht) Data Mining 8/45

-
GSP Algorithm

© Perform level-wise search.

@ Don't extend infrequent sequences.

© Candidate generation for level k + 1: take two frequent sequences
r, and rp of length k with r,[1: k — 1] = rp[1 : k — 1] and generate
pre-candidate r,, = r, + rp[k]. Pre-candidate r,, becomes a
candidate (has to be counted) if all its subsequences of length k are
frequent. Note that we allow r, = rp.

Ad Feelders (Universiteit Utrecht) Data Mining 9/45

Example Level-wise Search (minsup=3)

sid | Sequence

1 | CAGAAGT
2 | TGACAG

3 | GAAGT

Candidate | Support | Frequent?
A 3 v
C 2 X
G 3 v
T 3 v

e C is not frequent, so it won't be used for candidate generation
at the next level.

Ad Feelders (Universiteit Utrecht)

Data Mining

10/45

Example Level-wise Search (minsup=3)

sid

Sequence

W N =

CAGAAGT
TGACAG
GAAGT

Frequent

Support

A
G
T

3
3
3

Candidate

Support

Frequent?

AA
AG
AT
GA
GG
GT
TA
TG
TT

H R N W W NN WwWwWw

o

XX XNNIXNN

Ad Feelders (Universiteit Utrecht)

Data Mining

11/45

Example Level-wise Search (minsup=3)

sid | Sequence Freg:ent Sup3port
1 | CAGAAGT AG 3
2 | TGACAG GA 3
3 | GAAGT G 3
Candidate | Support | Frequent?

AAA 1 X

AAG 3 v

AGA 1 X

AGG 1 X

GAA 3 v

GAG 3 v

GGA 0 X

GGG 0 X

Ad Feelders (Universiteit Utrecht)

Data Mining

12/45

Example Level-wise Search (minsup=3)

sid | Sequence Frequent | Support

1 CAGAAGT AAG 3

2 | TGACAG GAA 3

3 | GAAGT GAG 3

Pre-candidate | Support Frequent?

AAGG - infrequent subsequence AGG
GAAA - infrequent subsequence AAA
GAAG 3 v
GAGA - infrequent subsequence GGA
GAGG - infrequent subsequence GGG

Level 5 pre-candidate GAAGG has infrequent subsequence GAGG.

Ad Feelders (Universiteit Utrecht)

Data Mining

13 /45

Finding frequent movie sequences in Netflix data

Sequence of movie titles (frequency)

(1) “Men in Black II”, “Independence Day”, “I, Robot” (2,268)

(2) “Pulp Fiction”,“Fight Club” (7,406)

(3) “Lord of the Rings: The Fellowship of the Ring”, “Lord of the Rings: The Two Towers” (19,303)
(4) “The Patriot”, “Men of Honor” (28,710)

(5) “Con Air”, “The Rock” (29,749)

(6) “Pretty Woman”, “Miss Congeniality” (30,036)

From: KAUSTUBH BEEDKAR et al.,
Closing the Gap: Sequence Mining at Scale,
ACM Transactions on Database Systems, Vol. 40, No. 2, June 2015.

Ad Feelders (Universiteit Utrecht) Data Mining 14 /45

Finding frequent move sequences in chess games

Ad Feelders (Universiteit Utrecht) 15 /45

-
Chess game in PGN format

[Event "RUS-ch playoff 65th"]
[Site "Moscow"]

[Date "2012.08.13"]

[Round "4"]

[White "Svidler, Peter"]
[Black "Andreikin, Dmitry"]
[Result "0-1"]

[WhiteElo "2749"]

[BlackElo "2715"]

1. e4 e6 2. d4 d5 3. e5 c5 4. c3 Nc6 5. Nf3 Qb6 6. a3 c4 7. Nbd2 Bd7 8. g3 Nab
9. h4 Ne7 10. Bh3 h6 11. h5 Nc8 12. 0-0 Qc7 13. Nel Nb6 14. Qe2 0-0-0 15. Ng2
Be7 16. Rbl Rdg8 17. f4 g6 18. Nf3 Kb8 19. Kh2 Nc6 20. Be3 Bd8 21. Bf2 Ne7 22.
g4 gxhb 23. gxh5 Nf5 24. Rgl Ng7 25. Nd2 f5 26. exf6 Bxf6 27. Nfl Nc8 28. Ng3
Nd6 29. Ne3 Bh4 30. Qf3 Be8 31. Bg4 Qf7 32. Rbfl Bxg3+ 33. Bxg3 Ngfb5 34. Rel
Ne4 35. Bxf5 exf5 36. Bh4 Nd2 37. Qe2 Qxh5 38. Qxh5 Bxh5 39. Bf6 Nf3+ 40. Khil
Nxel 41. Bxh8 Bf3+ 42. Kh2 Rxgl 43. Kxgl Be4 0-1

Ad Feelders (Universiteit Utrecht) Data Mining 16 / 45

Finding frequent move sequences in chess games

Typical plan could be Be2/0-0/Rel/Rb1/Nf1.

Ad Feelders (Universiteit Utrecht) Data Mining 17 /45

-
Tree Mining: Node Labeled Graph

Definition (Node Labeled Graph)

A node labeled graph is a quadruple G = (V, E, ¥, L) where:
@ V is the set of nodes,
@ E is the set of edges,
@ X is a set of labels, and

@ L:V — ¥ is a labeling function that assigns labels
from ¥ to nodes in V.)

Ad Feelders (Universiteit Utrecht) Data Mining 18 /45

N
Labeled Rooted Unordered Tree

Definition (Labeled Rooted Unordered Tree)

A labeled rooted unordered tree U = (V,E, X, L,v") is an acyclic
undirected connected graph G = (V, E, X, L) with a special node v" called
the root of the tree.

There exists exactly one path between the root node and any other node
in V.

Ad Feelders (Universiteit Utrecht) Data Mining 19 /45

N
Labeled Rooted Ordered Tree

Definition (Labeled Rooted Ordered Tree)

A labeled rooted ordered tree T = (V,E, %, L,v", <) is an unordered tree
U= (V,E,X, L, v") where between all the siblings an order < is defined.
To every node in an ordered tree a preorder (pre(v)) number is assigned
according to the depth-first preorder traversal of the tree.

Ad Feelders (Universiteit Utrecht) Data Mining 20 /45

Node Numbering according to Preorder Traversal

Ad Feelders (Universiteit Utrecht) Data Mining 21 /45

Tree Inclusion Relations

@ Induced subtree.
@ Embedded subtree.

Ad Feelders (Universiteit Utrecht) Data Mining 22 /45

Induced Subtree: definition

Let m(v) denote the parent of node v.

Definition (Induced Subtree)
Given two ordered trees D and T, we call T an induced subtree of D if
there exists an injective (one-to-one) matching function ¢ of Vr into Vp
satisfying the following conditions:

@ ¢ preserves the labels: L1(v) = Lp(¢(v)).

@ ¢ preserves the left to right order between the nodes:

pre(v;) < pre(v;) < pre(6(vi))) < pre(6(1})).
© ¢ preserves the parent-child relation:

vi = 17(v;) & é(vi) = mp(d(v))).

An induced subtree T can be obtained from a tree D by repeatedly
removing leaf nodes, or possibly the root node if it has only one child.

Ad Feelders (Universiteit Utrecht) Data Mining 23 /45

Induced Subtree: example

Ad Feelders (Universiteit Utrecht) Data Mining 24 /45

Induced Subtree: example

The matching function

Q o(v1) =wy
Q o(v2) = wg
@ ¢(v3) = wip

is one-to-one: each node in T is mapped to a different node in D.

Also verify that
Q Lr(v1) =Lp(wr) =A
Q L7(v2) =Lp(wg) =A
Q L1(v3) = Lp(wio) =B

We can verify that the other conditions are met as well, so T is an
induced subtree of D.

Ad Feelders (Universiteit Utrecht) Data Mining 25 /45

N
Embedded Subtree: definition

Let 7*(v) denote the set of ancestors of v.

Definition (Embedded Subtree)
Given two ordered trees D and T, we call T an embedded subtree of D if
there exists an injective matching function ¢ of V1 into Vp satisfying the
following conditions:
Q ¢ preserves the labels: L1(v) = Lp(¢(v)).
@ ¢ preserves the left to right order between the nodes:
pre(vi) < pre(vj) < pre(¢(vi))) < pre(¢(v;))-
© ¢ preserves the ancestor-descendant relation:
vi € T7(vj) & o(vi) € mp(e(v;)).

Ad Feelders (Universiteit Utrecht) Data Mining 26 /45

|
Embedded Subtree: example

Ad Feelders (Universiteit Utrecht) Data Mining 27 /45

-
The Frequent Tree Mining Task

Given a database of trees D = {dj, dy,...,d,} and a tree inclusion
relation C, we define the support of a tree T as

sup(T,D)={de D | T Cd}|
Given a minimum support threshold minsup, compute

F(minsup, D) = {T | sup(T, D) > minsup}

Ad Feelders (Universiteit Utrecht) Data Mining 28 /45

-
Anti-Monotonicity Property

For a database of trees D, and two trees T7 and T», we have
T1 - T2 = sup(Tl, D) > Sup(T2, D),

becauseVd e D: T, Cd = T; C d.

Hence, in a level-wise search for frequent trees, there is no point in
expanding infrequent trees.

Ad Feelders (Universiteit Utrecht) Data Mining 29 /45

-
Example: Mining Frequent Induced Trees with FREQT

We must address two basic issues:

© Generate candidate frequent trees:

FREQT does this by adding a single node with a frequent label to a
frequent tree. This is done by so-called right-most extension.

@ Record the occurrences of the candidate trees in the data trees, and
determine whether they are frequent.

Ad Feelders (Universiteit Utrecht) Data Mining 30/ 45

-
Generating Candidates: Right-most Extension

Let Ty denote a tree of size k (a tree with k nodes).
@ Consider the node numbering of T, according to depth first pre-order
traversal of the tree.

@ The right-most branch of the tree is the path from the root node to
the right-most leaf (i.e. the node with number k).

@ To expand the tree Ty, it is only allowed to add a node as the
right-most child of a node on the right-most branch of T,. This node
gets number k + 1, as it is the last node in the traversal of Ty1.

Ad Feelders (Universiteit Utrecht) Data Mining 31/45

-
Generating Candidates: Right-most Extension

Right-most branch is fat.
Possible extensions are dashed.

Ad Feelders (Universiteit Utrecht) Data Mining 32/45

Right-most Extension with label set ¥ = {a, b}

L

®@-®
@“
ORC]
S

©&-®
@
&®
o

®-—©
SESEO)

§
ORCRCIICRCRO

'

®

Data Mining

s
®©

Ad Feelders (Universiteit Utrecht) 33 /45

Right-most Extension

The right-most extension technique generates each tree at most once.

Consider any tree Ty. This tree only has one predecessor (in the
generation sequence), namely the tree T, _; that is obtained by removing
the right-most leaf of Ty (i.e. the node with number k in the depth first
pre-order traversal).

Also, the right-most extension technique generates every possible tree, so
each tree is generated exactly once.

Ad Feelders (Universiteit Utrecht) Data Mining 34 /45

N
Occurrence List

@ To determine whether a pattern tree occurs in a data tree, an
occurrence list is maintained that contains the list of nodes in the
data tree to which the nodes in the pattern tree can be mapped.

o FREQT only stores the nodes of the data tree to which the
right-most node in the pattern tree can be mapped.

o This is sufficient since only the nodes on the right-most branch are
needed for future extension.

Ad Feelders (Universiteit Utrecht) Data Mining 35 /45

Right-most Occurrence List

@
5
@ (13489,11,14) (@) (@
: :
@ (2,7.5,12,10) @ (3,8)
@ ® (6.13)

Ad Feelders (Universiteit Utrecht) Data Mining 36 /45

Example

Consider the following database of labeled ordered trees:

dy () ds (@
@ @
dy (@
@@@ @ (@)
@

Find all frequent induced subtrees with support at least 3.

Ad Feelders (Universiteit Utrecht) Data Mining 37 /45

Example: Level 1

At level 1 we have the following three candidates:
1 2 3
@ "®» "©

The right-most occurrence lists are:

Candidate 1 2 3
di (1,3) (2) —
do 23) (1,4) -
ds (124) (3 -
ds (12) (34) (5
ds (1,34) (2,5) -
Support 5 5 1
Frequent? v v X

Ad Feelders (Universiteit Utrecht) Data Mining 38 /45

Example: Level 2
At level 2 we have the following candidates:
4 @ 5@ 6@ 7@
@ © @ ®

The RMO-lists are:

Candidate 4 5 6 7
d @3 @ - -
> - 4 (@3 -
d3 2) @4 -
ds 2 B4 - -
ds (3.4) (25) — —
Support 4 5 2 0
Frequent? v v X X

Ad Feelders (Universiteit Utrecht) Data Mining 39 /45

Example: Level 3

The level 3 candidates are:

é é é ‘@ ‘@ “@ *\@

The RMO-lists are:
Candidate | 8 9 10 11 12 13 14 15

0 - - - - - - ® -
d> - - - - - - - -
ds G O I
dy - - - - - 34 -
ds 4 - 6 - - 6 0

Support 1 1 1 0 O
Frequent? X X X X X

Nw
)
X =

Ad Feelders (Universiteit Utrecht) Data Mining 40 /45

Example: Level 4

The level 4 candidates are:

16 17 18 19
@ ® @ @ @ @ @b
(@ b
The RMO-lists are:

Candidate | 16 17 18 19
d1 - - - =
d> - - - =
n @ - - -
dy - - = 4
ds - - - =
Support 1 0 O 1
Frequent? X X X X

Ad Feelders (Universiteit Utrecht) Data Mining

41/45

Example: final result

As the final result, the algorithm returns all frequent induced subtrees and
their support:
@ & @ @ @
))
@ © @ b
4

) 3

Ad Feelders (Universiteit Utrecht) Data Mining 42 /45

Applications of frequent tree mining

Mining usage patterns in Web logs.
Mining frequent query patterns from XML queries.

Classification of XML documents according to subtree structures.

e 6 o6 o

Ad Feelders (Universiteit Utrecht) Data Mining 43 /45

Frequent Pattern Mining and Classification

Frequent pattern mining can also be used to extract features for
classification tasks:

© Find frequent patterns per class.

@ Define discriminating patterns, for example, as patterns that are
frequent in one class but not in the other.

@ Use the presence/absence of such a discriminating pattern as a binary
feature for constructing a classifier (e.g. classification tree!).

@ In this way we can include non-tabular data (sequences, trees, graphs)
into an algorithm that requires a tabular data structure.

Ad Feelders (Universiteit Utrecht) Data Mining 44 /45

Frequent Pattern Mining and Classification

Fig. 4. A decision tree as produced by the TREE? algorithm

Ad Feelders (Universiteit Utrecht) Data Mining 45 /45

