
Data Mining
Frequent Pattern Mining (2)

Sequences and Trees

Ad Feelders

Universiteit Utrecht

Ad Feelders (Universiteit Utrecht) Data Mining 1 / 45

Frequent Pattern Mining

1 Item Set Mining !

2 Sequence Mining !

3 Tree Mining !

4 Graph Mining %

Ad Feelders (Universiteit Utrecht) Data Mining 2 / 45

Frequent Pattern Mining: the bigger picture

1 Item Set Mining: the patterns are sets of items, and an item set
occurs in a transaction if it is a subset of the transaction.

2 Sequence Mining: the patterns are sequences of events, and an event
sequence occurs in a data sequence if it is a subsequence of the data
sequence.

3 Tree Mining: the patterns are trees, and a pattern tree occurs in a
data tree if it is a subtree of the data tree.

Anti-monotonicity property:

P1 ⊆ P2 ⇒ s(P1) ≥ s(P2),

where P1 and P2 are patterns, ⊆ denotes a generic subpattern relation,
and s(·) denotes support.

Ad Feelders (Universiteit Utrecht) Data Mining 3 / 45

Sequence Mining

1 Alphabet Σ (set of labels).

2 Sequence s = s1s2 . . . sn where si ∈ Σ.

3 Prefix: s[1 : i] = s1s2 . . . si , 0 ≤ i ≤ n (initial segment).

4 Suffix: s[i : n] = si si+1 . . . sn, 1 ≤ i ≤ n + 1 (final segment).

Ad Feelders (Universiteit Utrecht) Data Mining 4 / 45

Subsequence

Let s = s1s2 . . . sn and r = r1r2 . . . rm be two sequences over Σ.
We say r is a subsequence of s, denoted r ⊆ s, if there exists a
one-to-one mapping

φ : [1,m]→ [1, n],

such that

1 r[i] = s[φ(i)], and

2 i < j ⇒ φ(i) < φ(j).

Each position in r is mapped to a position in s with the same label, and
the order of positions in the sequence is preserved. There may however be
gaps between φ(i) and φ(i + 1) (i = 1, . . . ,m − 1).

Ad Feelders (Universiteit Utrecht) Data Mining 5 / 45

Subsequence: Example

Let Σ = {A,C ,G ,T} and let s = ACTGAACG .

1 r1 = CGAAG is a subsequence of s. The corresponding mapping is
φ(1) = 2, φ(2) = 4, φ(3) = 5, φ(4) = 6, and φ(5) = 8.

A C T G A A C G

C G A A G

1 2 3 4 5

1 2 3 4 5 6 7 8

φ

2 r2 = GAGA is not a subsequence of s.

A C T G A A C G

G A AG

1 2 3 4

1 2 3 4 5 6 7 8

φ

Ad Feelders (Universiteit Utrecht) Data Mining 6 / 45

Frequent Sequence Mining Task

Given a database D = {s1, s2, . . . , sN} of N sequences, and given some
sequence r, the support of r in the database D is defined as the total
number of sequences in D that contain r:

sup(r) = |{si ∈ D : r ⊆ si}|

Given a minimum support threshold minsup, compute

F(minsup,D) = {r | sup(r) ≥ minsup}

Ad Feelders (Universiteit Utrecht) Data Mining 7 / 45

Anti-Monotonicity Property

For a database of sequences D, and two sequences r1 and r2, we have

r1 ⊆ r2 ⇒ sup(r1) ≥ sup(r2),

because ∀s ∈ D : r2 ⊆ s⇒ r1 ⊆ s.

Hence, in a level-wise search for frequent sequences, there is no point in
expanding infrequent ones.

Ad Feelders (Universiteit Utrecht) Data Mining 8 / 45

GSP Algorithm

1 Perform level-wise search.

2 Don’t extend infrequent sequences.

3 Candidate generation for level k + 1: take two frequent sequences
ra and rb of length k with ra[1 : k − 1] = rb[1 : k − 1] and generate
pre-candidate rab = ra + rb[k]. Pre-candidate rab becomes a
candidate (has to be counted) if all its subsequences of length k are
frequent. Note that we allow ra = rb.

Ad Feelders (Universiteit Utrecht) Data Mining 9 / 45

Example Level-wise Search (minsup=3)

sid Sequence

1 CAGAAGT
2 TGACAG
3 GAAGT

Candidate Support Frequent?

A 3 !

C 2 %

G 3 !

T 3 !

C is not frequent, so it won’t be used for candidate generation
at the next level.

Ad Feelders (Universiteit Utrecht) Data Mining 10 / 45

Example Level-wise Search (minsup=3)

sid Sequence

1 CAGAAGT
2 TGACAG
3 GAAGT

Frequent Support

A 3
G 3
T 3

Candidate Support Frequent?

AA 3 !

AG 3 !

AT 2 %

GA 3 !

GG 3 !

GT 2 %

TA 1 %

TG 1 %

TT 0 %

Ad Feelders (Universiteit Utrecht) Data Mining 11 / 45

Example Level-wise Search (minsup=3)

sid Sequence

1 CAGAAGT
2 TGACAG
3 GAAGT

Frequent Support

AA 3
AG 3
GA 3
GG 3

Candidate Support Frequent?

AAA 1 %

AAG 3 !

AGA 1 %

AGG 1 %

GAA 3 !

GAG 3 !

GGA 0 %

GGG 0 %

Ad Feelders (Universiteit Utrecht) Data Mining 12 / 45

Example Level-wise Search (minsup=3)

sid Sequence

1 CAGAAGT
2 TGACAG
3 GAAGT

Frequent Support

AAG 3
GAA 3
GAG 3

Pre-candidate Support Frequent?

AAGG - infrequent subsequence AGG
GAAA - infrequent subsequence AAA

GAAG 3 !

GAGA - infrequent subsequence GGA
GAGG - infrequent subsequence GGG

Level 5 pre-candidate GAAGG has infrequent subsequence GAGG.

Ad Feelders (Universiteit Utrecht) Data Mining 13 / 45

Finding frequent movie sequences in Netflix data

8:36 K. Beedkar et al.

Fig. 8. Temporal sequences.

Table III. Example Frequent Sequences from Netflix (σ = 1000, λ = 5, τ = 1 day)

Sequence of movie titles (frequency)
(1) “Men in Black II”, “Independence Day”, “I, Robot” (2,268)
(2) “Pulp Fiction”,“Fight Club” (7,406)
(3) “Lord of the Rings: The Fellowship of the Ring”, “Lord of the Rings: The Two Towers” (19,303)
(4) “The Patriot”, “Men of Honor” (28,710)
(5) “Con Air”, “The Rock” (29,749)
(6) “‘Pretty Woman”, “Miss Congeniality” (30,036)

We mined frequent sequences from this dataset for σ = 1000, λ = 5, and temporal
gaps of 1, 7, 14, 21, and 30 days. The results are shown in Figures 8(a) and 8(b).
Figure 8(a) depicts the runtimes as we increase the temporal gap (τ) from 1 day (which
corresponds to γ = 297) to 30 days (corresponding to γ = 6068). Figure 8(b) shows the
total size of the result, that is, how many frequent sequences were mined. Frequent
sequences of user rating events within a 1-day timespan were mined in 98s and were
175,003 in total. When the temporal gap was increased to 30 days (1-month timespan),
we mined 756,528 frequent sequences (a 4.32× increase) while total runtime had
a significant 17× increase, again due to the large number of candidate 2-sequences
constructed by the mining algorithm.

Table III includes some example sequences of movies mined from the Netflix dataset.
We can see that this includes movies from a trilogy in chronological order (see sequence
(3), which consists of movies from the Lord of the Rings trilogy) and movies with the
same actor (see sequence (1), which consists of movies starring actor Will Smith).

8. RELATED WORK

We now relate the ideas put forward in this article to existing prior work. Prior ap-
proaches can be coarsely categorized with respect to the type of pattern being mined
(frequent itemsets, frequent sequences, or application-specific special cases such as
n-grams) and according to their parallelization (sequential, shared-memory parallel,
shared-nothing parallel, or MapReduce).

Sequential approaches to frequent itemset mining fall into two families. Candidate
generation and pruning methods such as Apriori [Agrawal et al. 1993] repeatedly scan
the input data to count and prune candidate itemsets of increasing cardinality. Pattern
growth approaches, in contrast, scan the input data only once and construct a compact
representation of it. FP-growth [Han et al. 2004], as one such method, canonicalizes
transactions by ordering items therein according to their support and represents the

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 8, Publication date: June 2015.

From: KAUSTUBH BEEDKAR et al.,
Closing the Gap: Sequence Mining at Scale,
ACM Transactions on Database Systems, Vol. 40, No. 2, June 2015.

Ad Feelders (Universiteit Utrecht) Data Mining 14 / 45

Finding frequent move sequences in chess games

Ad Feelders (Universiteit Utrecht) Data Mining 15 / 45

Chess game in PGN format

[Event "RUS-ch playoff 65th"]

[Site "Moscow"]

[Date "2012.08.13"]

[Round "4"]

[White "Svidler, Peter"]

[Black "Andreikin, Dmitry"]

[Result "0-1"]

[WhiteElo "2749"]

[BlackElo "2715"]

1. e4 e6 2. d4 d5 3. e5 c5 4. c3 Nc6 5. Nf3 Qb6 6. a3 c4 7. Nbd2 Bd7 8. g3 Na5

9. h4 Ne7 10. Bh3 h6 11. h5 Nc8 12. O-O Qc7 13. Ne1 Nb6 14. Qe2 O-O-O 15. Ng2

Be7 16. Rb1 Rdg8 17. f4 g6 18. Nf3 Kb8 19. Kh2 Nc6 20. Be3 Bd8 21. Bf2 Ne7 22.

g4 gxh5 23. gxh5 Nf5 24. Rg1 Ng7 25. Nd2 f5 26. exf6 Bxf6 27. Nf1 Nc8 28. Ng3

Nd6 29. Ne3 Bh4 30. Qf3 Be8 31. Bg4 Qf7 32. Rbf1 Bxg3+ 33. Bxg3 Ngf5 34. Re1

Ne4 35. Bxf5 exf5 36. Bh4 Nd2 37. Qe2 Qxh5 38. Qxh5 Bxh5 39. Bf6 Nf3+ 40. Kh1

Nxe1 41. Bxh8 Bf3+ 42. Kh2 Rxg1 43. Kxg1 Be4 0-1

Ad Feelders (Universiteit Utrecht) Data Mining 16 / 45

Finding frequent move sequences in chess games

Typical plan could be Be2/0-0/Re1/Rb1/Nf1.

Ad Feelders (Universiteit Utrecht) Data Mining 17 / 45

Tree Mining: Node Labeled Graph

Definition (Node Labeled Graph)

A node labeled graph is a quadruple G = (V ,E ,Σ, L) where:

1 V is the set of nodes,

2 E is the set of edges,

3 Σ is a set of labels, and

4 L : V → Σ is a labeling function that assigns labels
from Σ to nodes in V .

Ad Feelders (Universiteit Utrecht) Data Mining 18 / 45

Labeled Rooted Tree

Definition (Labeled Rooted Tree)

A labeled rooted tree U = (V ,E ,Σ, L, v r) is an acyclic undirected
connected graph G = (V ,E ,Σ, L) with a special node v r called the root
of the tree.

There exists exactly one path between the root node and any other node
in V .

Ad Feelders (Universiteit Utrecht) Data Mining 19 / 45

Labeled Rooted Ordered Tree

Definition (Labeled Rooted Ordered Tree)

A labeled rooted ordered tree T = (V ,E ,Σ, L, v r ,≤) is a labeled rooted
tree U = (V ,E ,Σ, L, v r) where between all the siblings an order ≤ is
defined. To every node in an ordered tree a preorder (pre(v)) number is
assigned according to the depth-first preorder traversal of the tree.

Ad Feelders (Universiteit Utrecht) Data Mining 20 / 45

Node Numbering according to Preorder Traversal

v1

v2 v7

v3 v4 v5 v6 v8 v9 v10

Ad Feelders (Universiteit Utrecht) Data Mining 21 / 45

Tree Inclusion Relations

1 Induced subtree.

2 Embedded subtree.

Ad Feelders (Universiteit Utrecht) Data Mining 22 / 45

Induced Subtree: definition

Let π(v) denote the parent of node v .

Definition (Induced Subtree)

Given two ordered trees D and T , we call T an induced subtree of D if
there exists an injective (one-to-one) matching function φ of VT into VD

satisfying the following conditions:

1 φ preserves the labels: LT (v) = LD(φ(v)).

2 φ preserves the left to right order between the nodes:
pre(vi) < pre(vj) ⇔ pre(φ(vi))) < pre(φ(vj)).

3 φ preserves the parent-child relation:
vi = πT (vj)⇔ φ(vi) = πD(φ(vj)).

Ad Feelders (Universiteit Utrecht) Data Mining 23 / 45

Induced Subtree: example

A

A A

A B A B A A B

w1

w2

w3 w4 w5 w6

w7

w8 w9 w10

A

A B

v1

v2 v3

D

T

Ad Feelders (Universiteit Utrecht) Data Mining 24 / 45

Induced Subtree: example

The matching function

1 φ(v1) = w7

2 φ(v2) = w8

3 φ(v3) = w10

is one-to-one: each node in T is mapped to a different node in D.

Also verify that

1 LT (v1) = LD(w7) = A

2 LT (v2) = LD(w8) = A

3 LT (v3) = LD(w10) = B

We can verify that the other conditions are met as well, so T is an
induced subtree of D.

Ad Feelders (Universiteit Utrecht) Data Mining 25 / 45

Embedded Subtree: definition

Let π∗(v) denote the set of ancestors of v .

Definition (Embedded Subtree)

Given two ordered trees D and T , we call T an embedded subtree of D if
there exists an injective matching function φ of VT into VD satisfying the
following conditions:

1 φ preserves the labels: LT (v) = LD(φ(v)).

2 φ preserves the left to right order between the nodes:
pre(vi) < pre(vj) ⇔ pre(φ(vi))) < pre(φ(vj)).

3 φ preserves the ancestor-descendant relation:
vi ∈ π∗T (vj)⇔ φ(vi) ∈ π∗D(φ(vj)).

Ad Feelders (Universiteit Utrecht) Data Mining 26 / 45

Embedded Subtree: example

A

A B

A B A B C A B

w1

w2

w3 w4 w5 w6

w7

w8 w9 w10

A

A C

v1

v2 v3

D

T

Ad Feelders (Universiteit Utrecht) Data Mining 27 / 45

The Frequent Tree Mining Task

Given a database of trees D = {d1, d2, . . . , dn} and a tree inclusion
relation ⊆, we define the support of a tree T as

sup(T ,D) = |{d ∈ D | T ⊆ d}|

Given a minimum support threshold minsup, compute

F(minsup,D) = {T | sup(T ,D) ≥ minsup}

Ad Feelders (Universiteit Utrecht) Data Mining 28 / 45

Anti-Monotonicity Property

For a database of trees D, and two trees T1 and T2, we have

T1 ⊆ T2 ⇒ sup(T1,D) ≥ sup(T2,D),

because ∀d ∈ D : T2 ⊆ d ⇒ T1 ⊆ d .

Hence, in a level-wise search for frequent trees, there is no point in
expanding infrequent trees.

Ad Feelders (Universiteit Utrecht) Data Mining 29 / 45

Example: Mining Frequent Induced Trees with FREQT

We must address two basic issues:

1 Generate candidate frequent trees:

FREQT does this by adding a single node with a frequent label to a
frequent tree. This is done by so-called right-most extension.

2 Record the occurrences of the candidate trees in the data trees, and
determine whether they are frequent.

Ad Feelders (Universiteit Utrecht) Data Mining 30 / 45

Generating Candidates: Right-most Extension

Let Tk denote a tree of size k (a tree with k nodes).

Consider the node numbering of Tk according to depth first pre-order
traversal of the tree.

The right-most branch of the tree is the path from the root node to
the right-most leaf (i.e. the node with number k).

To expand the tree Tk , it is only allowed to add a node as the
right-most child of a node on the right-most branch of Tk . This node
gets number k + 1, as it is the last node in the traversal of Tk+1.

Ad Feelders (Universiteit Utrecht) Data Mining 31 / 45

Generating Candidates: Right-most ExtensionGenerating Candidates: Right-most Extension

1

2

3 4

5 6

7 8

9

9

9

Right-most branch is fat.
Possible extensions are dashed.

Ad Feelders (Universiteit Utrecht) Data Mining 32 / 45

Right-most branch is fat.
Possible extensions are dashed.

Ad Feelders (Universiteit Utrecht) Data Mining 32 / 45

Right-most Extension with label set Σ = {a, b}
⊥

a b

a a

a b

b b

a b

a

b

a

b

a

b

a

b

a b

ba

a

b b

a

b b

a

b b

a

b b

a b

a b

Ad Feelders (Universiteit Utrecht) Data Mining 33 / 45

Right-most Extension

The right-most extension technique generates each tree at most once.

Consider any tree Tk . This tree only has one predecessor in the generation
sequence, namely the tree Tk−1 that is obtained by removing the
right-most leaf of Tk (i.e. the node with number k in the depth first
pre-order traversal).

Also, the right-most extension technique generates every possible tree, so
each tree is generated exactly once.

Ad Feelders (Universiteit Utrecht) Data Mining 34 / 45

Occurrence List

To determine whether a pattern tree occurs in a data tree, an
occurrence list is maintained that contains the list of nodes in the
data tree to which the nodes in the pattern tree can be mapped.

FREQT only stores the nodes of the data tree to which the
right-most node in the pattern tree can be mapped.

This is sufficient since only the nodes on the right-most branch are
needed for future extension.

Ad Feelders (Universiteit Utrecht) Data Mining 35 / 45

Right-most Occurrence List: Example

a

a

a a

a

a

a

b b

b

b

b

b

b

1

2 7 14

3 6 8 13

4 5 9 12

10 11

a (1,3,4,8,9,11,14)

a

b (2,7,5,12,10)

b

a

a (3,8)

b

a

b

a

a

a

a (14)

b (6,13)

Ad Feelders (Universiteit Utrecht) Data Mining 36 / 45

Example

Consider the following database of labeled ordered trees:

a

a

b a

d1 b

a a

d2

b

a

a b

d3

a

a

a b

d4

b

a

b a

d5

bc

Find all frequent induced subtrees with support at least 3.

Ad Feelders (Universiteit Utrecht) Data Mining 37 / 45

Example: Level 1

At level 1 we have the following three candidates:

a b c1 2 3

The right-most occurrence lists are:

data tree
candidate

1 2 3

d1 (1,3) (2) −
d2 (2,3) (1,4) −
d3 (1,2,4) (3) −
d4 (1,2) (3,4) (5)
d5 (1,3,4) (2,5) −
Support 5 5 1

Frequent? ! ! %

Ad Feelders (Universiteit Utrecht) Data Mining 38 / 45

Example: Level 2

At level 2 we have the following candidates:

a4

a

a

b

b

a

b

b

5 6 7

The RMO-lists are:

data tree
candidate

4 5 6 7

d1 (3) (2) − −
d2 − (4) (2,3) −
d3 (2) (3) (4) −
d4 (2) (3,4) − −
d5 (3,4) (2,5) − −
Support 4 5 2 0

Frequent? ! ! % %

Ad Feelders (Universiteit Utrecht) Data Mining 39 / 45

Example: Level 3

The level 3 candidates are:

a
8

a

a

b

9 10 12

a a

a

a

a

b

b b

a

a a

a

a b

a

b a

a

b b

11 13 14 15

The RMO-lists are:

data tree
candidate

8 9 10 11 12 13 14 15

d1 − − − − − − (3) −
d2 − − − − − − − −
d3 − (4) − − − (3) − −
d4 − − − − − (3,4) − (4)
d5 (4) − (5) − − (5) (3) −
Support 1 1 1 0 0 3 2 1

Frequent? % % % % % ! % %

Ad Feelders (Universiteit Utrecht) Data Mining 40 / 45

Example: Level 4

The level 4 candidates are:

a

a b

16

a

a b

a

a b

a

a

a b

b

a b

17 18 19

The RMO-lists are:

data tree
candidate

16 17 18 19

d1 − − − −
d2 − − − −
d3 (4) − − −
d4 − − − (4)
d5 − − − −
Support 1 0 0 1

Frequent? % % % %

Ad Feelders (Universiteit Utrecht) Data Mining 41 / 45

Example: final result

As the final result, the algorithm returns all frequent induced subtrees and
their support:

a b a

a

a

b

a

a b
5 5

4 5 3

Ad Feelders (Universiteit Utrecht) Data Mining 42 / 45

Applications of frequent tree mining

Mining usage patterns in Web logs.

Mining frequent query patterns from XML queries.

Classification of XML documents according to subtree structures.

...

Ad Feelders (Universiteit Utrecht) Data Mining 43 / 45

Frequent Pattern Mining and Classification

Frequent pattern mining can also be used to extract features for
classification tasks:

1 Find frequent patterns per class.

2 Define discriminating patterns, for example, as patterns that are
frequent in one class but not in the other.

3 Use the presence/absence of such a discriminating pattern as a binary
feature for constructing a classifier (e.g. classification tree!).

4 In this way we can include non-tabular data (sequences, trees, graphs)
into an algorithm that requires a tabular data structure.

Ad Feelders (Universiteit Utrecht) Data Mining 44 / 45

Frequent Pattern Mining and Classification52 B. Bringmann and A. Zimmermann

Fig. 4. A decision tree as produced by the Tree2 algorithm

make is the one w.r.t. a stopping criterion for further growth of the tree. To
this effect, a minimum value for the score of the correlation measure has to be
specified, which can be based on statistical theory, thus giving the user a better
guidance for making this decision.

Algorithm 1 The Tree2 algorithm

Tree2(D, σ, τuser , DT)

1: psplit = EnumerateBestSubtree(�, 0, σ, τuser, ∅)
2: if psplit �= ∅ then
3: Add node including psplit to the DT

4: Tree2({T ∈ D|psplit embedded in T} , σ, τuser, DT)

5: Tree2({T ∈ D|psplit not embedded in T} , σ, τuser, DT)
6: return DT

EnumerateBestSubtree(t, τ, σ, τuser, p)

1: for all canonical expansions t′ of t do
2: if σ(t′) > τ ∧ σ(t′) ≥ τuser then
3: p = t′, τ = σ(t′)
4: if ubσ(t′) ≥ τ then
5: p = EnumerateBestSubtree(t′, τ, σ, τuser, p)
6: return p

Tree2 has several desirable properties. Firstly, the resulting classifier is in-
tegrated in the sense that it uses patterns directly, thus circumventing the need
for the user to restrict the amount of features and making the resulting classifier
more understandable. Secondly, by using correlation measures for quantifying
the quality of patterns, we give the user a sounder theoretical foundation on
which to base the decision about which learned tests to consider significant and
include in the model. Thirdly, we avoid using heuristics that force the user to de-
cide on the values of parameters that could have a severe impact on the resulting
model’s accuracy. Using principled search guarantees that Tree2 finds the best
discriminating pattern for each node in the decision tree w.r.t. the correlation
measure used. Finally, as the experiments show, the resulting decision tree is
far smaller than the rule sets produced by XRules classifier [4], while achieving
comparable accuracy, and is therefore more easily interpretable by human users.

Ad Feelders (Universiteit Utrecht) Data Mining 45 / 45

