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Graphical Models for Discrete Data

Task: model the associations (dependencies) between
a collection of discrete variables.

There is no designated target variable to be predicted:
all variables are treated equal.

This doesn’t mean these models can’t be used for prediction.
Actually, they can, and in a more flexible way than specialized
prediction models.
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Graphical Model for Right Heart Catheterization Data

age

ninsclas

income race

death

cat1

meanbp1

swang1

ca

gender

swang1 is independent of
death given cat1
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Example: Gender and Eye Color

Consider the following table of counts on Gender (G) and Eye Color (E)
for a random sample of n = 100 CS students:

n(G ,E ) Eye Color

Gender green hazel blue brown n(G )

male 7 15 20 38 80
female 3 5 5 7 20

n(E ) 10 20 25 45 100

Suppose we want to estimate the joint probability distribution of Gender
and Eye Color.

How would you do this?
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The Saturated Model

Saturated (unconstrained) model

P̂(G ,E ) =
n(G ,E )

n

requires the estimation of 7 probabilities.

P̂(G ,E ) Eye Color

Gender green hazel blue brown P̂(G )

male 0.07 0.15 0.20 0.38 0.8
female 0.03 0.05 0.05 0.07 0.2

P̂(E ) 0.1 0.2 0.25 0.45 1

For example

P̂(male, blue) =
n(male, blue)

n
=

20

100
= 0.20.
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The Saturated Model

For the saturated model, the fitted counts

n̂(G ,E ) = nP̂(G ,E ) = n

(
n(G ,E )

n

)
= n(G ,E )

are the same as the observed counts.

n̂(G ,E ) Eye Color

Gender green hazel blue brown n̂(G )

male 7 15 20 38 80
female 3 5 5 7 20

n̂(E ) 10 20 25 45 100
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The Saturated Model and the Curse of Dimensionality

The saturated model estimates cell probabilities by dividing the cell count
by the total number of observations. It makes no simplifying assumptions.
This approach doesn’t scale very well!

Suppose we have k categorical variables with m possible values each.

To estimate the probability of each possible combination of values would
require the estimation of mk probabilities. For k = 10 and m = 5, this is

510 ≈ 10 million probabilities

This is a manifestation of the curse of dimensionality: we have fewer data
points than probabilities to estimate. Estimates will become unreliable.
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How to avoid this curse

Make independence assumptions to obtain a simpler model that still gives
a good fit.

Independence Model

P̂(G ,E ) = P̂(G )P̂(E ) =

(
n(G )

n

)(
n(E )

n

)
=

n(G )n(E )

n2

requires the estimation of just 4 probabilities instead of 7.
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Fit of independence model

The fitted counts of the independence model are given by

n̂(G ,E ) = nP̂(G ,E ) = n

(
n(G )n(E )

n2

)
=

n(G )n(E )

n

For example

n̂(female, brown) =
n(female)n(brown)

n
=

20× 45

100
= 9

Table of fitted counts of the independence model:

n̂(G ,E ) Eye Color

Gender green hazel blue brown n̂(G )

male 8 16 20 36 80
female 2 4 5 9 20

n̂(E ) 10 20 25 45 100
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Fit of independence model

Compare the fitted counts of the independence model (top) with the observed
counts (bottom):

n̂(G ,E ) Eye Color

Gender green hazel blue brown n̂(G )

male 8 16 20 36 80
female 2 4 5 9 20

n̂(E ) 10 20 25 45 100

n(G ,E ) Eye Color

Gender green hazel blue brown n(G )

male 7 15 20 38 80
female 3 5 5 7 20

n(E ) 10 20 25 45 100
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Fit of independence model

1 The fitted counts of the independence model are quite close to the
observed counts.

2 We could conclude that the independence model gives a satisfactory
fit of the data.

3 Use a statistical test to make this more precise (discussed later).
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Independence Model

Suppose we have k variables with m possible values each.

The saturated model requires the estimation of mk − 1 probabilities.

The mutual independence model requires just k(m − 1) probability
estimates.

Mutual independence model is usually not appropriate (all variables
are independent of one another).

Interesting models are somewhere in between saturated and mutual
independence: this requires the notion of conditional independence.
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Rules of Probability

1 Sum Rule:

P(X ) =
∑
Y

P(X ,Y )

2 Product Rule:

P(X ,Y ) = P(X )P(Y |X )

3 If X and Y are independent, then

P(X ,Y ) = P(X )P(Y )
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Independence of (sets of) random variables

Let X and Y be (sets of) random variables.
X and Y are independent if and only if:

P(x , y) = P(x)P(y) for all values (x , y).

Equivalently:
P(x | y) = P(x), and P(y | x) = P(y)

Y doesn’t provide any information about X (and vice versa)

We also write X ⊥⊥ Y .

For example: gender is independent of eye color.
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Factorisation criterion for independence

We can relax our burden of proof a little bit:

X and Y are independent iff there are functions g(x) and h(y)
(not necessarily the marginal distributions of X and Y ) such that

P(x , y) = g(x)h(y)

In logarithmic form this becomes (since log(a× b) = log a + log b):

logP(x , y) = g∗(x) + h∗(y),

where g∗(x) = log g(x).
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Factorisation criterion for independence: proof

Suppose that for all x and y :

P(x , y) = g(x)h(y)

Then

P(x) =
∑
y

P(x , y) =
∑
y

g(x)h(y) = g(x)
∑
y

h(y) = c1 g(x)

So g(x) is proportional to P(x). Likewise, h(y) is proportional to P(y).
Therefore

P(x , y) = g(x)h(y) =
1

c1
P(x)

1

c2
P(y) = c3P(x)P(y)

Summing over both x and y establishes that c3 = 1, so X and Y are
independent.
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Conditional Independence

X and Y are conditionally independent given Z iff

P(x , y | z) = P(x | z)P(y | z) (1)

for all values (x , y) and for all values z for which P(z) > 0.

Equivalently:

P(x | y , z) = P(x | z) and P(y | x , z) = P(y | z)

If I already know the value of Z , then Y doesn’t provide any additional
information about X (and vice versa).

We also write X ⊥⊥ Y | Z .
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Conditional Independence: Example

Ice cream sales is independent of violent crime given the temperature.
Causal picture:

Temp.

Sales Crime

+ +

+

P(Crime = hi | Sales = hi) 6= P(Crime = hi)

P(Crime = hi | Temp. = hi, Sales = hi) = P(Crime = hi | Temp. = hi)
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Factorisation Criterion for Conditional Independence

An equivalent formulation is (multiply equation (1) by P(z)):

P(x , y , z) = P(x , z)︸ ︷︷ ︸
g(x ,z)

P(y , z)

P(z)︸ ︷︷ ︸
h(y ,z)

Factorisation criterion: X ⊥⊥ Y | Z iff there exist functions g and h such
that

P(x , y , z) = g(x , z)h(y , z)

or alternatively

logP(x , y , z) = g∗(x , z) + h∗(y , z)

for all (x , y) and for all z for which P(z) > 0.
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Conditional Independence Graph

Random vector X = (X1,X2, . . . ,Xk) with probability distribution P(X ).
Graph G = (K ,E ), with K = {1, 2, . . . , k}.

The conditional independence graph of X is the undirected graph
G = (K ,E ) where {i , j} is not in the edge set E if and only if:

Xi ⊥⊥ Xj | rest
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Conditional Independence Graph: Example

X = (X1,X2,X3,X4), 0 < xi < 1 with probability density

P(x) = ec+x1+x1x2+x2x3x4

Now
logP(x) = c + x1 + x1x2 + x2x3x4

Application of the factorisation criterion gives

X1 ⊥⊥ X4 | (X2,X3) and X1 ⊥⊥ X3 | (X2,X4),

For example, X1 ⊥⊥ X4 | (X2,X3), because we can write:

logP(x) = c + x1 + x1x2︸ ︷︷ ︸
g(x1,x2,x3)

+ x2x3x4︸ ︷︷ ︸
h(x2,x3,x4)

Hence, the conditional independence graph is:

1 2 4

3
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Separation and Conditional Independence

Consider the following conditional independence graph:

1 2 3

4 5 6

7

X1 ⊥⊥ X3 | (X2,X4,X5,X6,X7)
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{2, 5} separates 1 from 3

Consider the following conditional independence graph:

1 2 3

4 5 6

7

X1 ⊥⊥ X3 | (X2,X4,X5,X6,X7)

{2, 5} separates 1 from 3 ⇒ X1 ⊥⊥ X3 | (X2,X5)

We also say the set {2, 5} blocks every path from 1 to 3
(and vice versa).
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Separation and Conditional Independence

Notation:
Xa = (Xi : i ∈ a)

where a is a subset of {1, 2, . . . , k}.

For example, if a = {1, 3, 6} then Xa = (X1,X3,X6).

The set a separates node i from node j iff every path from node i to node
j contains one or more nodes in a (a “blocks” every path from i to j).

a separates b from c (a, b, c disjoint):

For every i ∈ b and j ∈ c : a separates i from j
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Equivalent Independence (Markov) Properties

1 Pairwise: for all non-adjacent vertices i and j

Xi ⊥⊥ Xj | rest

This is how we defined the conditional independence graph.
2 Global: if a separates b from c (a, b, c disjoint), then

Xb ⊥⊥ Xc | Xa

3 Local:
Xi ⊥⊥ rest | boundary(i),

where boundary(i) is the set of nodes adjacent (directly connected) to node i .

These properties are equivalent in the following sense: if all pairwise
independencies corresponding to graph G hold for a given probability distribution,
then all the global independencies corresponding to G also hold for that
distribution (and vice versa).
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Example of Local Markov Property

age

ninsclas

income race

death

cat1

meanbp1

swang1

ca

gender

death is independent of the
remaining variables given
age, cat1, and ca.
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Bernoulli random variable

Let X be a Bernoulli random variable with P(X = 1) = p(1) and P(X = 0) = p(0).

We can write the probability function in a single formula as follows:

P(X = x) = p(1)xp(0)1−x for x ∈ {0, 1}

Check that filling in x = 1 gives p(1), and filling in x = 0 gives p(0) as required.

Taking logarithms we get:

logP(X = x) = log
(
p(1)xp(0)1−x

)
= log p(1)x + log p(0)1−x

= x log p(1) + (1− x) log p(0)

= log p(0)︸ ︷︷ ︸
constant

+ log
p(1)

p(0)︸ ︷︷ ︸
coefficient of x

x
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2× 2 Table

The probability function P12 of bivariate Bernoulli random vector (X1,X2)
is determined by

P(x1, x2) = p(x1, x2)

where p(x1, x2) is the table of probabilities:

p(x1, x2) x2 = 0 x2 = 1 Total

x1 = 0 p(0, 0) p(0, 1) p1(0)
x1 = 1 p(1, 0) p(1, 1) p1(1)

Total p2(0) p2(1) 1
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Probability function for 2× 2 Table

Again we can write this as a single formula:

P(x1, x2) = p(0, 0)(1−x1)(1−x2)p(0, 1)(1−x1)x2p(1, 0)x1(1−x2)p(1, 1)x1x2

Taking logarithms and collecting terms in x1, x2, and x1x2 gives:

logP(x1, x2) = log p(0, 0) + log
p(1, 0)

p(0, 0)
x1 +

log
p(0, 1)

p(0, 0)
x2 + log

p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
x1x2

Verify this using elementary properties of logarithms:

1 log ab = b log a,

2 log a
b = log a− log b, and

3 log ab = log a + log b.
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Log-linear expansion

Reparameterizing the right hand side leads to the so-called log-linear
expansion

logP(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

The coefficients, u∅, u1, u2, u12 are known as the u-terms.

For example, the coefficient of the product x1x2,

u12 = log
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
= log cpr(X1,X2)

is the logarithm of the cross product ratio of X1 and X2.
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Cross-product Ratio

The cross-product ratio between binary variables X1 and X2 is:

cpr(X1,X2) =
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)

cpr(X1,X2) > 1: positive association between X1 and X2.

cpr(X1,X2) < 1: negative association between X1 and X2.

cpr(X1,X2) = 1: no association between X1 and X2.
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Independence and u-terms

Claim:
X1 ⊥⊥ X2 ⇔ u12 = 0

Proof: the factorisation criterion states that X1 ⊥⊥ X2 iff there exist two
functions g and h such that

logP(x1, x2) = g(x1) + h(x2) for all (x1, x2)

If u12 = 0, we get

logP(x1, x2) = u∅ + u1x1 + u2x2,

so
g(x1) = u∅ + u1x1 h(x2) = u2x2

suffices. If u12 6= 0, no such decomposition is possible.
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Three Dimensional Bernoulli

The joint distribution of three binary variables can be written:

P(x1, x2, x3) = p(0, 0, 0)(1−x1)(1−x2)(1−x3) · · · p(1, 1, 1)x1x2x3

Log-linear expansion

logP(x1, x2, x3) = u∅ + u1x1 + u2x2 + u3x3 + u12x1x2 +

u13x1x3 + u23x2x3 + u123x1x2x3

With

u123 = log

(
cpr(X2,X3|X1 = 1)

cpr(X2,X3|X1 = 0)

)
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Independence and the u-terms

Observation:
X2 ⊥⊥ X3 | X1 ⇔ u23 = 0 and u123 = 0

Proof: use factorisation criterion.

X2 ⊥⊥ X3 | X1 ⇔ there are functions g(x1, x2) and h(x1, x3) such that

logP(x1, x2, x3) = g(x1, x2) + h(x1, x3)

This is only possible when u23 = 0 (so the term x2x3 drops out), and
u123 = 0 (so the term x1x2x3 drops out).
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Why the log-linear representation?

Why do we use the log-linear representation of the probability table?

1 We are interested in expressing conditional independence constraints.

2 There is a straightforward correspondence between such constraints
being satisfied, and the elimination of certain collections of u-terms
from the log-linear expansion.

3 This correspondence is established by applying the factorisation
criterion: X ⊥⊥ Y | Z if and only if there exist functions g and h
such that

logP(x , y , z) = g(x , z) + h(y , z)
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