Data Mining Graphical Models for Discrete Data Undirected Graphs (Markov Random Fields) #### Ad Feelders Universiteit Utrecht ## Overview of Coming Lectures - Introduction - Independence and Conditional Independence - Graphical Representation of Conditional Independence - Log-linear Models - Hierarchical - Graphical - Decomposable - Maximum Likelihood Estimation - Model Testing - Model Selection #### Graphical Models for Discrete Data - Task: model the associations (dependencies) between a collection of discrete variables. - There is no designated target variable to be predicted: all variables are treated equal. - This doesn't mean these models can't be used for prediction. Actually, they can, and in a more flexible way than specialized prediction models. #### Right Heart Catheterization Data: Variable Description - cat1: primary disease category (9 different values) - @ death: did the patient die within 180 days after admission to ICU? - swang1: was right heart catheterization (Swan-Ganz catheter) performed within first 24 hours? - gender: male/female - race: black/white/other - ninsclas: type of medical insurance of patient (six different values) - income: income of patient, divided into 4 categories - o ca: cancer status (yes/no/metastatic) - age: age of patient divided into 5 categories - meanbp1: mean blood pressure of patient divided into 2 categories #### Right Heart Catheterization Data: Descriptive Statistics ``` > summarv(rhc.dat) cat1 death swang1 gender race ARF :2490 No :2013 No RHC:3551 Female:2543 black: 920 MOSF w/Sepsis :1227 Yes:3722 RHC :2184 Male :3192 other: 355 COPD : 457 white: 4460 CHF : 456 : 436 Coma MOSF w/Malignancy: 399 (Other) : 270 ninsclas income ca age Medicaid : 647 $11-$25k :1165 Metastatic: 384 (50.60] : 917 Medicare Nο :4379 (60.70] :1390 Medicare & Medicaid: 374 > $50k : 451 Yes : 972 (70,80]:1337 No insurance : 322 Under $11k:3226 (80.102]: 667 [18.50] :1424 Private :1698 Private & Medicare :1236 meanbp1 ``` (85,259]:1975 [0,85]:3760 ## Graphical Model for Right Heart Catheterization Data #### Example: Gender and Eye Color Consider the following table of counts on Gender (G) and Eye Color (E) for a random sample of n = 100 CS students: | n(G, E) | Eye Color | | | | | |---------|-----------|-------|------|-------|------| | Gender | green | hazel | blue | brown | n(G) | | male | 7 | 15 | 20 | 38 | 80 | | female | 3 | 5 | 5 | 7 | 20 | | n(E) | 10 | 20 | 25 | 45 | 100 | Suppose we want to estimate the joint probability distribution of Gender and Eye Color. How would you do this? #### The Saturated Model Saturated (unconstrained) model $$\hat{P}(G,E) = \frac{n(G,E)}{n}$$ requires the estimation of 7 probabilities. | $\hat{P}(G,E)$ | Eye Color | | | | | |----------------|-----------|-------|------|-------|--------------| | Gender | green | hazel | blue | brown | $\hat{P}(G)$ | | male | 0.07 | 0.15 | 0.20 | 0.38 | 0.8 | | female | 0.03 | 0.05 | 0.05 | 0.07 | 0.2 | | $\hat{P}(E)$ | 0.1 | 0.2 | 0.25 | 0.45 | 1 | For example $$\hat{P}(\mathsf{male},\mathsf{blue}) = \frac{n(\mathsf{male},\mathsf{blue})}{n} = \frac{20}{100} = 0.20.$$ #### The Saturated Model For the saturated model, the fitted counts $$\hat{n}(G, E) = n\hat{P}(G, E) = n\left(\frac{n(G, E)}{n}\right) = n(G, E)$$ are the same as the observed counts. | $\hat{n}(G,E)$ | Eye Color | | | | | |----------------|-----------|-------|------|-------|--------------| | Gender | green | hazel | blue | brown | $\hat{n}(G)$ | | male | 7 | 15 | 20 | 38 | 80 | | female | 3 | 5 | 5 | 7 | 20 | | n(E) | 10 | 20 | 25 | 45 | 100 | ## The Saturated Model and the Curse of Dimensionality The saturated model estimates cell probabilities by dividing the cell count by the total number of observations. It makes no simplifying assumptions. This approach doesn't scale very well! Suppose we have k categorical variables with m possible values each. To estimate the probability of each possible combination of values would require the estimation of m^k probabilities. For k = 10 and m = 5, this is $$5^{10} \approx 10$$ million probabilities This is a manifestation of the *curse of dimensionality*: we have fewer data points than probabilities to estimate. Estimates will become unreliable. #### How to avoid this curse Make independence assumptions to obtain a simpler model that still gives a good fit. Independence Model $$\hat{P}(G, E) = \hat{P}(G)\hat{P}(E) = \left(\frac{n(G)}{n}\right)\left(\frac{n(E)}{n}\right) = \frac{n(G)n(E)}{n^2}$$ requires the estimation of just 4 probabilities instead of 7. #### Fit of independence model The fitted counts of the independence model are given by $$\hat{n}(G, E) = n\hat{P}(G, E) = n\left(\frac{n(G)n(E)}{n^2}\right) = \frac{n(G)n(E)}{n}$$ For example $$\hat{n}(\text{female}, \text{brown}) = \frac{n(\text{female})n(\text{brown})}{n} = \frac{20 \times 45}{100} = 9$$ Table of fitted counts of the independence model: | $\hat{n}(G,E)$ | Eye Color | | | | | |----------------|-----------|-------|------|-------|--------------| | Gender | green | hazel | blue | brown | $\hat{n}(G)$ | | male | 8 | 16 | 20 | 36 | 80 | | female | 2 | 4 | 5 | 9 | 20 | | n(E) | 10 | 20 | 25 | 45 | 100 | #### Fit of independence model Compare the fitted counts of the independence model (top) with the observed counts (bottom): | $\hat{n}(G,E)$ | Eye Color | | | | | |----------------|-----------|-------|------|-------|-----------------------| | Gender | green | hazel | blue | brown | <i>î</i> (<i>G</i>) | | male | 8 | 16 | 20 | 36 | 80 | | female | 2 | 4 | 5 | 9 | 20 | | ñ(Ε) | 10 | 20 | 25 | 45 | 100 | | n(G, E) | Eye Color | | | | | |---------|-----------|-------|------|-------|------| | Gender | green | hazel | blue | brown | n(G) | | male | 7 | 15 | 20 | 38 | 80 | | female | 3 | 5 | 5 | 7 | 20 | | n(E) | 10 | 20 | 25 | 45 | 100 | Fitted row and column margins exactly match the observed margins! ## Fit of independence model - The fitted counts of the independence model are quite close to the observed counts. - We could conclude that the independence model gives a satisfactory fit of the data. - Use a statistical test to make this more precise (discussed later). #### Independence Model Suppose we have k variables with m possible values each. - The saturated model requires the estimation of $m^k 1$ probabilities. - The mutual independence model requires just k(m-1) probability estimates. - Mutual independence model is usually not appropriate (all variables are independent of one another). - Interesting models are somewhere in between saturated and mutual independence: this requires the notion of *conditional* independence. ## Rules of Probability Sum Rule: $$P(X) = \sum_{Y} P(X, Y)$$ Product Rule: $$P(X,Y) = P(X)P(Y|X)$$ If X and Y are independent, then $$P(X,Y)=P(X)P(Y)$$ ## Independence of (sets of) random variables Let X and Y be (sets of) random variables. X and Y are independent if and only if: $$P(x, y) = P(x)P(y)$$ for all values (x, y) . Equivalently: $$P(x | y) = P(x)$$, and $P(y | x) = P(y)$ Y doesn't provide any information about X (and vice versa) We also write $X \perp \!\!\! \perp Y$. For example: gender is independent of eye color. #### Factorisation criterion for independence We can relax our burden of proof a little bit: X and Y are independent iff there are functions g(x) and h(y) (not necessarily the marginal distributions of X and Y) such that $$P(x,y) = g(x)h(y)$$ for all values (x,y) . In logarithmic form this becomes (since $log(a \times b) = log a + log b$): $$\log P(x, y) = g^*(x) + h^*(y),$$ where $g^*(x) = \log g(x)$. #### Factorisation criterion for independence: proof Suppose that for all x and y: $$P(x,y) = g(x)h(y)$$ Then $$P(x) = \sum_{y} P(x, y) = \sum_{y} g(x)h(y) = g(x)\sum_{y} h(y) = c_1 g(x)$$ So g(x) is proportional to P(x). Likewise, h(y) is proportional to P(y). Therefore $$P(x,y) = g(x)h(y) = \frac{1}{c_1}P(x)\frac{1}{c_2}P(y) = c_3P(x)P(y)$$ Summing over both x and y establishes that $c_3=1$, so X and Y are independent. ◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qの #### Conditional Independence X and Y are conditionally independent given Z iff $$P(x, y \mid z) = P(x \mid z)P(y \mid z) \tag{1}$$ for all values (x, y) and for all values z for which P(z) > 0. Equivalently: $$P(x \mid y, z) = P(x \mid z)$$ and $P(y \mid x, z) = P(y \mid z)$ If I already know the value of Z, then Y doesn't provide any additional information about X (and vice versa). We also write $X \perp \!\!\!\perp Y \mid Z$. #### Conditional Independence: Example Ice cream sales is independent of violent crime given the temperature. Causal picture: Sales <u>↓</u> Crime but $\mathsf{Sales} \perp \!\!\!\!\perp \mathsf{Crime} \mid \mathsf{Temp}$ #### Factorisation Criterion for Conditional Independence An equivalent formulation is (multiply equation (1) by P(z)): $$P(x, y, z) = \underbrace{P(x, z)}_{g(x, z)} \underbrace{\frac{P(y, z)}{P(z)}}_{h(y, z)}$$ Factorisation criterion: $X \perp \!\!\! \perp Y \mid Z$ iff there exist functions g and h such that $$P(x, y, z) = g(x, z)h(y, z)$$ or alternatively $$\log P(x, y, z) = g^*(x, z) + h^*(y, z)$$ for all (x, y) and for all z for which P(z) > 0. ## Overview of Coming Lectures - Introduction - Independence and Conditional Independence - Graphical Representation of Conditional Independence - Log-linear Models - Hierarchical - Graphical - Decomposable - Maximum Likelihood Estimation - Model Testing - Model Selection ## Conditional Independence Graph Random vector $X = (X_1, X_2, ..., X_k)$ with probability distribution P(X). Graph G = (K, E), with $K = \{1, 2, ..., k\}$. The conditional independence graph of X is the undirected graph G = (K, E) where $\{i, j\}$ is <u>not</u> in the edge set E if and only if: $$X_i \perp \!\!\! \perp X_j \mid \mathsf{rest}$$ ## Conditional Independence Graph: Example $X = (X_1, X_2, X_3, X_4), 0 < x_i < 1$ with probability density $$P(x) = e^{c + x_1 + x_1 x_2 + x_2 x_3 x_4}$$ Now $$\log P(x) = c + x_1 + x_1 x_2 + x_2 x_3 x_4$$ Application of the factorisation criterion gives $$X_1 \perp \!\!\! \perp X_4 \mid (X_2, X_3) \text{ and } X_1 \perp \!\!\! \perp X_3 \mid (X_2, X_4),$$ For example, $X_1 \perp \!\!\! \perp X_4 \mid (X_2, X_3)$, because we can write: $$\log P(x) = \underbrace{c + x_1 + x_1 x_2}_{g(x_1, x_2, x_3)} + \underbrace{x_2 x_3 x_4}_{h(x_2, x_3, x_4)}$$ Hence, the conditional independence graph is: 25 / 40 #### Separation and Conditional Independence Consider the following conditional independence graph: • $X_1 \perp \!\!\! \perp X_3 \mid (X_2, X_4, X_5, X_6, X_7)$ ## $\{2,5\}$ separates 1 from 3 Consider the following conditional independence graph: - $X_1 \perp \!\!\! \perp X_3 \mid (X_2, X_4, X_5, X_6, X_7)$ - $\{2,5\}$ separates 1 from $3 \Rightarrow X_1 \perp \!\!\! \perp X_3 \mid (X_2,X_5)$ - We also say the set {2,5} <u>blocks</u> every path from 1 to 3 (and vice versa), or that every path from 1 to 3 <u>intersects</u> the set {2,5}. #### Separation and Conditional Independence Notation: $$X_a = (X_i : i \in a)$$ where a is a subset of $\{1, 2, \dots, k\}$. For example, if $a = \{1, 3, 6\}$ then $X_a = (X_1, X_3, X_6)$. The set a separates node i from node j iff every path from node i to node j contains one or more nodes in a (a "blocks" every path from i to j). a separates b from c(a, b, c disjoint): For every $i \in b$ and $j \in c$: a separates i from j For example: $\{2,5\}$ separates $\{1,4\}$ from $\{3,6\}$. ## Equivalent Independence (Markov) Properties lacktriangledown Pairwise: for all non-adjacent nodes i and j $$X_i \perp \!\!\! \perp X_j \mid \mathsf{rest}$$ This is how we defined the conditional independence graph. ② Global: if a separates b from c(a, b, c disjoint), then $$X_b \perp \!\!\! \perp X_c \mid X_a$$ Output Local: $$X_i \perp \!\!\!\perp \text{ rest } \mid \text{boundary}(i),$$ where boundary(i) is the set of nodes adjacent to node i. These properties are equivalent in the following sense: if all pairwise independencies corresponding to graph G hold for a given probability distribution, then all the global independencies corresponding to G also hold for that distribution (and vice versa). #### Example of Local Markov Property #### Overview of Coming Lectures - Introduction - Independence and Conditional Independence - Graphical Representation of Conditional Independence - Log-linear Models - Hierarchical - Graphical - Decomposable - Maximum Likelihood Estimation - Model Testing - Model Selection #### Bernoulli random variable Let X be a Bernoulli random variable with P(X = 1) = p(1) and P(X = 0) = p(0). We can write the probability function in a single formula as follows: $$P(X = x) = p(1)^{x} p(0)^{1-x}$$ for $x \in \{0, 1\}$ Check that filling in x = 1 gives p(1), and filling in x = 0 gives p(0) as required. Taking logarithms we get: $$\log P(X = x) = \log (p(1)^{x} p(0)^{1-x})$$ $$= \log p(1)^{x} + \log p(0)^{1-x}$$ $$= x \log p(1) + (1-x) \log p(0)$$ $$= \log p(0) + \log \left(\frac{p(1)}{p(0)}\right) x$$ $$= u_{\emptyset} + u_{1}x$$ #### 2×2 Table The probability function P_{12} of bivariate Bernoulli random vector (X_1, X_2) is determined by $$P(x_1, x_2) = p(x_1, x_2)$$ where $p(x_1, x_2)$ is the table of probabilities: | $p(x_1,x_2)$ | $x_2 = 0$ | $x_2 = 1$ | Total | |--------------|-----------|-----------|----------| | $x_1 = 0$ | p(0,0) | p(0,1) | $p_1(0)$ | | $x_1 = 1$ | p(1,0) | p(1, 1) | $p_1(1)$ | | Total | $p_2(0)$ | $p_2(1)$ | 1 | #### Probability function for 2×2 Table Again we can write this as a single formula: $$P(x_1, x_2) = p(0,0)^{(1-x_1)(1-x_2)}p(0,1)^{(1-x_1)x_2}p(1,0)^{x_1(1-x_2)}p(1,1)^{x_1x_2}$$ Taking logarithms and collecting terms in x_1 , x_2 , and x_1x_2 gives: $$\log P(x_1, x_2) = \log p(0, 0) + \log \left(\frac{p(1, 0)}{p(0, 0)}\right) x_1 + \log \left(\frac{p(0, 1)}{p(0, 0)}\right) x_2 + \log \left(\frac{p(1, 1)p(0, 0)}{p(0, 1)p(1, 0)}\right) x_1 x_2$$ Verify this using elementary properties of logarithms: #### Log-linear expansion Reparameterizing the right hand side leads to the so-called *log-linear* expansion $$\log P(x_1, x_2) = u_{\emptyset} + u_1 x_1 + u_2 x_2 + u_{12} x_1 x_2$$ The coefficients, u_{\emptyset} , u_1 , u_2 , u_{12} are known as the u-terms. For example, the coefficient of the product x_1x_2 , $$u_{12} = \log\left(\frac{p(1,1)p(0,0)}{p(0,1)p(1,0)}\right) = \log \operatorname{cpr}(X_1, X_2)$$ is the logarithm of the cross product ratio of X_1 and X_2 . #### Cross-product Ratio The cross-product ratio between binary variables X_1 and X_2 is: $$cpr(X_1, X_2) = \frac{p(1, 1)p(0, 0)}{p(0, 1)p(1, 0)}$$ - $cpr(X_1, X_2) > 1$: positive association between X_1 and X_2 . - $cpr(X_1, X_2) < 1$: negative association between X_1 and X_2 . - $cpr(X_1, X_2) = 1$: no association between X_1 and X_2 . #### Independence and u-terms Claim: $$X_1 \perp \!\!\! \perp X_2 \Leftrightarrow u_{12} = 0$$ Proof: the factorisation criterion states that $X_1 \perp \!\!\! \perp X_2$ iff there exist two functions g and h such that $$\log P(x_1, x_2) = g(x_1) + h(x_2)$$ for all (x_1, x_2) If $u_{12} = 0$, we get $$\log P(x_1, x_2) = u_{\emptyset} + u_1 x_1 + u_2 x_2,$$ so $$g(x_1) = u_{\emptyset} + u_1 x_1$$ $h(x_2) = u_2 x_2$ suffices. If $u_{12} \neq 0$, no such decomposition is possible. #### Three Dimensional Bernoulli The joint distribution of three binary variables can be written: $$P(x_1, x_2, x_3) = p(0, 0, 0)^{(1-x_1)(1-x_2)(1-x_3)} \cdots p(1, 1, 1)^{x_1x_2x_3}$$ Log-linear expansion $$\log P(x_1, x_2, x_3) = u_{\emptyset} + u_1 x_1 + u_2 x_2 + u_3 x_3 + u_{12} x_1 x_2 + u_{13} x_1 x_3 + u_{23} x_2 x_3 + u_{123} x_1 x_2 x_3$$ With $$u_{123} = \log \left(\frac{\operatorname{cpr}(X_2, X_3 | X_1 = 1)}{\operatorname{cpr}(X_2, X_3 | X_1 = 0)} \right)$$ #### Independence and the u-terms Observation: $$X_2 \perp \!\!\! \perp X_3 \mid X_1 \Leftrightarrow u_{23} = 0$$ and $u_{123} = 0$ Proof: use factorisation criterion. $X_2 \perp \!\!\! \perp X_3 \mid X_1 \Leftrightarrow$ there are functions $g(x_1,x_2)$ and $h(x_1,x_3)$ such that $$\log P(x_1, x_2, x_3) = g(x_1, x_2) + h(x_1, x_3)$$ This is only possible when $u_{23} = 0$ (so the term x_2x_3 drops out), and $u_{123} = 0$ (so the term $x_1x_2x_3$ drops out). ## Why the log-linear representation? Why do we use the log-linear representation of the probability table? - We are interested in expressing conditional independence constraints. - There is a straightforward correspondence between such constraints being satisfied, and the elimination of certain collections of u-terms from the log-linear expansion. - **3** This correspondence is established by applying the factorisation criterion: $X \perp \!\!\! \perp Y \mid Z$ if and only if there exist functions g and h such that $$\log P(x,y,z) = g(x,z) + h(y,z)$$