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2× 2 Table

The probability function P12 of bivariate Bernoulli random vector (X1,X2)
is determined by

P(x1, x2) = p(x1, x2)

where p(x1, x2) is the table of probabilities:

p(x1, x2) x2 = 0 x2 = 1 Total

x1 = 0 p(0, 0) p(0, 1) p1(0)
x1 = 1 p(1, 0) p(1, 1) p1(1)

Total p2(0) p2(1) 1
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Probability function for 2× 2 Table

Again we can write this as a single formula:

P(x1, x2) = p(0, 0)(1−x1)(1−x2)p(0, 1)(1−x1)x2p(1, 0)x1(1−x2)p(1, 1)x1x2

Taking logarithms and collecting terms in x1, x2, and x1x2 gives:

logP(x1, x2) = log p(0, 0) + log
p(1, 0)

p(0, 0)
x1 +

log
p(0, 1)

p(0, 0)
x2 + log

p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
x1x2

Verify this using elementary properties of logarithms:

1 log ab = b log a,

2 log a
b = log a− log b, and

3 log ab = log a + log b.
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Log-linear expansion

Reparameterizing the right hand side leads to the so-called log-linear
expansion

logP(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

The coefficients, u∅, u1, u2, u12 are known as the u-terms.

For example, the coefficient of the product x1x2,

u12 = log
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
= log cpr(X1,X2)

is the logarithm of the cross product ratio of X1 and X2.
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Independence and u-terms

Claim:
X1 ⊥⊥ X2 ⇔ u12 = 0

Proof: the factorisation criterion states that X1 ⊥⊥ X2 iff there exist two
functions g and h such that

logP(x1, x2) = g(x1) + h(x2) for all (x1, x2)

If u12 = 0, we get

logP(x1, x2) = u∅ + u1x1 + u2x2,

so
g(x1) = u∅ + u1x1 h(x2) = u2x2

suffices. If u12 6= 0, no such decomposition is possible.
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Three Dimensional Bernoulli

The joint distribution of three binary variables can be written:

P(x1, x2, x3) = p(0, 0, 0)(1−x1)(1−x2)(1−x3) · · · p(1, 1, 1)x1x2x3

Log-linear expansion

logP(x1, x2, x3) = u∅ + u1x1 + u2x2 + u3x3 + u12x1x2 +

u13x1x3 + u23x2x3 + u123x1x2x3,

with

u123 = log
cpr(X2,X3|X1 = 1)

cpr(X2,X3|X1 = 0)
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Independence and the u-terms

Observation:
X2 ⊥⊥ X3|X1 ⇔ u23 = 0 and u123 = 0

Proof: use factorisation criterion.

X2 ⊥⊥ X3|X1 ⇔ there are functions g(x1, x2) and h(x1, x3) such that

logP(x1, x2, x3) = g(x1, x2) + h(x1, x3)

This is only possible when u23 = 0 (so the term x2x3 drops out), and
u123 = 0 (so the term x1x2x3 drops out).
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Log-linear expansion: non-binary variables

For a 2× 2 table the log-linear expansion is given by:

logP(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

for x ∈ {0, 1}2, where u∅, u1, u2 and u12 are constants.

What if the xi have more than two levels? In that case the u terms
become functions of x rather than constants:

logP(x1, x2) = u∅ + u1(x1) + u2(x2) + u12(x1, x2)
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Log-linear expansion: non-binary variables

Suppose x ∈ {0, 1, 2}. We can write

P(x) = p(1)δx=1p(2)δx=2p(0)(1−δx=1−δx=2),

where δA is the indicator function, that is,

δA =

{
1 if A is true
0 otherwise

Taking logarithms left and right, we get

logP(x) = δx=1 log p(1) + δx=2 log p(2) + (1− δx=1 − δx=2) log p(0)

= δx=1 log p(1) + δx=2 log p(2) + log p(0)− δx=1 log p(0)− δx=2 log p(0)

= log p(0) + log
p(1)

p(0)
δx=1 + log

p(2)

p(0)
δx=2

= u∅ + u(x)
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Log-linear expansion: non-binary variables

Where u∅ = log p(0) and

u(x) =


log p(1)

p(0) if x = 1

log p(2)
p(0) if x = 2

0 if x = 0

Similar rules apply to the case of multiple non-binary variables.
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Why the log-linear representation?

Why do we use the log-linear representation of the probability table?

1 We are interested in expressing conditional independence constraints.

2 There is a straightforward correspondence between such constraints
being satisfied, and the elimination of certain collections of u-terms
from the log-linear expansion.

3 This correspondence is established by applying the factorisation
criterion: X ⊥⊥ Y | Z if and only if there exist functions g and h
such that

logP(x , y , z) = g(x , z) + h(y , z)
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Log-linear expansion: general

Let X = (X1,X2, . . . ,Xk) be a vector of discrete random variables, and let
K = {1, 2, . . . , k} denote the set of indices (coordinates) of X .

The log-linear expansion of the probability distribution PK (X ) is

logPK (x) =
∑
a⊆K

ua(xa)

where the sum is taken over all possible subsets a of K = {1, 2, . . . , k}.
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Log-linear expansion: general

The log-linear expansion of the probability distribution PK (X ) is

logPK (x) =
∑
a⊆K

ua(xa)

We get a (set of) u-term(s) for each subset of the variables.

We code the values of Xi as {0, 1, . . . , di − 1}, where di is size of the
domain of Xi .

Set ua(xa) = 0 whenever xi = 0 for any Xi with i ∈ a to eliminate
redundant parameters.

This is analogous to the case where X is binary.

There are as many u-terms in the full log-linear expansion as there are
cells in the contingency table.
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Log-linear expansion: example

Suppose we have 3 variables, X1, X2, and X3 with 3 possible values each.
Then the contingency table contains 33 = 27 cells, one for each possible
combination of values. The are also 27 u-terms in the full log-linear
expansion:

subset # u-terms calculation

u∅ 1
u1(x1) 2 (3− 1)
u2(x2) 2 (3− 1)
u3(x3) 2 (3− 1)
u12(x1, x2) 4 (3− 1)(3− 1)
u13(x1, x3) 4 (3− 1)(3− 1)
u23(x2, x3) 4 (3− 1)(3− 1)
u123(x1, x2, x3) 8 (3− 1)(3− 1)(3− 1)

Total 27
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Independence and the u-terms

Let

X = (X1,X2, . . . ,Xk)

a, b, c ⊆ {1, 2, . . . , k}
a, b, c disjoint and a ∪ b ∪ c = {1, 2, . . . , k}

Independence and the u-terms

We have
Xb ⊥⊥ Xc | Xa

if and only if all u-terms in the log-linear expansion with coordinates
in both b and c , are equal to zero.
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Independence and the u-terms: Example

Let X = (X1, . . . ,X5), and a = {1, 3}, b = {4}, c = {2, 5}. According to
the factorization criterion, the conditional independence

X4 ⊥⊥ (X2,X5) | (X1,X3)

holds if, and only if, there are functions g and h such that

logP(x1, . . . , x5) = g(x1, x3, x4) + h(x1, x2, x3, x5)

For this to be possible, the u-terms that contain elements from both the
sets {4} and {2, 5} have to be zero. So all u-terms
u24, u45, u124, u145, . . . , u12345 have to be zero.

Ad Feelders ( Universiteit Utrecht ) Data Mining 17 / 80



Independence and the u-terms

Proof: Let s be an arbitrary subset of a ∪ b ∪ c = {1, 2, . . . , k}.

If for all non-zero u-terms, us , we have

1 s ⊆ a ∪ b, or

2 s ⊆ a ∪ c

(i.e. s does not contain coordinates from both b and c), then

logPK (x) =
∑

s⊆a∪b
us(xs) +

∑
s⊆a∪c

us(xs)−
∑
s⊆a

us(xs)

But this function is of the form g(xa, xb) + h(xa, xc) and hence
Xb ⊥⊥ Xc | Xa by the factorisation criterion.

Note: we subtract
∑

s⊆a us(xs) because subsets of a were added twice.
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Hierarchical Log-Linear Models

In most applications, it does not make sense to include the three-way
association u123 unless the two-way associations u12, u13 and u23 are
all present as well.

A log-linear model is said to be hierarchical if the presence of a term
implies that all lower-order terms are also present. That is, if uA(xA)
is present, then for all a ⊆ A, ua(xa) must be present as well.

Hence, a hierarchical model is uniquely identified by listing its highest
order interaction terms.
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Hierarchical Models for three dimensions

Model Omitted Interpretation

123 none saturated
12,13,23 u123 homogeneous association
12,13 u123, u23 X2 ⊥⊥ X3 | X1

12,23 u123, u13 X1 ⊥⊥ X3 | X2

13,23 u123, u12 X1 ⊥⊥ X2 | X3

12,3 u123, u13, u23 (X1,X2) ⊥⊥ X3

13,2 u123, u12, u23 (X1,X3) ⊥⊥ X2

23,1 u123, u12, u13 (X2,X3) ⊥⊥ X1

1,2,3 u123, u12, u13, u23 mutual independence
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Graphical Log-Linear Model

Given its independence graph G = (K ,E ), the log-linear model for the
random vector X is a graphical model for X if the distribution of X is
arbitrary apart from constraints of the form that for all pairs of coordinates
not in the edge set E , the u-terms containing the selected coordinates are
equal to zero.

All constraints of a graphical model can be read from the independence
graph.

A graphical model is a hierarchical model in which the highest order
interaction terms correspond to the cliques in the graph.
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Some hierarchical models and their independence graphs

1

2

3

123: saturated

1

2

3

12,13

1

2

3

12,3

1

2

3

12, 13, 23:

not graphical!
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Estimating Models from Data: Maximum Likelihood

The Maximum Likelihood (ML) estimator of graphical log-linear model M
returns estimates of the cell probabilities that maximize the probability of the
observed data, subject to the constraint that the conditional independencies of
M are satisfied by the estimates.
ML estimator of graphical log-linear model M satisfies the likelihood equations

n̂Ma = NP̂M
a = na

whenever the subset of vertices a in the graph form a clique
(maximal complete subgraph).
Slogan: Observed = Fitted for every marginal table corresponding to a
complete subgraph.
The same likelihood equations hold for all hierarchical models, where the
margins a correspond to the highest order interaction terms in the model.
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Determine the cliques

1

2

3

4
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Observed=Fitted for margins corresponding to cliques

1

2

3

4

n̂(x1, x2, x3) = n(x1, x2, x3)

n̂(x2, x4) = n(x2, x4)
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Observed=Fitted for margins corresponding to cliques

We can see as follows why this has to be the case:

1 If there are no constraints to fit an observed table of counts, then the
parameter estimates that yield fitted counts equal to the observed counts
maximize the likelihood function. For example, the saturated model will yield
fitted counts identical to the observed counts.

2 By definition, a graphical model is arbitrary (has no constraints) except for the
constraints that can be read from the independence graph.

3 Suppose a forms a clique in the independence graph. Now consider the
partitioning X = (Xa,Xb) where b contains all variables not in a.
We can write (product rule):

P(X ) = P(Xa)P(Xb | Xa)

Since P(Xa) is not constrained by the model (complete graph), all model
constraints apply only to P(Xb | Xa). Therefore, the maximum likelihood
estimates will yield n̂a = na.
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Maximum Likelihood Estimation: Example

P̂(x1, x2, x3, x4) = P̂(x1, x3, x4|x2)P̂(x2) (product rule)

= P̂(x1, x3|x2)P̂(x4|x2)P̂(x2) (X4 ⊥⊥ (X1,X3) | X2)

= P̂(x1, x3|x2)P̂(x2, x4) (product rule)

=
P̂(x1, x2, x3)P̂(x2, x4)

P̂(x2)
(product rule)

In terms of counts we have (multiply by N on left and N2/N on right):

n̂(x1, x2, x3, x4) =
n̂(x1, x2, x3)n̂(x2, x4)

n̂(x2)

=
n(x1, x2, x3)n(x2, x4)

n(x2)
(fitted = observed for complete subgraph)

In this case we have a closed form solution for the maximum likelihood fitted counts.

Note that if fitted = observed for margin a, then it follows that observed = fitted for every
subset of a as well.
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ML Estimation: Numeric Example

n(cl , ca, s) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23

clinic

care

survival
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Margin Constraints and Sufficient Statistics

The margin constraints are:

1 n̂(clinic, care) = n(clinic, care)

2 n̂(clinic, survival) = n(clinic, survival)

n(cl , ca) care
clinic less more

clinic 1 179 297
clinic 2 214 25

n(cl , s) survival
clinic no yes

clinic 1 7 469
clinic 2 19 220
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Computation of fitted values

The maximum likelihood fitted counts are given by:

n̂(clinic, care, survival) =
n(clinic, care)n(clinic, survival)

n(clinic)

For example:

n̂(clinic 1, less, yes) =
n(clinic 1, less)n(clinic 1, yes)

n(clinic 1)
=

179× 469

476
= 176.37
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Observed counts and fitted counts

n(cl , ca, s) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23

n̂(cl , ca, s) survival
clinic care no yes

clinic 1 less 2.63 176.37
more 4.37 292.63

clinic 2 less 17.01 196.99
more 1.99 23.01

Model seems to fit very well!
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Decomposable Graphical Models

Decomposable graphical models have explicit formulas for the
maximum likelihood estimates.

Decomposable models have triangulated independence graphs: they
have no chordless cycles of length greater than three.

A cycle is chordless if only the successive pairs of vertices in the cycle
are connected by an edge. (There is no “shortcut” in the cycle).
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Example

1 2

34

1 2

34

The left graph is not decomposable because it contains the chordless
cycle 1− 2− 3− 4− 1.

The graph on the right is decomposable.
The cycle 1− 2− 3− 4− 1 is no longer chordless because 2 and 4 are
adjacent in the graph but not successive in the cycle.
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Maximum Likelihood Estimation for Decomposable Models

An ordering C1, . . . ,Cm of the cliques of the graph has the running
intersection property (RIP) iff

Cj ∩ (C1 ∪ . . . ∪ Cj−1) ⊆ Ci ,

for some i < j , and for all j = 2, . . . ,m.

We define the corresponding separator sets

Sj = Cj ∩ (C1 ∪ . . . ∪ Cj−1),

with S1 = ∅.
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ML Estimation for Decomposable Models

Let C1, . . . ,Cm be a RIP ordering of the cliques, with separator sets
S1, . . . ,Sm.

The maximum likelihood fitted counts are given by

n̂(x) =

∏m
j=1 n(xCj

)∏m
j=2 n(xSj )

where n(x∅) = N.

Likewise, the maximum likelihood fitted probabilities are given by

P̂(x) =

∏m
j=1 n(xCj

)∏m
j=1 n(xSj )

=

∏m
j=1 n(xCj

)

N
∏m

j=2 n(xSj )
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Example

1 2

3 4

The clique ordering C1 = {1, 2},C2 = {3, 4},C3 = {1, 3} does not have
the running intersection property and does therefore not produce correct
estimates.

j Cj Sj RIP?

1 {1, 2} ∅ −
2 {3, 4} ∅ !

3 {1, 3} {1, 3} %
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Example

1 2

3 4

The clique ordering C1 = {1, 2},C2 = {1, 3},C3 = {3, 4} does have the
running intersection property:

j Cj Sj RIP?

1 {1, 2} ∅ −
2 {1, 3} {1} !

3 {3, 4} {3} !

The corresponding ML fitted counts are:

n̂(x1, x2, x3, x4) =
n(x1, x2)n(x1, x3)n(x3, x4)

n(x1)n(x3)
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Iterative Proportional Fitting (IPF)

If the model is not decomposable, there is no closed form solution
(formula) for the maximum likelihood estimates.

We need iterative algorithms to compute the fitted
counts/probabilities.

Iterative Proportional Fitting (IPF) is such an algorithm.
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IPF: Example

Fit independence model to

n(x1, x2) x2 = 0 x2 = 1 n1(x1)

x1 = 0 20 10 30
x1 = 1 40 30 70
n2(x2) 60 40 100

The margin constraints for the independence model are

1 n̂1(x1) = n1(x1), and

2 n̂2(x2) = n2(x2)

IPF makes the fitted counts agree with the observed counts on each
margin in turn.
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Iterative Proportional Fitting

We begin with a table n̂(0) of uniform counts (left)

n̂(0) 0 1
0 1 1 2
1 1 1 2

2 2

0 1
0 20 20 30
1 70

First step: fit to row margin

n̂(x1, x2)(1) = n1(x1)× P̂(x2 | x1)(0) = n1(x1)× n̂(x1, x2)(0)

n̂1(x1)(0)

We compute (row 1):

n̂(0, 0)(1) = 30× 1

2
= 15 n̂(0, 1)(1) = 30× 1

2
= 15
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Iterative Proportional Fitting

We begin with a table n̂(0) of uniform counts (left)

n̂(0) 0 1
0 1 1 2
1 1 1 2

2 2

0 1
0 15 15 30
1 70

First step: fit to row margin

n̂(x1, x2)(1) = n1(x1)× P̂(x2 | x1)(0) = n1(x1)× n̂(x1, x2)(0)

n̂1(x1)(0)

We compute (row 1):

n̂(0, 0)(1) = 30× 1

2
= 15 n̂(0, 1)(1) = 30× 1

2
= 15
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Iterative Proportional Fitting

n̂(0) 0 1
0 1 1 2
1 1 1 2

2 2

0 1
0 15 15 30
1 70

First step continued (row 2):

n̂(1, 0)(1) = 70× 1

2
= 35 n̂(1, 1)(1) = 70× 1

2
= 35

which yields n̂(1):

n̂(1) 0 1
0 15 15 30
1 35 35 70

50 50
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Iterative Proportional Fitting

n̂(1) 0 1
0 15 15 30
1 35 35 35

50 50

0 1
0
1

60 40

Second step: fit to column margin

n̂(x1, x2)(2) = n2(x2)× P̂(x1 | x2)(1) = n2(x2)× n̂(x1, x2)(1)

n̂2(x2)(1)

Which gives (first column):

n̂(0, 0)(2) = 60× 15

50
= 18 n̂(1, 0)(2) = 60× 35

50
= 42

0 1
0 18
1 42

60 40
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IPF

Likewise for the second column:

n̂(0, 1)(2) = 40× 15

50
= 12 n̂(1, 1)(2) = 40× 35

50
= 28

This yields n̂(2):

n̂(2) 0 1
0 18 12 30
1 42 28 70

60 40

Notice that the row totals are still 30 and 70, so we have simultaneously
satisfied the conditions

n̂1(x1) = n1(x1) and n̂2(x2) = n2(x2)

so the algorithm has converged.
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IPF: General Algorithm Sketch

Say we have m margins {a1, a2, . . . , am} to be fitted (∪iai = K ).

We have to find a table n̂(x) that agrees with the observed table n(x) on
the m margins corresponding to the subsets ai .

The algorithm cycles through the list of subsets

a = ai , i = 1, 2, . . . ,m

fitting n̂(x) to each margin in turn.

This is repeated until convergence is reached, i.e. all margin constraints
are (approximately) satisfied simultaneously.
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IPF updating rule

To fit to the margin a, the observed count na(xa) on xa is distributed over
the cells x = (xa, xb) of the full table according to

n̂ab(xa, xb)(t+1) = na(xa)P̂(xb|xa)(t)

where b is the complement of a, and

P̂(xb|xa)(t) =
n̂ab(xa, xb)(t)

n̂a(xa)(t)
,

is the current estimate of the conditional probability P(Xb = xb|Xa = xa).
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IPF Pseudocode

Algorithm 1 IPF(n(x), A)

1: t ← 0
2: for all values x of X do

n̂(x)(t) ← 1
3: end for
4: repeat
5: for all margins a ∈ A do
6: b ← K \ a
7: for all values xa of Xa do
8: for all values xb of Xb do

n̂ab(xa, xb)(t+1) ← na(xa)
(
n̂ab(xa,xb)

(t)

n̂a(xa)(t)

)
9: end for

10: end for
11: t ← t + 1
12: end for
13: until convergence
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Some properties of IPF

For the algorithm to produce the correct result, the initial solution
must satisfy the constraints of the model to be fitted. A uniform table
of counts is a safe choice since it sets all u-terms except u∅ to zero.

If the cliques of a decomposable model are presented in RIP order to
IPF, then the algorithm will converge in one iteration (one cycle
through all cliques).

Otherwise IPF will converge in two iterations on decomposable
models.
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The Log-Likelihood score of a model

The likelihood score of a model M is

LM =
∏
x

P̂M(x)n(x),

where P̂M(x) is the fitted probability of cell x according to model M.

Hence, the likelihood score of model M is the probability of the observed
data using the fitted cell probabilities according to model M.

Likewise, the log-likelihood score of a model M is

LM =
∑
x

n(x) log P̂M(x)
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Example

Suppose we have data

n(x) x2 = 0 x2 = 1 n(x1)

x1 = 0 30 10 40
x1 = 1 30 30 60

n(x2) 60 40 100

The independence model gives probability estimates:
P̂(0, 0) = 0.24, P̂(0, 1) = 0.16, P̂(1, 0) = 0.36, P̂(1, 1) = 0.24.

The probability of the observed data according to this model is

0.2430 × 0.1610 × 0.3630 × 0.2430

This is the likelihood score of the model given the data.
The corresponding log-likelihood score is

L = 30 log 0.24 + 10 log 0.16 + 30 log 0.36 + 30 log 0.24 ≈ −134.6
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Example (continued)

n(x) x2 = 0 x2 = 1 n(x1)

x1 = 0 30 10 40
x1 = 1 30 30 60

n(x2) 60 40 100

The saturated model gives probability estimates:
P̂(0, 0) = 0.3, P̂(0, 1) = 0.1, P̂(1, 0) = 0.3, P̂(1, 1) = 0.3.

The probability of the observed data according to this model is

0.330 × 0.110 × 0.330 × 0.330

The corresponding log-likelihood score is

L = 30 log 0.3 + 10 log 0.1 + 30 log 0.3 + 30 log 0.3 ≈ −131.4

Of course this is better than the independence model.
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Model Deviance

Since for the saturated (unconstrained) model

P̂(x) =
n(x)

N
,

the log-likelihood score of the saturated model is

Lsat =
∑
x

n(x) log
n(x)

N

The deviance of a fitted model compares the log-likelihood score of the
fitted model to that of the saturated model.

The larger the model deviance, the poorer the fit.

Ad Feelders ( Universiteit Utrecht ) Data Mining 57 / 80



Model Deviance

Deviance of M is 2 (log-likelihood of the saturated model − log-likelihood of M):

dev(M) = 2(Lsat − LM)

= 2

(∑
x

n(x) log
n(x)

N
−
∑
x

n(x) log P̂M(x)

)

= 2

(∑
x

n(x)

(
log

n(x)

N
− log P̂M(x)

))

= 2
∑
x

n(x) log
n(x)

NP̂M(x)

which can be summarised by the slogan

2
∑
cells

observed× log
observed

fitted
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Deviance difference

Let M0 ⊆ M1, that is M0 is the simpler model
(the u-terms present in M0 are a subset of the u-terms present in M1).

The deviance difference between M0 and M1 is

dev(M0)− dev(M1) = −2LM0 + 2LM1 = 2(LM1 − LM0)

For large N we have that:

2(LM1 − LM0) ≈M0 χ
2
ν

χ2
ν : chi-square distribution with ν degrees of freedom.
ν: number of additional restrictions (zero u-terms) of M0 compared to M1.

Ad Feelders ( Universiteit Utrecht ) Data Mining 59 / 80



Likelihood Ratio Test

We reject the null hypothesis that M0 is the true model when

2(LM1 − LM0) > χ2
ν;α,

where α is the significance level of the test, and P(X 2 > χ2
ν;α) = α,

that is, χ2
ν;α is the critical value.

The test is called a likelihood ratio test because

log
LM1

LM0
= log LM1 − log LM0 = LM1 − LM0
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Model Testing: example

Does
survival ⊥⊥ care | clinic

give a good fit of the observed table? Test against the saturated model.

Compute the deviance

2
∑
cells

observed× log
observed

fitted
≈ 0.082

χ2
2;0.05 ≈ 6

So we “accept” the model.

Note: since M1 is the saturated model, the deviance difference between
M0 and M1 is just the deviance of M0.
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Fitted Counts and Observed Counts

n̂(clinic, care, survival) survival
clinic care no yes

clinic 1 less 2.63 176.37
more 4.37 292.63

clinic 2 less 17.01 196.99
more 1.99 23.01

n(clinic, care, survival) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23
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Test of survival ⊥⊥ care|clinic; χ2
2 distribution.
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Model Testing: example

Does the mutual independence model give a good fit of the observed
table? Test against the saturated model.

Compute the deviance

2
∑
cells

observed× log
observed

fitted
≈ 211

χ2
4;0.05 ≈ 9.5

So we reject the mutual independence model.
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Test of Independence Model; χ2
4 distribution.
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Model Selection

The Problem: find a good model for a high-dimensional table when little
prior knowledge is available.

Solution: Search the space of possible models.
Two approaches:

Use significance testing

Use a quality function
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Quality Functions: AIC and BIC

Two components:

the lack-of-fit of the model

complexity of the model

Akaike’s Information Criterion assigns quality to model M as follows

AIC(M) = dev(M) + 2 dim(M)

where dim(M) is the number of parameters (the number of u-terms) of
the model.

Bayesian Information Criterion assigns quality to model M as follows

BIC(M) = dev(M) + log(N) dim(M)
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Search

Exhaustive search is usually not feasible.

A straightforward approach is local search with hill climbing:

1 pick some initial model

2 consider the quality of all neighbors of the current model

3 if they all have lower quality, stop and return the current model.

4 otherwise move to the neighbor with highest quality and return to 2.
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Example: Decomposable Graphical Models

Hill climbing local search with decomposable graphical models and AIC
scoring.

1 pick an initial model, e.g. the empty graph
2 neighbors

add an edge
delete an edge

(without creating a chordless cycle of length > 3)

3 if all neighbors have higher AIC, stop and return the current model.

4 otherwise move to the neighbor with lowest AIC and return to 2.
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Local search in gRim

# fit initial model (empty graph)

> rhc.init <- dmod(~.^1,data=rhc.dat)

# display some info about this model

> summary(rhc.init)

is graphical=TRUE; is decomposable=TRUE

generators (glist):

:"cat1"

:"death"

:"swang1"

:"gender"

:"race"

:"ninsclas"

:"income"

:"ca"

:"age"

:"meanbp1"
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Result of Search (AIC, decomposable)

# perform stepwise search of decomposable models using AIC (only add edges)

> rhc.step1 <- stepwise(rhc.init,direction="forward")

> plot(rhc.step1)

cat1

meanbp1

swang1

age

race

ninsclas

income

ca

death

gender
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Result of Search (BIC, decomposable)

> rhc.step2 <- stepwise(rhc.init,direction="forward",k=log(nrow(rhc.dat)))

> plot(rhc.step2)

age

ninsclas

income race

death

cat1

meanbp1

swang1

ca

gender
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Result of Search (BIC, unrestricted)

> rhc.step3 <- stepwise(rhc.init,direction="forward",k=log(nrow(rhc.dat)),

type="unrestricted")

> plot(rhc.step3)

age

ninsclas

ca

cat1

income

death race

meanbp1

swang1

gender
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Trace of Search (AIC, unrestricted)

> rhc.step4 <- stepwise(rhc.init,direction="both",

type="unrestricted",details=1)

STEPWISE:

criterion: aic ( k = 2 )

direction: both

type : unrestricted

search : all

steps : 1000

. FORWARD: type=unrestricted search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decomposable=TRUE

change.AIC -3061.4959 Edge added: ninsclas age

change.AIC -1685.0212 Edge added: cat1 ca

change.AIC -1347.0960 Edge added: income ninsclas

change.AIC -420.0886 Edge added: swang1 cat1

change.AIC -306.3228 Edge added: race ninsclas

change.AIC -285.8656 Edge added: age cat1

change.AIC -253.7602 Edge added: death ca

change.AIC -497.6596 Edge added: age death

...
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Model Use: Inference and Prediction with gRain

# prepare selected model for use in gRain

> rhc.mod2 <- grain(as(rhc.step2,"graphNEL"),rhc.dat)

# perform inference on "death" from evidence on "gender","ca", and "swang1"

> predict(rhc.mod2, c("death"), c("gender","ca","swang1"),

data.frame(gender="Male",ca="Yes",swang1="No RHC"), type = "dist")

$pred

$pred$death

No Yes

[1,] 0.2235305 0.7764695

# change cancer to "Metastatic"

> predict(rhc.mod2, c("death"), c("gender","ca","swang1"),

data.frame(gender="Male",ca="Metastatic",swang1="No RHC"), type = "dist")

$pred

$pred$death

No Yes

[1,] 0.09421555 0.9057845
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Evidence entered
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Model Use: Inference and Prediction with gRain

# predict death (in-sample) from its Markov blanket

> death.pred <- predict(rhc.mod2, c("death"), c("ca","cat1","age"),

rhc.dat, type = "class")

> table(rhc.dat$death,death.pred$pred$death)

No Yes

No 730 1283

Yes 524 3198

> (730+3198)/nrow(rhc.dat)

[1] 0.6849172

# model is a little better than just predicting the majority class

> summary(rhc.dat$death)

No Yes

2013 3722

> 3722/nrow(rhc.dat)

[1] 0.6489974
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Markov Blanket of Death
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