
Data Mining
Logistic Regression
Text Classification

Ad Feelders

Universiteit Utrecht

Ad Feelders (Universiteit Utrecht) Data Mining 1 / 48

Two types of approaches to classification

In (probabilistic) classification we are interested in the conditional distribution

P(Y | x),

so that, for example, when we observe X = x we can predict the class y with the
highest probability for that value of X .

There are two basic approaches to modeling P(Y | x):

Generative Models (use Bayes’ rule):

P(Y = y | x) =
P(x | Y = y)P(Y = y)

P(x)
=

P(x | Y = y)P(Y = y)∑
y ′ P(x | Y = y ′)P(Y = y ′)

Discriminative Models: model P(Y | x) directly.

Ad Feelders (Universiteit Utrecht) Data Mining 2 / 48

Generative Models

Examples of generative classification methods:

Naive Bayes classifier (discussed in the previous lecture)

Linear/Quadratic Discriminant Analysis (not discussed)

. . .

Ad Feelders (Universiteit Utrecht) Data Mining 3 / 48

Discriminative Models

Discriminative methods only model the conditional distribution of Y given
X . The probability distribution of X itself is not modeled.

For the binary classification problem:

P(Y = 1 | X) = f (X , β)

where f (X , β) is some function of features X and parameters β.

Ad Feelders (Universiteit Utrecht) Data Mining 4 / 48

Discriminative Models

Examples of discriminative classification methods:

Linear probability model

Logistic regression

Feed-forward neural networks

. . .

Ad Feelders (Universiteit Utrecht) Data Mining 5 / 48

Discriminative Models: linear probability model

Consider the linear regression model

E[Y | x] = β>x Y ∈ {0, 1},

where

β>x =
m∑
j=0

βjxj , with x0 ≡ 1.

But

E[Y | x] = 1 · P(Y = 1 | x) + 0 · P(Y = 0 | x)

= P(Y = 1 | x)

So the model assumes that

P(Y = 1 | x) = β>x

Ad Feelders (Universiteit Utrecht) Data Mining 6 / 48

Notation

β =


β0
β1
...
βm

 x =


x0
x1
...
xm


with x0 ≡ 1, so

β>x =
m∑
j=0

βjxj = β0 + β1x1 + . . .+ βmxm

Ad Feelders (Universiteit Utrecht) Data Mining 7 / 48

Linear response function

β>x

P (Y = 1|x)
1

1

Ad Feelders (Universiteit Utrecht) Data Mining 8 / 48

Logistic regression

The linear probability model allows negative “probabilities” and
“probabilities” bigger than one.

Logistic response function

E[Y | x] = P(Y = 1 | x) =
eβ

>x

1 + eβ>x

or (divide numerator and denominator by eβ
>x)

P(Y = 1 | x) =
1

1 + e−β>x
= (1 + e−β

>x)−1

Ad Feelders (Universiteit Utrecht) Data Mining 9 / 48

Logistic Response Function

β>x

P (Y = 1|x)

0

1
2

Ad Feelders (Universiteit Utrecht) Data Mining 10 / 48

Linearization: the logit transformation

Since P(Y = 1 | x) and P(Y = 0 | x) have to add up to 1, we have:

P(Y = 1 | x) =
eβ

>x

1 + eβ>x
⇒ P(Y = 0 | x) =

1

1 + eβ>x

Hence,
P(Y = 1 | x)

P(Y = 0 | x)
= eβ

>x

Therefore:

ln

{
P(Y = 1 | x)

P(Y = 0 | x)

}
= β>x

The ratio
P(Y = 1 | x)

P(Y = 0 | x)

is called the odds.

Ad Feelders (Universiteit Utrecht) Data Mining 11 / 48

Linear Decision Boundary

Assign to class 1 if P(Y = 1 | x) > P(Y = 0 | x), i.e. if

P(Y = 1 | x)

P(Y = 0 | x)
> 1

This is true if

ln

{
P(Y = 1 | x)

P(Y = 0 | x)

}
> 0

So assign to class 1 if β>x > 0, and to class 0 otherwise.

Ad Feelders (Universiteit Utrecht) Data Mining 12 / 48

Linear Decision Boundary

x1

x2

β0 + β1x1 + β2x2 = 0

Class 0

Class 1

Ad Feelders (Universiteit Utrecht) Data Mining 13 / 48

Maximum Likelihood Estimation

Coin tossing example:

Y = 1 if heads, Y = 0 if tails. Parameter p = P(Y = 1).
One coin flip

P(y) = py (1− p)1−y

Note that P(1) = p, P(0) = 1− p as required.
Sequence of n independent coin flips

P(y1, y2, ..., yn) =
n∏

i=1

pyi (1− p)1−yi

which defines the likelihood function when viewed as a function of p.

Ad Feelders (Universiteit Utrecht) Data Mining 14 / 48

Maximum Likelihood Estimation

In a sequence of 10 coin flips we observe y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0).

The corresponding likelihood function is

L(p | y) = p · (1− p) · p · p · (1− p) · p · p · p · p · (1− p)

= p7(1− p)3

The corresponding log-likelihood function is

`(p | y) = ln L(p | y) = ln(p7(1− p)3) = 7 ln p + 3 ln(1− p)

Find the value of p that maximizes this function.

Ad Feelders (Universiteit Utrecht) Data Mining 15 / 48

Computing the maximum

To determine that value, we take the derivative, equate it to zero and
solve for p.

Recall that
d ln x

dx
=

1

x

So the derivative of the log-likelihood function with respect to p is:

d`(p | y)

dp
=

7

p
− 3

1− p

Equating to zero, and solving for p yields maximum likelihood estimate
p̂ = 0.7.

This is just the relative frequency of heads in the sample!

Ad Feelders (Universiteit Utrecht) Data Mining 16 / 48

Log-likelihood function for y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0)

0.0 0.2 0.4 0.6 0.8 1.0

−
30

−
25

−
20

−
15

−
10

mu

lo
gl

ik
el

ih
oo

d

Ad Feelders (Universiteit Utrecht) Data Mining 17 / 48

ML estimation for logistic regression

Logistic regression is similar to the coin tossing example, except that now
the probability of success pi depends on xi and β:

pi = P(Y = 1 | xi) = (1 + e−β
>xi)−1

1− pi = P(Y = 0 | xi) = (1 + eβ
>xi)−1

we can represent its probability distribution as follows

P(yi) = pyii (1− pi)
1−yi yi ∈ {0, 1}; i = 1, . . . , n

Ad Feelders (Universiteit Utrecht) Data Mining 18 / 48

ML estimation for logistic regression

Example

i xi yi P(yi)

1 8 0 (1 + eβ0+8β1)−1

2 12 0 (1 + eβ0+12β1)−1

3 15 1 (1 + e−β0−15β1)−1

4 10 1 (1 + e−β0−10β1)−1

The likelihood function is:

(1 +eβ0+8β1)−1× (1 +eβ0+12β1)−1× (1 +e−β0−15β1)−1× (1 +e−β0−10β1)−1

ML Estimation: find values of β0 and β1 that maximize this probability.

Ad Feelders (Universiteit Utrecht) Data Mining 19 / 48

Logistic Regression: likelihood function

Since the yi observations are assumed to be independent
(e.g. random sampling):

P(y) =
n∏

i=1

P(yi) =
n∏

i=1

pyii (1− pi)
1−yi

Or, taking the natural logarithm:

lnP(y) = ln
n∏

i=1

pyii (1− pi)
1−yi

=
n∑

i=1

{yi ln pi + (1− yi) ln(1− pi)}

Ad Feelders (Universiteit Utrecht) Data Mining 20 / 48

Logistic Regression: log-likelihood function

For the logistic regression model we have

pi = (1 + e−β
>xi)−1

1− pi = (1 + eβ
>xi)−1

so filling in gives

`(β | y) =
n∑

i=1

{
yi ln

(
1

1 + e−β>xi

)
+ (1− yi) ln

(
1

1 + eβ>xi

)}

Non-linear function of the parameters.

No closed form solution (no nice formulas for the parameter
estimates).

Likelihood function globally concave so relatively easy optimization
problem (no local maxima).

Ad Feelders (Universiteit Utrecht) Data Mining 21 / 48

Fitted Response Function

Substitute maximum likelihood estimates into the response function to
obtain the fitted response function

P̂(Y = 1 | x) =
e β̂

>x

1 + e β̂>x

Ad Feelders (Universiteit Utrecht) Data Mining 22 / 48

Example: Programming Assignment

Model the probability of successfully completing a programming
assignment.

Explanatory variable: “months of programming experience”.
We find β̂0 = −3.0597 and β̂1 = 0.1615, so

P̂(Y = 1 | x) =
e−3.0597+0.1615x

1 + e−3.0597+0.1615x

14 months of programming experience:

P̂(Y = 1 | x = 14) =
e−3.0597+0.1615(14)

1 + e−3.0597+0.1615(14)
≈ 0.31

Ad Feelders (Universiteit Utrecht) Data Mining 23 / 48

Example: Programming Assignment

month.exp success month.exp success

1 14 0 16 13 0

2 29 0 17 9 0

3 6 0 18 32 1

4 25 1 19 24 0

5 18 1 20 13 1

6 4 0 21 19 0

7 18 0 22 4 0

8 12 0 23 28 1

9 22 1 24 22 1

10 6 0 25 8 1

11 30 1

12 11 0

13 30 1

14 5 0

15 20 1

Ad Feelders (Universiteit Utrecht) Data Mining 24 / 48

Interpretation

We have

ln

{
P̂(Y = 1 | x)

P̂(Y = 0 | x)

}
= −3.0597 + 0.1615x ,

so with every additional month of programming experience, the log odds
increase with 0.1615.

The odds are multiplied by e0.1615 ≈ 1.175 so with every additional month
of programming experience, the odds increase with 17.5%.

When x increases with one unit, the odds are multiplied by eβ1 because:

eβ0+β1(x+1) = eβ0+β1x+β1 = eβ0+β1x × eβ1 ,

since ea+b = ea × eb.

Ad Feelders (Universiteit Utrecht) Data Mining 25 / 48

Interpretation

Note that the effect of an increase in x on the probability of success
depends on the value of x :

An increase from 14 to 24 months of programming experience leads
to an increase of the probability of success from 0.31 to 0.69.

An increase from 34 to 44 months of programming experience leads
to an increase of the probability of success from 0.92 to 0.98.

Ad Feelders (Universiteit Utrecht) Data Mining 26 / 48

Allocation Rule

Probability of the classes is equal when

−3.0597 + 0.1615x = 0

Solving for x we get x ≈ 18.95.

Allocation Rule:

x ≥ 19: predict y = 1
x < 19: predict y = 0

If a person has 19 months or more programming experience,
predict success, otherwise predict failure.

Ad Feelders (Universiteit Utrecht) Data Mining 27 / 48

Programming Assignment: Confusion Matrix

Cross table of observed and predicted class label:

0 1

0 11 3
1 3 8

Row: observed, Column: predicted

Error rate: 6/25=0.24

Default (predict majority class): 11/25=0.44

Ad Feelders (Universiteit Utrecht) Data Mining 28 / 48

How to in R

> prog.logreg <- glm(success ∼ month.exp, data=prog.dat, family=binomial)

> summary(prog.logreg)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.05970 1.25935 -2.430 0.0151 *

month.exp 0.16149 0.06498 2.485 0.0129 *

Number of Fisher Scoring iterations: 4

> table(prog.dat$success, as.numeric(prog.logreg$fitted > 0.5))

0 1

0 11 3

1 3 8

Ad Feelders (Universiteit Utrecht) Data Mining 29 / 48

Regularization

If we have a large number of predictors, even a linear model estimated with
maximum likelihood can be prone to overfitting.
This can be controlled by punishing large (positive or negative) weights. The
coefficient estimates are shrunken towards zero.
In this way we trade off bias against variance.
Add a penalty term for the size of the coefficients to the objective function.
With LASSO penalty:

E (β) = −`(β) + λ

m∑
j=1

|βj |,

where E (β) is the new error function that we want to minimize,
and −`(β) is the negative log-likelihood function.
The value of λ is usually selected by cross-validation.

Ad Feelders (Universiteit Utrecht) Data Mining 30 / 48

Movie Reviews: IMDB Review Dataset

Collection of 50,000 reviews from IMDB, allowing no more than 30 reviews
per movie.
Contains an even number of positive and negative reviews, so random
guessing yields 50% accuracy.
Considers only highly polarized reviews. A negative review has a score ≤ 4 out
of 10, and a positive review has a score ≥ 7 out of 10.
Neutral reviews are not included in the dataset.

Andrew L. Maas et al., Learning Word Vectors for Sentiment Analysis, Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142–150,2011.

Data available at:

http://ai.stanford.edu/~amaas/data/sentiment/

Ad Feelders (Universiteit Utrecht) Data Mining 31 / 48

Analysis of Movie Reviews in R

load the tm package

> library(tm)

Read in the data using UTF-8 encoding

> reviews.neg <- VCorpus(DirSource("D:/MovieReviews/train/neg",

encoding="UTF-8"))

> reviews.pos <- VCorpus(DirSource("D:/MovieReviews/train/pos",

encoding="UTF-8"))

Join negative and positive reviews into a single Corpus

> reviews.all <- c(reviews.neg,reviews.pos)

create label vector (0=negative, 1=positive)

> labels <- c(rep(0,12500),rep(1,12500))

> reviews.all

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 25000

Ad Feelders (Universiteit Utrecht) Data Mining 32 / 48

Analysis of Movie Reviews

The first review before pre-processing:

> as.character(reviews.all[[1]])

[1] "Story of a man who has unnatural feelings for a pig.

Starts out with a opening scene that is a terrific example

of absurd comedy. A formal orchestra audience is turned into

an insane, violent mob by the crazy chantings of it’s singers.

Unfortunately it stays absurd the WHOLE time with no

general narrative eventually making it just too off putting.

Even those from the era should be turned off.

The cryptic dialogue would make Shakespeare seem easy to a

third grader. On a technical level it’s better than you might

think with some good cinematography by future great Vilmos Zsigmond.

Future stars Sally Kirkland and Frederic Forrest can be seen briefly."

Ad Feelders (Universiteit Utrecht) Data Mining 33 / 48

Analysis of Movie Reviews: Pre-Processing

Remove punctuation marks (comma’s, etc.)

> reviews.all <- tm_map(reviews.all,removePunctuation)

Make all letters lower case

> reviews.all <- tm_map(reviews.all,content_transformer(tolower))

Remove stopwords

> reviews.all <- tm_map(reviews.all, removeWords,

stopwords("english"))

Remove numbers

> reviews.all <- tm_map(reviews.all,removeNumbers)

Remove excess whitespace

> reviews.all <- tm_map(reviews.all,stripWhitespace)

Not done: stemming, part-of-speech tagging, ...

Ad Feelders (Universiteit Utrecht) Data Mining 34 / 48

Analysis of Movie Reviews

The first review after pre-processing:

> as.character(reviews.all[[1]])

[1] "story man unnatural feelings pig starts opening scene terrific

example absurd comedy formal orchestra audience turned insane violent

mob crazy chantings singers unfortunately stays absurd whole time

general narrative eventually making just putting even era turned

cryptic dialogue make shakespeare seem easy third grader technical

level better might think good cinematography future great vilmos

zsigmond future stars sally kirkland frederic forrest can seen briefly"

Ad Feelders (Universiteit Utrecht) Data Mining 35 / 48

Analysis of Movie Reviews

draw training sample (stratified)

draw 8000 negative reviews at random

> index.neg <- sample(12500,8000)

draw 8000 positive reviews at random

> index.pos <- 12500+sample(12500,8000)

> index.train <- c(index.neg,index.pos)

create document-term matrix from training corpus

> train.dtm <- DocumentTermMatrix(reviews.all[index.train])

> dim(train.dtm)

[1] 16000 92819

We’ve got 92,819 features. Perhaps this is a bit too much.

remove terms that occur in less than 5% of the documents

(so-called sparse terms)

> train.dtm <- removeSparseTerms(train.dtm,0.95)

> dim(train.dtm)

[1] 16000 306

create document term matrix for test set

> test.dtm <- DocumentTermMatrix(reviews.all[-index.train],

list(dictionary=dimnames(train.dtm)[[2]]))

> dim(test.dtm)

[1] 9000 306

Ad Feelders (Universiteit Utrecht) Data Mining 36 / 48

Analysis of Movie Reviews

view a small part of the document-term matrix

> inspect(train.dtm[100:110,80:85])

<<DocumentTermMatrix (documents: 11, terms: 6)>>

Non-/sparse entries: 7/59

Sparsity : 89%

Maximal term length: 6

Weighting : term frequency (tf)

Sample :

Terms

Docs family fan far father feel felt

10099_1.txt 0 0 1 0 0 0

1033_4.txt 0 0 0 0 1 0

10718_4.txt 0 0 0 0 0 0

11182_3.txt 0 0 0 0 0 0

11861_4.txt 1 0 0 0 0 0

3014_4.txt 0 1 0 0 1 2

315_1.txt 0 0 0 0 0 0

6482_2.txt 0 0 0 0 1 0

9577_1.txt 0 0 0 0 0 0

9674_3.txt 0 0 0 0 0 0

Ad Feelders (Universiteit Utrecht) Data Mining 37 / 48

Application of Logistic Regression to Movie Reviews

logistic regression with lasso penalty

> reviews.glmnet <- cv.glmnet(as.matrix(train.dtm),labels[index.train],

family="binomial",type.measure="class")

> plot(reviews.glmnet)

> coef(reviews.glmnet,s="lambda.1se")

309 x 1 sparse Matrix of class "dgCMatrix"

1

bad -0.613843496

beautiful 0.378249156

best 0.400765691

better -0.193594713

boring -0.904918921

excellent 0.874061528

fun 0.390055537

funny .

minutes -0.381871597

perfect 0.757174138

poor -0.726663951

script -0.461754268

stupid -0.555516834

supposed -0.611473721

terrible -0.830472064

wonderful 0.697696588

worst -1.431738320

Ad Feelders (Universiteit Utrecht) Data Mining 38 / 48

Cross-Validation on lambdaCross-Validation on lambda

Ad Feelders (Universiteit Utrecht) Data Mining 39 / 48
Ad Feelders (Universiteit Utrecht) Data Mining 39 / 48

Application of Logistic Regression to Movie Reviews

make predictions on the test set

> reviews.logreg.pred <- predict(reviews.glmnet,

newx=as.matrix(test.dtm),s="lambda.1se",type="class")

show confusion matrix

> table(reviews.logreg.pred,labels[-index.train])

reviews.logreg.pred 0 1

0 3468 704

1 1032 3796

compute accuracy: about 81% correct

> (3468+3796)/9000

[1] 0.8071111

Ad Feelders (Universiteit Utrecht) Data Mining 40 / 48

Including Bigrams

The bigrams in

the spy who loved me

are:

the spy

spy who

who loved

loved me

but not for example

spy loved

The two words need to be next to each other.

Ad Feelders (Universiteit Utrecht) Data Mining 41 / 48

Including Bigrams

extract both unigrams and bigrams

> train.dtm2 <- DocumentTermMatrix(reviews.all[index.train],

control = list(tokenize = UniBiTokenizer))

more than one million uni+bigrams!

> dim(train.dtm2)

[1] 16000 1346555

remove terms that occur in less than 1% of documents

> train.dtm2 <- removeSparseTerms(train.dtm2,0.99)

after removing sparse terms only 1,753 left

> dim(train.dtm2)

[1] 16000 1753

Code for UniBiTokenizer:

UniBiTokenizer <-

function (x) {

unlist(lapply(ngrams(words(x), 1:2), paste, collapse = " "),

use.names = FALSE)

}

Ad Feelders (Universiteit Utrecht) Data Mining 42 / 48

Including Bigrams

fit regularized logistic regression model

use cross-validation to evaluate different lambda values

> reviews.glmnet2 <- cv.glmnet(as.matrix(train.dtm2),labels[index.train],

family="binomial",type.measure="class")

show coefficient estimates for lambda-1se

(only a selection of the bigram coefficients is shown here)

> coef(reviews.glmnet2,s="lambda.1se")

bad movie -9.580669e-02

cant believe -1.280761e-01

character development .

great film .

great movie 2.145233e-01

highly recommend 5.419558e-01

main character -1.065261e-01

make sense -1.737418e-01

one worst -4.623925e-01

special effects .

supporting cast .

waste time -6.520532e-02

well done 2.860367e-01

whole movie -1.981443e-01

year old -5.041887e-02

Ad Feelders (Universiteit Utrecht) Data Mining 43 / 48

Cross-Validation on lambdaCross-Validation on lambda

−10 −8 −6 −4 −2

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Log(λ)

M
is

cl
as

si
fic

at
io

n
E

rr
or

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●●●

1738 1722 1672 1567 1366 987 601 318 124 35 8 2

Ad Feelders (Universiteit Utrecht) Data Mining 44 / 48
Ad Feelders (Universiteit Utrecht) Data Mining 44 / 48

Including Bigrams

create document term matrix for the test data,

using the training dictionary

> test.dtm2 <- DocumentTermMatrix(reviews.all[-index.train],

control = list(tokenize=UniBiTokenizer,dictionary=Terms(train.dtm2)))

make predictions using lambda.1se

> reviews.glmnet.pred <- predict(reviews.glmnet2,newx=as.matrix(test.dtm2),

s="lambda.1se",type="class")

accuracy improved due to including more unigrams and including bigrams!

> table(reviews.glmnet.pred,labels[-index.train])

reviews.glmnet.pred 0 1

0 3751 534

1 749 3966

> (3751+3966)/9000

[1] 0.8574444

Ad Feelders (Universiteit Utrecht) Data Mining 45 / 48

The Second Assignment: Text Classification

Text Classification for the Detection of Opinion Spam.

We analyze fake and genuine hotel reviews.

The genuine reviews have been collected from several popular online
review communities.

The fake reviews have been obtained from Mechanical Turk.

There are 400 reviews in each of the categories: positive truthful,
positive deceptive, negative truthful, negative deceptive.

We will focus on the negative reviews and try to discriminate between
truthful and deceptive reviews.

Hence, the total number of reviews in our data set is 800.

Ad Feelders (Universiteit Utrecht) Data Mining 46 / 48

The Second Assignment: Text Classification

Analyse the data with:

1 Multinomial naive Bayes (generative linear classifier),

2 Regularized logistic regression (discriminative linear classifier),

3 Classification trees, (flexible classifier) and

4 Random forests (ensemble of classification trees).

Ad Feelders (Universiteit Utrecht) Data Mining 47 / 48

The Second Assignment: Text Classification

This is a data analysis assignment, not a programming assignment.

You will need to program a little to perform the experiments.

You only need to hand in a report of your analysis, no code!

You are free to use whatever tools you want.

We can provide support for Python and R.

The report should describe the analysis you performed in such a way
that the reader would be able reproduce it.

Carefully read the assignment before you start!

Ad Feelders (Universiteit Utrecht) Data Mining 48 / 48

