Data Mining Logistic Regression Text Classification

Ad Feelders

Universiteit Utrecht

3

イロト イヨト イヨト イヨト

Two types of approaches to classification

In (probabilistic) classification we are interested in the conditional distribution

 $P(Y \mid x),$

so that, for example, when we observe X = x we can predict the class y with the highest probability for that value of X.

There are two basic approaches to modeling P(Y | x):

• Generative Models (use Bayes' rule):

$$P(Y = y \mid x) = \frac{P(x \mid Y = y)P(Y = y)}{P(x)} = \frac{P(x \mid Y = y)P(Y = y)}{\sum_{y'} P(x \mid Y = y')P(Y = y')}$$

• Discriminative Models: model $P(Y \mid x)$ directly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples of generative classification methods:

- Naive Bayes classifier (discussed in the previous lecture)
- Linear/Quadratic Discriminant Analysis (not discussed)

• . . .

3

(日)

Discriminative methods only model the *conditional* distribution of Y given X. The probability distribution of X itself is not modeled.

For the binary classification problem:

$$P(Y=1 \mid X) = f(X,\beta)$$

where $f(X,\beta)$ is some function of features X and parameters β .

Examples of discriminative classification methods:

- Linear probability model
- Logistic regression
- Feed-forward neural networks

• . . .

3

(日)

Discriminative Models: linear probability model

Consider the linear regression model

$$\mathbb{E}[Y \mid x] = \beta^{\top} x \qquad \qquad Y \in \{0, 1\},$$

where

$$\beta^{\top} x = \sum_{j=0}^{m} \beta_j x_j,$$
 with $x_0 \equiv 1.$

But

$$\mathbb{E}[Y \mid x] = 1 \cdot P(Y = 1 \mid x) + 0 \cdot P(Y = 0 \mid x) \\ = P(Y = 1 \mid x)$$

So the model assumes that

$$P(Y=1 \mid x) = \beta^{\top} x$$

3

(日)

Notation

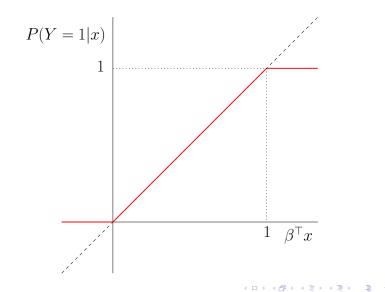
$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} \qquad \qquad x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_m \end{pmatrix}$$

with $x_0 \equiv 1$, so

$$\beta^{\top} x = \sum_{j=0}^{m} \beta_j x_j = \beta_0 + \beta_1 x_1 + \ldots + \beta_m x_m$$

イロト イポト イヨト イヨト 二日

Linear response function



The linear probability model allows negative "probabilities" and "probabilities" bigger than one.

Logistic response function

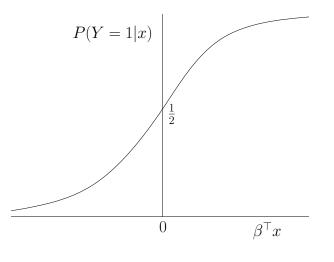
$$\mathbb{E}[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\beta^\top x}}{1 + e^{\beta^\top x}}$$

or (divide numerator and denominator by $e^{\beta^{\top}x}$)

$$P(Y = 1 \mid x) = \frac{1}{1 + e^{-\beta^{\top}x}} = (1 + e^{-\beta^{\top}x})^{-1}$$

イロト 不得 トイヨト イヨト

Logistic Response Function



æ

イロン イ理 とく ヨン イ ヨン

Linearization: the logit transformation

Since P(Y = 1 | x) and P(Y = 0 | x) have to add up to 1, we have:

$$P(Y = 1 \mid x) = rac{e^{eta^ op x}}{1 + e^{eta^ op x}} \quad \Rightarrow \quad P(Y = 0 \mid x) = rac{1}{1 + e^{eta^ op x}}$$

Hence,

$$\frac{P(Y=1 \mid x)}{P(Y=0 \mid x)} = e^{\beta^{\top} x}$$

Therefore:

$$\ln\left\{\frac{P(Y=1 \mid x)}{P(Y=0 \mid x)}\right\} = \beta^{\top}x$$

The ratio

$$\frac{P(Y=1 \mid x)}{P(Y=0 \mid x)}$$

is called the *odds*.

Assign to class 1 if P(Y = 1 | x) > P(Y = 0 | x), i.e. if

$$\frac{P(Y = 1 \mid x)}{P(Y = 0 \mid x)} > 1$$

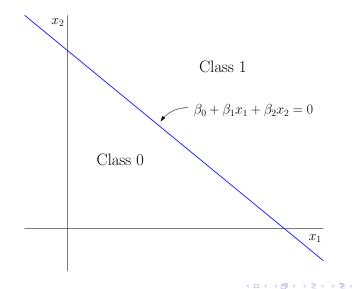
This is true if

$$\ln\left\{\frac{P(Y=1 \mid x)}{P(Y=0 \mid x)}\right\} > 0$$

So assign to class 1 if $\beta^{\top} x > 0$, and to class 0 otherwise.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linear Decision Boundary



æ

Coin tossing example:

Y = 1 if heads, Y = 0 if tails. Parameter p = P(Y = 1). One coin flip

$$P(y) = p^{y}(1-p)^{1-y}$$

Note that P(1) = p, P(0) = 1 - p as required. Sequence of *n* independent coin flips

$$P(y_1, y_2, ..., y_n) = \prod_{i=1}^n p^{y_i} (1-p)^{1-y_i}$$

which defines the likelihood function when viewed as a function of p.

In a sequence of 10 coin flips we observe y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0).

The corresponding likelihood function is

$$\begin{aligned} L(p \mid y) &= p \cdot (1-p) \cdot p \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot p \cdot (1-p) \\ &= p^7 (1-p)^3 \end{aligned}$$

The corresponding log-likelihood function is

$$\ell(p \mid y) = \ln L(p \mid y) = \ln(p^7(1-p)^3) = 7 \ln p + 3 \ln(1-p)$$

Find the value of p that maximizes this function.

Computing the maximum

To determine that value, we take the derivative, equate it to zero and solve for p.

Recall that

$$\frac{d\ln x}{dx} = \frac{1}{x}$$

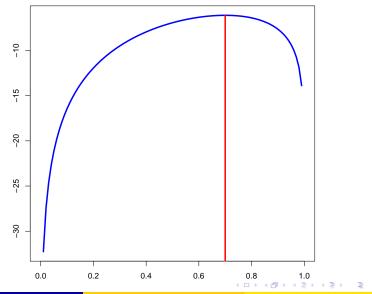
So the derivative of the log-likelihood function with respect to p is:

$$\frac{d\ell(p \mid y)}{dp} = \frac{7}{p} - \frac{3}{1-p}$$

Equating to zero, and solving for p yields maximum likelihood estimate $\hat{p} = 0.7$.

This is just the relative frequency of heads in the sample!

Log-likelihood function for y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0)



Ad Feelders (Universiteit Utrecht)

17 / 48

Data Mining

Logistic regression is similar to the coin tossing example, except that now the probability of success p_i depends on x_i and β :

$$p_i = P(Y = 1 | x_i) = (1 + e^{-\beta^\top x_i})^{-1}$$

$$1 - p_i = P(Y = 0 | x_i) = (1 + e^{\beta^\top x_i})^{-1}$$

we can represent its probability distribution as follows

$$P(y_i) = p_i^{y_i}(1-p_i)^{1-y_i}$$
 $y_i \in \{0,1\}; i = 1, ..., n$

イロト 不得 ト イヨト イヨト

ML estimation for logistic regression

Example

i	xi	Уi	$P(y_i)$
1	8	0	$(1+e^{eta_0+8eta_1})^{-1}$
2	12	0	$(1+e^{eta_0+12eta_1})^{-1}$
3	15	1	$(1+e^{-eta_0-15eta_1})^{-1}$
4	10	1	$(1+e^{-eta_0-10eta_1})^{-1}$

The likelihood function is:

$$(1 + e^{eta_0 + 8eta_1})^{-1} imes (1 + e^{eta_0 + 12eta_1})^{-1} imes (1 + e^{-eta_0 - 15eta_1})^{-1} imes (1 + e^{-eta_0 - 10eta_1})^{-1}$$

ML Estimation: find values of β_0 and β_1 that maximize this probability.

Logistic Regression: likelihood function

Since the y_i observations are assumed to be independent (e.g. random sampling):

$$P(y) = \prod_{i=1}^{n} P(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

Or, taking the natural logarithm:

$$\ln P(y) = \ln \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$
$$= \sum_{i=1}^{n} \{ y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \}$$

イロト 不得 トイヨト イヨト

Logistic Regression: log-likelihood function

For the logistic regression model we have

$$egin{array}{rcl} p_i &=& (1+e^{-eta^ op x_i})^{-1} \ 1-p_i &=& (1+e^{eta^ op x_i})^{-1} \end{array}$$

so filling in gives

$$\ell(\beta \mid y) = \sum_{i=1}^{n} \left\{ y_i \ln \left(\frac{1}{1 + e^{-\beta^\top x_i}} \right) + (1 - y_i) \ln \left(\frac{1}{1 + e^{\beta^\top x_i}} \right) \right\}$$

- Non-linear function of the parameters.
- No closed form solution (no nice formulas for the parameter estimates).
- Likelihood function globally concave so relatively easy optimization problem (no local maxima).

Ad Feelders (Universiteit Utrecht)

Substitute maximum likelihood estimates into the response function to obtain the *fitted response function*

$$\hat{P}(Y=1 \mid x) = rac{e^{\hat{eta}^{ op}x}}{1+e^{\hat{eta}^{ op}x}}$$

э

イロト イヨト イヨト イヨト

Model the probability of successfully completing a programming assignment.

Explanatory variable: "months of programming experience". We find $\hat{\beta}_0=-3.0597$ and $\hat{\beta}_1=0.1615$, so

$$\hat{P}(Y = 1 \mid x) = \frac{e^{-3.0597 + 0.1615x}}{1 + e^{-3.0597 + 0.1615x}}$$

14 months of programming experience:

$$\hat{P}(Y=1 \mid x=14) = \frac{e^{-3.0597+0.1615(14)}}{1+e^{-3.0597+0.1615(14)}} \approx 0.31$$

Example: Programming Assignment

	month.exp	success		month.exp	success
1	14	0	16	13	0
2	29	0	17	9	0
3	6	0	18	32	1
4	25	1	19	24	0
5	18	1	20	13	1
6	4	0	21	19	0
7	18	0	22	4	0
8	12	0	23	28	1
9	22	1	24	22	1
10	6	0	25	8	1
11	30	1			
12	11	0			
13	30	1			
14	5	0			
15	20	1			

æ

イロト イヨト イヨト イヨト

Interpretation

We have

$$\ln\left\{\frac{\hat{P}(Y=1\mid x)}{\hat{P}(Y=0\mid x)}\right\} = -3.0597 + 0.1615x,$$

so with every additional month of programming experience, the log odds increase with 0.1615.

The odds are multiplied by $e^{0.1615} \approx 1.175$ so with every additional month of programming experience, the odds increase with 17.5%.

When x increases with one unit, the odds are multiplied by e^{β_1} because:

$$e^{\beta_0+\beta_1(x+1)}=e^{\beta_0+\beta_1x+\beta_1}=e^{\beta_0+\beta_1x} imes e^{\beta_1},$$

since $e^{a+b} = e^a \times e^b$.

Note that the effect of an increase in x on the *probability* of success depends on the value of x:

- An increase from 14 to 24 months of programming experience leads to an increase of the probability of success from 0.31 to 0.69.
- An increase from 34 to 44 months of programming experience leads to an increase of the probability of success from 0.92 to 0.98.

< □ > < □ > < □ > < □ > < □ > < □ >

Probability of the classes is equal when

-3.0597 + 0.1615x = 0

Solving for x we get $x \approx 18.95$.

Allocation Rule:

```
x \ge 19: predict y = 1
x < 19: predict y = 0
```

If a person has 19 months or more programming experience, predict success, otherwise predict failure.

Programming Assignment: Confusion Matrix

Cross table of observed and predicted class label:

	0	1
0	11	3
1	3	8

Row: observed, Column: predicted

Error rate: 6/25=0.24

Default (predict majority class): 11/25=0.44

How to in R

> prog.logreg <- glm(success ~ month.exp, data=prog.dat, family=binomial)
> summary(prog.logreg)

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.05970 1.25935 -2.430 0.0151 * month.exp 0.16149 0.06498 2.485 0.0129 *

Number of Fisher Scoring iterations: 4

> table(prog.dat\$success, as.numeric(prog.logreg\$fitted > 0.5))

0 1 0 11 3 1 3 8

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Regularization

- If we have a large number of predictors, even a linear model estimated with maximum likelihood can be prone to overfitting.
- This can be controlled by punishing large (positive or negative) weights. The coefficient estimates are *shrunken* towards zero.
- In this way we trade off bias against variance.
- Add a penalty term for the size of the coefficients to the objective function.
- With LASSO penalty:

$$E(\beta) = -\ell(\beta) + \lambda \sum_{j=1}^{m} |\beta_j|,$$

where $E(\beta)$ is the new error function that we want to minimize, and $-\ell(\beta)$ is the negative log-likelihood function.

• The value of λ is usually selected by cross-validation.

・ロト ・ 同ト ・ ヨト ・ ヨト

Movie Reviews: IMDB Review Dataset

- Collection of 50,000 reviews from IMDB, allowing no more than 30 reviews per movie.
- Contains an even number of positive and negative reviews, so random guessing yields 50% accuracy.
- Considers only highly polarized reviews. A negative review has a score \leq 4 out of 10, and a positive review has a score \geq 7 out of 10.
- Neutral reviews are not included in the dataset.

Andrew L. Maas et al., *Learning Word Vectors for Sentiment Analysis*, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150,2011.

Data available at:

http://ai.stanford.edu/~amaas/data/sentiment/

イロト 不得下 イヨト イヨト 二日

Analysis of Movie Reviews in R

```
# load the tm package
> library(tm)
# Read in the data using UTF-8 encoding
> reviews.neg <- VCorpus(DirSource("D:/MovieReviews/train/neg",</pre>
                         encoding="UTF-8"))
> reviews.pos <- VCorpus(DirSource("D:/MovieReviews/train/pos",</pre>
                         encoding="UTF-8"))
# Join negative and positive reviews into a single Corpus
> reviews.all <- c(reviews.neg,reviews.pos)</pre>
# create label vector (0=negative, 1=positive)
> labels <- c(rep(0,12500),rep(1,12500))</pre>
> reviews.all
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 25000
```

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Analysis of Movie Reviews

The first review before pre-processing:

> as.character(reviews.all[[1]])

[1] "Story of a man who has unnatural feelings for a pig. Starts out with a opening scene that is a terrific example of absurd comedy. A formal orchestra audience is turned into an insane, violent mob by the crazy chantings of it's singers. Unfortunately it stays absurd the WHOLE time with no general narrative eventually making it just too off putting. Even those from the era should be turned off. The cryptic dialogue would make Shakespeare seem easy to a third grader. On a technical level it's better than you might think with some good cinematography by future great Vilmos Zsigmond. Future stars Sally Kirkland and Frederic Forrest can be seen briefly."

イロト 不得下 イヨト イヨト 二日

Analysis of Movie Reviews: Pre-Processing

- # Remove punctuation marks (comma's, etc.)
- > reviews.all <- tm_map(reviews.all,removePunctuation)</pre>
- # Make all letters lower case
- > reviews.all <- tm_map(reviews.all,content_transformer(tolower))</pre>
- # Remove stopwords
- # Remove numbers
- > reviews.all <- tm_map(reviews.all,removeNumbers)</pre>
- # Remove excess whitespace
- > reviews.all <- tm_map(reviews.all,stripWhitespace)</pre>

Not done: stemming, part-of-speech tagging, ...

<ロト < 四ト < 三ト < 三ト = 三

Analysis of Movie Reviews

The first review after pre-processing:

> as.character(reviews.all[[1]])

[1] "story man unnatural feelings pig starts opening scene terrific example absurd comedy formal orchestra audience turned insane violent mob crazy chantings singers unfortunately stays absurd whole time general narrative eventually making just putting even era turned cryptic dialogue make shakespeare seem easy third grader technical level better might think good cinematography future great vilmos zsigmond future stars sally kirkland frederic forrest can seen briefly"

Analysis of Movie Reviews

```
# draw training sample (stratified)
# draw 8000 negative reviews at random
> index.neg <- sample(12500,8000)
# draw 8000 positive reviews at random
> index.pos <- 12500+sample(12500,8000)
> index.train <- c(index.neg,index.pos)</pre>
```

```
# create document-term matrix from training corpus
> train.dtm <- DocumentTermMatrix(reviews.all[index.train])
> dim(train.dtm)
[1] 16000 92819
```

We've got 92,819 features. Perhaps this is a bit too much.

```
# remove terms that occur in less than 5% of the documents
# (so-called sparse terms)
```

```
> train.dtm <- removeSparseTerms(train.dtm,0.95)
> dim(train.dtm)
[1] 16000 306
```

3

(日)

Analysis of Movie Reviews

```
# view a small part of the document-term matrix
> inspect(train.dtm[100:110,80:85])
```

```
<<DocumentTermMatrix (documents: 11. terms: 6)>>
Non-/sparse entries: 7/59
Sparsity
              : 89%
Maximal term length: 6
Weighting
             : term frequency (tf)
Sample
         Terms
        family fan far father feel felt
Docs
 10099_1.txt
             0 0
                   1
                         0
                            0
                                0
 1033_4.txt
             0 0 0
                         0
                            1
                                0
 10718_4.txt 0 0 0
                         0 0 0
 11182_3.txt 0 0 0
                         0
                            0
                                0
 11861_4.txt 1 0 0
                            0 0
                         0
 3014_4.txt
             0 1
                   0
                         0
                            1 2
             0 0 0
 315 1.txt
                         0
                            0
                                0
             0 0 0
 6482 2.txt
                         0
                            1
                                0
 9577 1.txt
              0 0 0
                         0
                            0
                                0
 9674_3.txt
              0
                 0
                   0
                         0
                            0
                                0
```

3

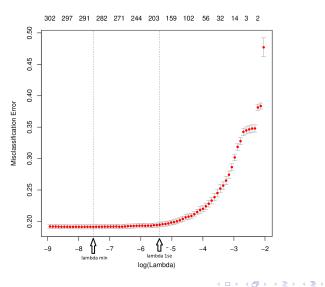
イロト 不得 トイヨト イヨト

Application of Logistic Regression to Movie Reviews

```
# logistic regression with lasso penalty
> reviews.glmnet <- cv.glmnet(as.matrix(train.dtm),labels[index.train],</pre>
                    family="binomial",type.measure="class")
> plot(reviews.glmnet)
> coef(reviews.glmnet.s="lambda.1se")
309 x 1 sparse Matrix of class "dgCMatrix"
                        1
bad
            -0.613843496
beautiful
             0.378249156
            0.400765691
best
better
           -0 193594713
           -0.904918921
boring
excellent
           0.874061528
fun
             0.390055537
funnv
           -0.381871597
minutes
perfect
            0.757174138
poor
            -0.726663951
script
            -0 461754268
stupid
           -0.555516834
supposed
           -0.611473721
terrible
           -0.830472064
wonderful
            0.697696588
            -1.431738320
worst
                                                                   イロト 不得 トイヨト イヨト
```

Ad Feelders (Universiteit Utrecht)

Cross-Validation on lambda



Application of Logistic Regression to Movie Reviews

> (3468+3796)/9000

```
[1] 0.8071111
```

The bigrams in

the spy who loved me

are:

the spy spy who who loved loved me

but not for example

spy loved

The two words need to be next to each other.

3

イロト イヨト イヨト イヨト

```
# extract both unigrams and bigrams
> train.dtm2 <- DocumentTermMatrix(reviews.all[index.train],</pre>
    control = list(tokenize = UniBiTokenizer))
# more than one million uni+bigrams!
> dim(train.dtm2)
[1]
      16000 1346555
# remove terms that occur in less than 1% of documents
> train.dtm2 <- removeSparseTerms(train.dtm2,0.99)</pre>
# after removing sparse terms only 1,753 left
> dim(train.dtm2)
[1] 16000 1753
Code for UniBiTokenizer:
UniBiTokenizer <-
function (x) {
unlist(lapply(ngrams(words(x), 1:2), paste, collapse = " "),
       use.names = FALSE)
}
```

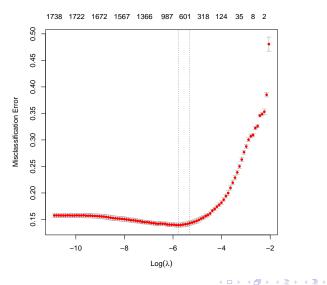
イロト イポト イヨト イヨト 二日

```
# fit regularized logistic regression model
# use cross-validation to evaluate different lambda values
> reviews.glmnet2 <- cv.glmnet(as.matrix(train.dtm2),labels[index.train],
      family="binomial",type.measure="class")</pre>
```

```
# show coefficient estimates for lambda-1se
# (only a selection of the bigram coefficients is shown here)
> coef(reviews.glmnet2.s="lambda.1se")
bad movie
                   -9.580669e-02
cant believe
                    -1.280761e-01
character development .
great film
great movie
                      2.145233e-01
highly recommend 5.419558e-01
main character
                   -1.065261e-01
                  -1.737418e-01
make sense
                    -4.623925e-01
one worst
special effects
                      •
supporting cast
waste time
                     -6.520532e-02
well done
                    2.860367e-01
                    -1.981443e-01
whole movie
vear old
                     -5.041887e-02
```

イロト イポト イヨト イヨト 二日

Cross-Validation on lambda



Ad Feelders (Universiteit Utrecht)

44 / 48

```
# create document term matrix for the test data.
# using the training dictionary
> test.dtm2 <- DocumentTermMatrix(reviews.all[-index.train],</pre>
    control = list(tokenize=UniBiTokenizer,dictionary=Terms(train.dtm2)))
# make predictions using lambda.1se
> reviews.glmnet.pred <- predict(reviews.glmnet2,newx=as.matrix(test.dtm2),</pre>
                                  s="lambda.1se",type="class")
# accuracy improved due to including more unigrams and including bigrams!
> table(reviews.glmnet.pred,labels[-index.train])
  reviews.glmnet.pred
                            1
                         0
                    0 3751 534
                    1 749 3966
> (3751+3966)/9000
[1] 0.8574444
```

イロト イポト イヨト イヨト 二日

The Second Assignment: Text Classification

Text Classification for the Detection of Opinion Spam.

- We analyze fake and genuine hotel reviews.
- The genuine reviews have been collected from several popular online review communities.
- The fake reviews have been obtained from Mechanical Turk.
- There are 400 reviews in each of the categories: positive truthful, positive deceptive, negative truthful, negative deceptive.
- We will focus on the negative reviews and try to discriminate between truthful and deceptive reviews.
- Hence, the total number of reviews in our data set is 800.

The Second Assignment: Text Classification

Analyse the data with:

- Multinomial naive Bayes (generative linear classifier),
- 2 Regularized logistic regression (discriminative linear classifier),
- S Classification trees, (flexible classifier) and
- In the second second

The Second Assignment: Text Classification

- This is a data analysis assignment, not a programming assignment.
- You will need to program a little to perform the experiments.
- You only need to hand in a report of your analysis, no code!
- You are free to use whatever tools you want.
- We can provide support for Python and R.
- The report should describe the analysis you performed in such a way that the reader would be able reproduce it.
- Carefully read the assignment before you start!

(四) (ヨ) (ヨ)