
Data Mining
Text Classification

Naive Bayes

Ad Feelders

Universiteit Utrecht

Ad Feelders (Universiteit Utrecht) Data Mining 1 / 50

Text Mining

Text Mining is data mining applied to text data.

Often uses well-known data mining algorithms.

Text data requires substantial pre-processing.

This typically results in a large number of attributes
(for example, the size of the vocabulary/dictionary).

Ad Feelders (Universiteit Utrecht) Data Mining 2 / 50

Text Classification

Predict the class(es) of text documents.

Can be single-label or multi-label.

Multi-label classification is often performed by building multiple
binary classifiers (one for each possible class).

Examples of text classification:

topics of news articles,
spam/no spam for e-mail messages,
sentiment analysis (e.g. positive/negative review),
opinion spam (e.g. fake reviews),
music genre from song lyrics

Ad Feelders (Universiteit Utrecht) Data Mining 3 / 50

Is this Rap, Blues, Metal, or Country?

Blasting our way through the boundaries of Hell

No one can stop us tonight

We take on the world with hatred inside

Mayhem the reason we fight

Surviving the slaughters and killing we’ve lost

Then we return from the dead

Attacking once more now with twice as much strength

We conquer then move on ahead

[Chorus:]

Evil

My words defy

Evil

Has no disguise

Evil

Will take your soul

Evil

My wrath unfolds

Satan our master in evil mayhem

Guides us with every first step

Our axes are growing with power and fury

Soon there’ll be nothingness left

Midnight has come and the leathers strapped on

Evil is at our command

We clash with God’s angel and conquer new souls

Consuming all that we can

Ad Feelders (Universiteit Utrecht) Data Mining 4 / 50

Probabilistic Classifier

A probabilistic classifier assigns a probability to each class. In case a class
prediction is required we typically predict the class with highest probability:

ĉ = arg max
c∈C

P(c | d) = arg max
c∈C

P(d | c)P(c)

P(d)

where d is a document, and C is the set of all possible class labels.

Since P(d) =
∑

c∈C P(c , d) is the same for all classes, we can ignore the
denominator if we only need to know the most likely class:

ĉ = arg max
c∈C

P(c | d) = arg max
c∈C

P(d | c)P(c)

Ad Feelders (Universiteit Utrecht) Data Mining 5 / 50

Naive Bayes

Represent document as set of features:

ĉ = arg max
c∈C

P(d | c)P(c) = arg max
c∈C

P(x1, . . . , xm | c)P(c)

Naive Bayes assumption:

P(x1, . . . , xm | c) = P(x1 | c)P(x2 | c) · . . . · P(xm | c)

The features are assumed to be independent within each class (avoiding
the curse of dimensionality).

cnb = arg max
c∈C

P(c)
m∏

i=1

P(xi | c)

Ad Feelders (Universiteit Utrecht) Data Mining 6 / 50

Independence Graph of Naive Bayes

C

X1 X2 Xm· · ·

The features are independent given the class label.

Ad Feelders (Universiteit Utrecht) Data Mining 7 / 50

Bag Of Words Representation of a Document

6.1 • NAIVE BAYES CLASSIFIERS 3

6.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called be-naive Bayes
classifier

cause it is a Bayesian classifier that makes a simplifying (naive) assumption about
how the features interact.

The intuition of the classifier is shown in Fig. 6.1. We represent a text document
as if it were a bag-of-words, that is, an unordered set of words with their positionbag-of-words

ignored, keeping only their frequency in the document. In the example in the figure,
instead of representing the word order in all the phrases like “I love this movie” and
“I would recommend it”, we simply note that the word I occurred 5 times in the
entire excerpt, the word it 6 times, the words love, recommend, and movie once, and
so on.

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

Figure 6.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words is ignored (the bag of words assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of
all classes c ∈C the classifier returns the class ĉ which has the maximum posterior
probability given the document. In Eq. 6.1 we use the hat notation ˆ to mean “ourˆ

estimate of the correct class”.

ĉ = argmax
c∈C

P(c|d) (6.1)

This idea of Bayesian inference has been known since the work of Bayes (1763),Bayesian
inference

and was first applied to text classification by Mosteller and Wallace (1964). The in-
tuition of Bayesian classification is to use Bayes’ rule to transform Eq. 6.1 into other
probabilities that have some useful properties. Bayes’ rule is presented in Eq. 6.2;
it gives us a way to break down any conditional probability P(x|y) into three other

Ad Feelders (Universiteit Utrecht) Data Mining 8 / 50

Bag Of Words Representation of a Document

Not matter, the order and position do.

Ad Feelders (Universiteit Utrecht) Data Mining 9 / 50

Multinomial Naive Bayes for Text

Represent document d as a sequence of words: d = 〈w1,w2, . . . ,wn〉.

cnb = arg max
c∈C

P(c)
n∏

k=1

P(wk | c)

Notice that P(w | c) is independent of word position or word order, so d is
truly represented as a bag-of-words. Taking the log we obtain:

cnb = arg max
c∈C

log P(c) +
n∑

k=1

log P(wk | c)

By the way, why is it allowed to take the logarithm?

Ad Feelders (Universiteit Utrecht) Data Mining 10 / 50

Multinomial Naive Bayes for Text

Consider the text (perhaps after some pre-processing)

catch as catch can

We have d = 〈catch, as, catch, can〉, with w1 = catch, w2 = as,
w3 = catch, and w4 = can. Suppose we have two classes, say
C = {+,−}, then for this document:

cnb = arg max
c∈{+,−}

log P(c) + log P(catch | c) + log P(as | c)

+ log P(catch | c) + log P(can | c)

= arg max
c∈{+,−}

log P(c) + 2 log P(catch | c) + log P(as | c)

+ log P(can | c)

Ad Feelders (Universiteit Utrecht) Data Mining 11 / 50

Training Multinomial Naive Bayes

Class priors:

P̂(c) =
Nc

Ndoc

Word probabilities within each class:

P̂(wi | c) =
count(wi , c)∑

wj∈V count(wj , c)
for all wi ∈ V ,

where V (for Vocabulary) denotes the collection of all words that occur in
the training corpus (after possibly extensive pre-processing).

count(w , c) is the number of times word w ∈ V occurs in a document of
class c ∈ C .

Ad Feelders (Universiteit Utrecht) Data Mining 12 / 50

Interpretation of word probabilities

Word probabilities within each class:

P̂(wi | c) =
count(wi , c)∑

wj∈V count(wj , c)
for all wi ∈ V

Interpretation: if we draw a word at random from a document of class c ,
the probability that we draw wi is P̂(wi | c).

Verify that ∑

wi∈V
P̂(wi | c) = 1,

as required.

Ad Feelders (Universiteit Utrecht) Data Mining 13 / 50

Training Multinomial Naive Bayes: Smoothing

Perform smoothing to avoid zero probability estimates.

Word probabilities within each class with Laplace smoothing are:

P̂(wi | c) =
count(wi , c) + 1∑

wj∈V (count(wj , c) + 1)
=

count(wi , c) + 1∑
wj∈V count(wj , c) + |V |

Verify that again ∑

wi∈V
P̂(wi | c) = 1,

as required.

The +1 is also called a pseudo-count: pretend you already observed one
occurrence of each word in each class.

Ad Feelders (Universiteit Utrecht) Data Mining 14 / 50

Worked Example: Sentiment of Movie Reviews

6 CHAPTER 6 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

P̂(“fantastic”|positive) =
count(“fantastic”,positive)∑

w∈V count(w,positive)
= 0 (6.13)

But since naive Bayes naively multiplies all the feature likelihoods together, zero
probabilities in the likelihood term for any class will cause the probability of the
class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chap-
ter 4. While Laplace smoothing is usually replaced by more sophisticated smoothing
algorithms in language modeling, it is commonly used in naive Bayes text catego-
rization:

P̂(wi|c) =
count(wi,c)+1∑

w∈V (count(w,c)+1)
=

count(wi,c)+1(∑
w∈V count(w,c)

)
+ |V | (6.14)

Note once again that it is a crucial that the vocabulary V consists of the union
of all the word types in all classes, not just the words in one class c (try to convince
yourself why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocab-
ulary at all because they did not occur in any training document in any class? The
standard solution for such unknown words is to ignore such words—remove them
from the test document and not include any probability for them at all.

Finally, some systems choose to completely ignore another class of words: stop
words, very frequent words like the and a. This can be done by sorting the vocabu-stop words

lary by frequency in the training set, and defining the top 10–100 vocabulary entries
as stop words, or alternatively by using one of the many pre-defined stop word list
available online. Then every instance of these stop words are simply removed from
both training and test documents as if they had never occurred. In most text classi-
fication applications, however, using a stop word list doesn’t improve performance,
and so it is more common to make use of the entire vocabulary and not use a stop
word list.

Fig. 6.2 shows the final algorithm.

6.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 6.11 as Nc
Ndoc

:

Ad Feelders (Universiteit Utrecht) Data Mining 15 / 50

The Vocabulary

The vocabulary consists of all words that occur in the training documents:

1. just 11. very

2. plain 12. few

3. boring 13. laughs

4. entirely 14. powerful

5. predictable 15. the

6. and 16. most

7. lacks 17. fun

8. energy 18. film

9. no 19. of

10. surprises 20. summer

Ad Feelders (Universiteit Utrecht) Data Mining 16 / 50

Class Prior Probabilities

Recall that:

P̂(c) =
Nc

Ndoc

So we get:

P̂(+) =
2

5
P̂(−) =

3

5

Ad Feelders (Universiteit Utrecht) Data Mining 17 / 50

Word Conditional Probabilities

To classify the test example, we need the following probability estimates:

P̂(predictable | −) =
1 + 1

14 + 20
=

1

17
P̂(predictable | +) =

0 + 1

9 + 20
=

1

29

P̂(no | −) =
1 + 1

14 + 20
=

1

17
P̂(no | +) =

0 + 1

9 + 20
=

1

29

P̂(fun | −) =
0 + 1

14 + 20
=

1

34
P̂(fun | +) =

1 + 1

9 + 20
=

2

29

Note that the word “with” in the test document is ignored because it doesn’t
occur in the training corpus.

Classification:

P̂(−)P̂(predictable no fun | −) =
3

5
× 1

17
× 1

17
× 1

34
=

3

49, 130

P̂(+)P̂(predictable no fun | +) =
2

5
× 1

29
× 1

29
× 2

29
=

4

121, 945

The model predicts class negative for the test review.
Ad Feelders (Universiteit Utrecht) Data Mining 18 / 50

Why smoothing?

If we don’t use smoothing, the estimates are:

P̂(predictable | −) =
1

14
P̂(predictable | +) =

0

9
= 0

P̂(no | −) =
1

14
P̂(no | +) =

0

9
= 0

P̂(fun | −) =
0

14
= 0 P̂(fun | +) =

1

9

Classification:

P̂(−)P̂(predictable no fun | −) =
3

5
× 1

14
× 1

14
× 0 = 0

P̂(+)P̂(predictable no fun | +) =
2

5
× 0× 0× 1

9
= 0

Both classes have estimated probability undefined! (division by zero)

Ad Feelders (Universiteit Utrecht) Data Mining 19 / 50

Multinomial Naive Bayes: Training

TrainMultinomialNB(C ,D)
1 V ← ExtractVocabulary(D)
2 Ndoc ← CountDocs(D)
3 for each c ∈ C
4 do Nc ← CountDocsInClass(D, c)
5 prior [c]← Nc/Ndoc

6 textc ← ConcatenateTextOfAllDocsInClass(D, c)
7 for each w ∈ V
8 do countcw ← CountWordOccurrence(textc ,w)
9 for each w ∈ V

10 do condprob[w][c]← countcw+1∑
w′ (countcw′+1)

11 return V , prior , condprob

Ad Feelders (Universiteit Utrecht) Data Mining 20 / 50

Multinomial Naive Bayes: Prediction

Predict the class of a document d .

ApplyMultinomialNB(C ,V , prior , condprob, d)
1 W ← ExtractWordOccurrencesFromDoc(V , d)
2 for each c ∈ C
3 do score[c]← log prior [c]
4 for each w ∈W
5 do score[c]+ = log condprob[w][c]
6 return arg maxc∈C score[c]

Ad Feelders (Universiteit Utrecht) Data Mining 21 / 50

Violation of Naive Bayes independence assumptions

The multinomial naive Bayes model makes two kinds of independence
assumptions:

1 Word occurrences are independent within each class:

P(〈w1, . . . ,wn〉|c) =
n∏

k=1

P(Wk = wk |c)

2 Positional independence: P(Wk1 = w |c) = P(Wk2 = w |c)

These independence assumptions do not really hold for documents written
in natural language.

How can naive Bayes get away with such heroic assumptions?

Ad Feelders (Universiteit Utrecht) Data Mining 22 / 50

Why does Naive Bayes work?

Naive Bayes can work well even though independence assumptions are
badly violated.

Example:

c1 c2 predicted

true probability P(c |d) 0.6 0.4 c1
P̂(c)

∏
P̂(wk |c) 0.00099 0.00001

NB estimate P̂(c |d) 0.99 0.01 c1

Double counting of evidence causes underestimation (0.01) and
overestimation (0.99).

Classification is about predicting the correct class, not about accurate
estimation.

Ad Feelders (Universiteit Utrecht) Data Mining 23 / 50

Double counting of evidence

Suppose the words special and effects always occur together in a
movie review: either both occur in the review, or neither occurs.

The independence assumption is badly violated!

Let P(special effects | pos) = 0.01 and
P(special effects | neg) = 0.001.

Evidence in favor of the positive class when special effects occurs in a
review, because probability for the positive class is 10 times as big as
for the negative class.

But naive Bayes will count this evidence twice, namely when is sees
special and when it sees effects.

Ad Feelders (Universiteit Utrecht) Data Mining 24 / 50

Naive Bayes is not so naive

Probability estimates may be way off, but that doesn’t have to hurt
classification performance (much).

Requires the estimation of relatively few parameters, which may be
beneficial if you have a small training set.

Fast, low storage requirements

Ad Feelders (Universiteit Utrecht) Data Mining 25 / 50

Feature Selection

The vocabulary of a training corpus may be huge, but not all words will be
good class predictors.

How can we reduce the number of features?

Feature utility measures:

Frequency – exclude sparse terms.
Mutual information – select the terms that have the highest mutual
information with the class label.
Chi-square test of independence between term and class label.

Sort features by utility and select top k.

Can we miss good sets of features this way?

Ad Feelders (Universiteit Utrecht) Data Mining 26 / 50

Entropy

Entropy is the average amount of information generated by observing the value of
a random variable:

H(X) =
∑

x

P(x) log2
1

P(x)
= −

∑

x

P(x) log2 P(x)

We can also interpret it as a measure of the uncertainty about the value of X prior
to observation.

Compare the weather forecast in the Netherlands (P(sunny) = 0.5, P(rain) = 0.5):

P(sunny) log2
1

P(sunny)
+ P(rain) log2

1

P(rain)
= 0.5 log2 2 + 0.5 log2 2 = 1 bit.

On the Canary islands (P(sunny) = 0.9, P(rain) = 0.1):

0.9 log2 1.11 + 0.1 log2 10 = 0.47 bits.

Ad Feelders (Universiteit Utrecht) Data Mining 27 / 50

Conditional Entropy

Conditional entropy:

H(X | Y) =
∑

x ,y

P(x , y) log2
1

P(x | y)
= −

∑

x ,y

P(x , y) log2 P(x | y)

Measure of the uncertainty about the value of X after observing the
value of Y .

If X and Y are independent, then H(X) = H(X | Y).

Example: gender and eye color.

Ad Feelders (Universiteit Utrecht) Data Mining 28 / 50

Mutual Information

For random variables X and Y , their mutual information is given by

I (X ; Y) = H(X)− H(X | Y) =
∑

x

∑

y

P(x , y) log2
P(x , y)

P(x)P(y)

Mutual information measures the reduction in uncertainty about X
achieved by observing the value of Y (and vice versa).

If X and Y are independent, then for all x , y we have
P(x , y) = P(x)P(y), so I (X ; Y) = 0.

Otherwise I (X ; Y) is a positive quantity, and the larger its value the
stronger the association.

Ad Feelders (Universiteit Utrecht) Data Mining 29 / 50

Estimated Mutual Information

To estimate I (X ; Y) from data we compute

I (X ; Y) =
∑

x

∑

y

P̂(x , y) log2
P̂(x , y)

P̂(x)P̂(y)
,

where

P̂(x , y) =
n(x , y)

N
P̂(x) =

n(x)

N
,

and n(x , y) denotes the number of records with X = x and Y = y .
Plugging-in these estimates we get:

I (X ; Y) =
∑

x

∑

y

n(x , y)

N
log2

n(x , y)/N

(n(x)/N)(n(y)/N)

=
∑

x

∑

y

n(x , y)

N
log2

N × n(x , y)

n(x)× n(y)

Ad Feelders (Universiteit Utrecht) Data Mining 30 / 50

Estimated Mutual Information

Mutual information between occurrence of the word “bad” in a movie review and
class (negative/positive review):

bad/class 0 1 Total

0 5243 7080 12323
1 2757 920 3677

Total 8000 8000 16000

I (bad; class) =
5243

16000
log2

16000× 5243

12323× 8000
+

7080

16000
log2

16000× 7080

12323× 8000

+
2757

16000
log2

16000× 2757

3677× 8000
+

920

16000
log2

16000× 920

3677× 8000

≈ 0.056

Fun fact: the estimated mutual information is equal to the deviance of the
independence model divided by 2N (if we take the log with base 2 in computing
the deviance).

Ad Feelders (Universiteit Utrecht) Data Mining 31 / 50

Movie Reviews: IMDB Review Dataset

Collection of 50,000 reviews from IMDB, allowing no more than 30 reviews
per movie.
Contains an even number of positive and negative reviews, so random
guessing yields 50% accuracy.
Considers only highly polarized reviews. A negative review has a score ≤ 4 out
of 10, and a positive review has a score ≥ 7 out of 10.
Neutral reviews are not included in the dataset.

Andrew L. Maas et al., Learning Word Vectors for Sentiment Analysis, Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142–150,2011.

Data available at:

http://ai.stanford.edu/~amaas/data/sentiment/

Ad Feelders (Universiteit Utrecht) Data Mining 32 / 50

Analysis of Movie Reviews in R

load the tm package

> library(tm)

Read in the data using UTF-8 encoding

> reviews.neg <- VCorpus(DirSource("D:/MovieReviews/train/neg",

encoding="UTF-8"))

> reviews.pos <- VCorpus(DirSource("D:/MovieReviews/train/pos",

encoding="UTF-8"))

Join negative and positive reviews into a single Corpus

> reviews.all <- c(reviews.neg,reviews.pos)

create label vector (0=negative, 1=positive)

> labels <- c(rep(0,12500),rep(1,12500))

> reviews.all

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 25000

Ad Feelders (Universiteit Utrecht) Data Mining 33 / 50

Analysis of Movie Reviews

The first review before pre-processing:

> as.character(reviews.all[[1]])

[1] "Story of a man who has unnatural feelings for a pig.

Starts out with a opening scene that is a terrific example

of absurd comedy. A formal orchestra audience is turned into

an insane, violent mob by the crazy chantings of it’s singers.

Unfortunately it stays absurd the WHOLE time with no

general narrative eventually making it just too off putting.

Even those from the era should be turned off.

The cryptic dialogue would make Shakespeare seem easy to a

third grader. On a technical level it’s better than you might

think with some good cinematography by future great Vilmos Zsigmond.

Future stars Sally Kirkland and Frederic Forrest can be seen briefly."

Ad Feelders (Universiteit Utrecht) Data Mining 34 / 50

Analysis of Movie Reviews: Pre-Processing

Remove punctuation marks (comma’s, etc.)

> reviews.all <- tm_map(reviews.all,removePunctuation)

Make all letters lower case

> reviews.all <- tm_map(reviews.all,content_transformer(tolower))

Remove stopwords

> reviews.all <- tm_map(reviews.all, removeWords,

stopwords("english"))

Remove numbers

> reviews.all <- tm_map(reviews.all,removeNumbers)

Remove excess whitespace

> reviews.all <- tm_map(reviews.all,stripWhitespace)

Not done: stemming, part-of-speech tagging, ...

Ad Feelders (Universiteit Utrecht) Data Mining 35 / 50

Analysis of Movie Reviews

The first review after pre-processing:

> as.character(reviews.all[[1]])

[1] "story man unnatural feelings pig starts opening scene terrific

example absurd comedy formal orchestra audience turned insane violent

mob crazy chantings singers unfortunately stays absurd whole time

general narrative eventually making just putting even era turned

cryptic dialogue make shakespeare seem easy third grader technical

level better might think good cinematography future great vilmos

zsigmond future stars sally kirkland frederic forrest can seen briefly"

Ad Feelders (Universiteit Utrecht) Data Mining 36 / 50

Analysis of Movie Reviews

draw training sample (stratified)

draw 8000 negative reviews at random

> index.neg <- sample(12500,8000)

draw 8000 positive reviews at random

> index.pos <- 12500+sample(12500,8000)

> index.train <- c(index.neg,index.pos)

create document-term matrix from training corpus

> train.dtm <- DocumentTermMatrix(reviews.all[index.train])

> dim(train.dtm)

[1] 16000 92819

We’ve got 92,819 features. Perhaps this is a bit too much.

remove terms that occur in less than 5% of the documents

(so-called sparse terms)

> train.dtm <- removeSparseTerms(train.dtm,0.95)

> dim(train.dtm)

[1] 16000 306

Ad Feelders (Universiteit Utrecht) Data Mining 37 / 50

Analysis of Movie Reviews

view a small part of the document-term matrix

> inspect(train.dtm[100:110,80:85])

<<DocumentTermMatrix (documents: 11, terms: 6)>>

Non-/sparse entries: 7/59

Sparsity : 89%

Maximal term length: 6

Weighting : term frequency (tf)

Sample :

Terms

Docs family fan far father feel felt

10099_1.txt 0 0 1 0 0 0

1033_4.txt 0 0 0 0 1 0

10718_4.txt 0 0 0 0 0 0

11182_3.txt 0 0 0 0 0 0

11861_4.txt 1 0 0 0 0 0

3014_4.txt 0 1 0 0 1 2

315_1.txt 0 0 0 0 0 0

6482_2.txt 0 0 0 0 1 0

9577_1.txt 0 0 0 0 0 0

9674_3.txt 0 0 0 0 0 0

Ad Feelders (Universiteit Utrecht) Data Mining 38 / 50

Multinomial naive Bayes in R: Training

> train.mnb

function (dtm,labels)

{

call <- match.call()

V <- ncol(dtm)

N <- nrow(dtm)

prior <- table(labels)/N

labelnames <- names(prior)

nclass <- length(prior)

cond.probs <- matrix(nrow=V,ncol=nclass)

dimnames(cond.probs)[[1]] <- dimnames(dtm)[[2]]

dimnames(cond.probs)[[2]] <- labelnames

index <- list(length=nclass)

for(j in 1:nclass){

index[[j]] <- c(1:N)[labels == labelnames[j]]

}

for(i in 1:V){

for(j in 1:nclass){

cond.probs[i,j] <- (sum(dtm[index[[j]],i])+1)/(sum(dtm[index[[j]],])+V)

}

}

list(call=call,prior=prior,cond.probs=cond.probs)}

Ad Feelders (Universiteit Utrecht) Data Mining 39 / 50

Multinomial naive Bayes in R: Prediction

> predict.mnb

function (model,dtm)

{

classlabels <- dimnames(model$cond.probs)[[2]]

logprobs <- dtm %*% log(model$cond.probs)

N <- nrow(dtm)

nclass <- ncol(model$cond.probs)

logprobs <- logprobs+matrix(nrow=N,ncol=nclass,log(model$prior),byrow=T)

classlabels[max.col(logprobs)]

}

Ad Feelders (Universiteit Utrecht) Data Mining 40 / 50

Application of Multinomial naive Bayes to Movie Reviews

Train multinomial naive Bayes model

> reviews.mnb <- train.mnb(as.matrix(train.dtm),labels[index.train])

create document term matrix for test set

we only extract words from the training vocabulary!

> test.dtm <- DocumentTermMatrix(reviews.all[-index.train],

list(dictionary=dimnames(train.dtm)[[2]]))

> dim(test.dtm)

[1] 9000 306

> reviews.mnb.pred <- predict.mnb(reviews.mnb,as.matrix(test.dtm))

> table(reviews.mnb.pred,labels[-index.train])

reviews.mnb.pred 0 1

0 3473 849

1 1027 3651

compute accuracy on test set: about 79% correct

> (3473+3651)/9000

[1] 0.7915556

Ad Feelders (Universiteit Utrecht) Data Mining 41 / 50

Feature Selection with Mutual Information

The top-10 features (terms) according to mutual information are:

term MI(term, class)

bad 0.056
worst 0.052
waste 0.035
awful 0.032
great 0.028
terrible 0.020
excellent 0.020
wonderful 0.018
boring 0.018
stupid 0.018

Ad Feelders (Universiteit Utrecht) Data Mining 42 / 50

Computing Mutual Information

load library "entropy"

> library(entropy)

convert document term matrix to binary (term present/absent)

> train.dtm.bin <- as.matrix(train.dtm)>0

compute mutual information of each term with class label

> train.mi <- apply(as.matrix(train.dtm.bin),2,

function(x,y){mi.plugin(table(x,y)/length(y),unit="log2")},

labels[index.train])

sort the indices from high to low mutual information

> train.mi.order <- order(train.mi,decreasing=T)

show the five terms with highest mutual information

> train.mi[train.mi.order[1:5]]

bad worst waste awful great

0.05568853 0.05161474 0.03456289 0.03168221 0.02807607

Ad Feelders (Universiteit Utrecht) Data Mining 43 / 50

Using the top-50 features

train on the 50 best features

> revs.mnb.top50 <- train.mnb(as.matrix(train.dtm)[,train.mi.order[1:50]],

labels[index.train])

predict on the test set

> revs.mnb.top50.pred <- predict.mnb(revs.mnb.top50,

as.matrix(test.dtm)[,train.mi.order[1:50]])

show the confusion matrix

> table(revs.mnb.top50.pred,labels[-index.train])

revs.mnb.top50.pred 0 1

0 3429 996

1 1071 3504

accuracy is a bit worse compared to using all features

> (3429+3504)/9000

[1] 0.7703333

Ad Feelders (Universiteit Utrecht) Data Mining 44 / 50

Feature score in model

score(c , d) = log P̂(c) +
n∑

k=1

log P̂(wk | c)

Score difference of word wk in favour of positive class is

log P̂(wk | pos)− log P̂(wk | neg)

The top-20 feature score differences sorted by absolute value are:

word score diff.

waste −2.71
awful −2.28
worst −2.17
terrible −1.72
wonderful 1.61
stupid −1.55
boring −1.49
excellent 1.41
bad −1.33
perfect 1.33

word score diff.

poor −1.24
loved 1.18
beautiful 0.93
minutes −0.91
great 0.90
money −0.83
nothing −0.81
best 0.76
performances 0.76
script −0.74

Ad Feelders (Universiteit Utrecht) Data Mining 45 / 50

Classification Trees

load the required packages

> library(rpart)

> library(rpart.plot)

grow the tree

> reviews.rpart <- rpart(label~.,

data=data.frame(as.matrix(train.dtm),

label=labels[index.train]),cp=0,method="class")

plot cv-error of pruning sequence

> plotcp(reviews.rpart)

Ad Feelders (Universiteit Utrecht) Data Mining 46 / 50

Cross-Validation Error of Pruning Sequence

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Inf 0.008 0.0022 0.00084 0.00052 3e−04 0.00016 3e−05

1 4 15 29 33 39 63 97 139 213 301 358 456

size of tree

Ad Feelders (Universiteit Utrecht) Data Mining 47 / 50

Classification Trees

simple tree for plotting

> reviews.rpart.pruned <- prune(reviews.rpart,cp=5.0000e-03)

> rpart.plot(reviews.rpart.pruned)

tree with lowest cv error

> reviews.rpart.pruned <- prune(reviews.rpart,cp=5.833333e-04)

make predictions on the test set

> reviews.rpart.pred <- predict(reviews.rpart.pruned,

newdata=data.frame(as.matrix(test.dtm)),type="class")

show confusion matrix

> table(reviews.rpart.pred,labels[-index.train])

reviews.rpart.pred 0 1

0 3150 1021

1 1350 3479

accuracy is worse than naive Bayes!

> (3150+3479)/9000

[1] 0.7365556

Ad Feelders (Universiteit Utrecht) Data Mining 48 / 50

The Simple Tree

bad >= 1

worst >= 1

waste >= 1

awful >= 1

great < 1

nothing >= 1

0
0.50

100%

0
0.25
23%

1
0.57
77%

0
0.14
5%

1
0.61
72%

0
0.09
3%

1
0.62
69%

0
0.17
2%

1
0.64
67%

1
0.59
49%

0
0.39
6%

1
0.62
44%

1
0.78
18%

yes no

Ad Feelders (Universiteit Utrecht) Data Mining 49 / 50

Random Forests

load the required packages

> library(randomForest)

train random forest with default settings: 500 trees and mtry = 17

> reviews.rf <- randomForest(as.factor(label)~.,

data=data.frame(as.matrix(train.dtm),label=labels[index.train]))

make predictions

> reviews.rf.pred <- predict(reviews.rf,newdata=data.frame(as.matrix(test.dtm)))

show confusion matrix

> table(reviews.rf.pred,labels[-index.train])

reviews.rf.pred 0 1

0 3483 824

1 1017 3676

compute accuracy: only slightly better than naive Bayes!

> (3483+3676)/9000

[1] 0.7954444

Ad Feelders (Universiteit Utrecht) Data Mining 50 / 50

