
Data Mining 2024

Assignment 1

Classification Trees, Bagging and Random Forests

Instructions

This assignment must be completed by teams of 3 students, and handed in by
e-mail to a.j.feelders@uu.nl.

It is not allowed to make use of ChatGPT, Copilot, or similar software to
complete this assignment, except for the purpose of improving the writing of
the report. Use of such software for other purposes (e.g. generating program
code) will be regarded as fraud.

Part 1: Programming

Note: The code for this part should be written in Python or R.

Write a function to grow a classification tree. Also write a function that uses
this tree to predict the class label for given attribute values.

More specifically you should write two main functions, with the names
tree_grow and tree_pred. The function tree_grow has input arguments x,

y, nmin, minleaf, and nfeat, in that order. Here x is a data matrix (2-
dimensional array) containing the attribute values. Each row of x contains the
attribute values of one training example. You may assume that all attributes
are numeric. y is the vector (1-dimensional array) of class labels. The class
label is binary, with values coded as 0 and 1. Furthermore, you may assume
there are no missing values (either in training or prediction).

The parameters nmin and minleaf (both integers) are used to stop growing
the tree early, in order to prevent overfitting and/or to save computation.

The parameter nmin is the number of observations that a node must contain
at least, for it to be allowed to be split. In other words: if a node contains fewer
cases than nmin, it becomes a leaf node.

The parameter minleaf is the minimum number of observations required
for a leaf node; hence a split that creates a node with fewer than minleaf

observations is not acceptable. If the algorithm performs a split, it should be
the best split that meets the minleaf constraint. If there is no split that meets

1



the minleaf constraint, the node becomes a leaf node. Use the gini-index for
determining the quality of a split.

The parameter nfeat denotes the number of features that should be con-
sidered for each split. Every time we compute the best split in a particular
node, we first draw at random nfeat features from which the best split is to
be selected. For “normal” tree growing, nfeat is equal to the total number of
predictors (the number of columns of x). For random forests, nfeat is smaller
than the total number of predictors.

The function tree_grow should return a “tree object” that can be used for
predicting new cases. You are free to choose the data structure for the tree
object, as long as it can be used for predicting new cases in the following way.
A new case is dropped down the tree, and assigned to the majority class of
the leaf node it ends up in. More precisely, the function tree_pred has input
arguments x and tr, in that order. Here x is a data matrix (2-dimensional array)
containing the attribute values of the cases for which predictions are required,
and tr is a tree object created with the function tree_grow. The function
tree_pred has a single output argument y, which is the vector (1-dimensional
array) of predicted class labels for the cases in x, that is, y[i] contains the
predicted class label for row i of x.

For bagging (and random forests), you have to write two auxiliary functions
called tree_grow_b and tree_pred_b. They are not much more than repeated
applications of tree_grow and tree_pred respectively.

The function tree_grow_b has all the arguments of tree_grow, in the same
order, and in addition the final argument m which denotes the number of boot-
strap samples to be drawn. On each bootstrap sample a tree is grown. The
function returns a list containing these m trees.

Finally, the function tree_pred_b takes as input a data matrix x and a list
of trees, in that order. The function applies tree_pred to x using each tree in
the list in turn. For each row of x the final prediction is obtained by taking the
majority vote of the m predictions. The function returns a vector y, where y[i]

contains the predicted class label for row i of x.

Part 2: Data Analysis

Use the functions you have created in part 1 to analyse the Eclipse bug data
set. See the course web page for links to the data, and an accompanying article.

We will analyse the package level data, using release 2.0 as the training set,
and release 3.0 as the test set. We will try to predict whether or not any post-
release bugs have been reported. To predict whether or not bugs have been
reported we will use the metrics listed in Table 1 of the accompanying article,
and the number of pre-release bugs. We will not use the features derived from
the abstract syntax tree. You should end up with 41 predictor variables in total.
The results obtained with logistic regression by the authors (with the same set
of predictors) can be found in Table 5 of the article.

2



Perform the following analyses with the code you have written:

1. Train a single classification tree on the training set with nmin = 15,
minleaf = 5 (we have pre-selected reasonable values for you), and nfeat

= 41. Compute the accuracy, precision and recall on the test set.

2. Use bagging with the same parameter settings as under (1), and m = 100.
Compute the accuracy, precision and recall on the test set.

3. Use random forests with the same parameter settings as under (2), except
that nfeat = 6, that is

√
41 rounded to the nearest integer. Compute the

accuracy, precision and recall of the random forest on the test set.

Describe your analysis in a report of about 3 or 4 pages.
The report should contain:

1. A short description of the data.

2. A picture of the first three splits of the single tree (the split in the root
node, and the split in its left and right child). Consider the classification
rule that you get by assigning to the majority class in the four leaf nodes of
this heavily simplified tree. Discuss whether this classification rule makes
sense, given the meaning of the attributes.

3. Confusion matrices and the requested quality measures for all three models
(single tree, bagging, random forest).

4. A discussion of whether the differences in accuracy (that is, the proportion
of correct predictions) found on the test set are statistically significant.
Find a statistical test that is suited for this purpose.

You are not supposed to describe the tree algorithm or its implementation in
the report.

Handing in the assignment

You should hand in a zip file with:

1. The documented program code (a .py file for Python, a .R file for R).
Make sure this file also imports all packages that are required for the code
to work. Only submit the code for part 1 of the assignment. Any code
you have written for part 2 should not be handed in. Likewise, you should
not hand in any data sets.

2. A .pdf file of the report.

It is important that you zip the files, because files with extension .py or .R are
removed by my mail program! Put your names and student numbers at the top
of the code file, and on the first page of the report.

3



The code documentation should provide the following information:

1. Name of the function.

2. Names and types of its input arguments.

3. The result returned by the function.

4. A short description of what it does.

The main functions should be called tree_grow and tree_pred, and should
be the first two functions in the code file. Then list tree_grow_b and tree_pred_b.
Any other required functions that you have written should be listed below that.

Grading

The following considerations are taken into account to determine the grade for
this assignment:

1. Does the program work, and does it return the correct result?

2. Quality of the report.

3. Has the code been properly documented according to the instructions?

4. Efficiency of the implementation.

Some Hints

• Use of packages for general data processing is allowed (e.g. numpy, pandas

in Python, dplyr in R). Also the use of packages for manipulating tree
data structures is allowed (e.g. data.tree in R).

• First read “Getting started with the assignment” on the course web page,
and make the practice assignments.

• To test your algorithm, first apply it to the credit scoring data set used in
the lectures. With nmin = 2 and minleaf = 1 you should get the same
tree as presented in the lecture slides.

• For a more elaborate test, use the Pima indians data (see the course
webpage). If you grow the tree on the complete data set with nmin = 20

and minleaf = 5, and you use this tree to predict the training sample
itself, you should get the following confusion matrix:

Class
Pred

0 1

0 444 56
1 54 214

4



If the confusion matrix produced by your algorithm differs substantially
from this one, there is probably an error in your code. There might be
slight differences due to different orders in processing the attributes when
computing the quality of splits, or due to other minor variations in the
code.

• We have shown in the lecture slides that optimal splits can only occur at
the borders of segments. Is this still true for the best split that meets the
minleaf constraint?

5


