Graphical Models for Discrete Data
Part 2: Directed Graphs

1 Introduction

To introduce directed graphs and their models, we borrow the following ex-
ample from Edwards ([Edw00]). A market researcher wants to find out who
likes noodles, and to do this he interviews a representative sample of people,
recording their race (R), gender (G) and answer (A) to the question “Do you
like noodles?”. Suppose the results are as shown in table 1.

Figure 1: G 1L R|A
(©) (»)
\@/

Race Gender Do you like noodles?
Yes No
Black Male 32 86
Female 35 121
White Male 61 73
Female 42 70

Table 1: the noodles data

The simplest undirected graphical model consistent with these data is
the one shown in figure 1. But, as Edwards remarks, this model is obviously
inappropriate. How can we suppose that race and gender are conditionally
independent given the response? The respondents’ race and gender, char-
acteristics determined decades before, cannot be affected by whether or not
they like noodles. Race and gender might me marginally independent, but
they can hardly be conditionally independent given the response.

The problem arises because we have not taken the ordering of the variables
into account. Here race and gender are clearly prior to the response. If we
analyse the data using directed graphs and the associated models, then we
obtain the graph shown in figure 2.

@ @
N~

This resembles the previous graph, except that the edges are replaced by
arrows pointing towards the response. As we shall see, directed graphs have
different rules for the derivation of conditional independence relations. Now
the missing arrow between race and gender means that they are marginally
independent, not conditionally independent given the response.

2 Definition and Notation

A directed graph is a pair G = (K, F), where K is a set of vertices and E
is a set of edges with ordered pairs of vertices. If there is an arrow from 1
to 7, then we write this as ¢ — j, or equivalently as (ij) € E. We restrict
attention to directed graphs with no directed cycles, i.e. acyclic directed
graphs (DAGs). If i — j, then X is called a parent of X;, and X; is called
a child of X;. The set of coordinates of the parents of X; is denoted pa(j),
so Xpagj) denotes the set of parents of X;. If there is a directed path from
¢t to j, then X; is called an ancestor of X;. The set of coordinates of the
ancestors of X is denoted an(j). These definitions can be extended to apply

2

to sets of nodes in the obvious way. For example, for a set S C K we define
pa(S) = ;g pa(i) \ S, that is, the set of nodes not in S that are parent to
a node in S. The definition of ancestor is extended similarly. Furthermore
we define ant(S) = S Uan(S) to be the ancestral set of S.

The absence of any directed cycles is equivalent to the existence of an
ordering of the nodes {1,2,...,k} such that i — j only when i < j. In
other words, there exists an ordering of the nodes such that arrows point
only from lower-numbered nodes to higher-numbered nodes. Suppose that
a priori knowledge tells us the variables can be labeled X, X, ..., X} such
that X; is prior to X; ;. Corresponding to this ordering we can factorize the
joint density of Xy, Xo,..., X} as

P(X)=P(X)P(Xy | X1) - P(Xg | Xp—1, Xp—2,...,X1) (1)

In constructing a DAG, an arrow is drawn from 7 to j, where i < j, unless
P(X,; | X,_1,...,X1) does not depend on Xj;, in other words, unless

i AL GHL, g\) (2)
This is the key difference between DAGs and undirected graphs. In both
types of graph a missing edge between X; and X is equivalent to a conditional
independence relation between X; and X;. In undirected graphs they are
conditionally independent given all the remaining variables, whereas in DAGs
they are conditionally independent given all prior variables. Thus in figure 2
the missing arrow between G and R means that G 1L R, not that G 1L R|A.
Having constructed the DAG from (2), we can write the joint density (1)
more elegantly as

PX) = [[PO | Xpaio) (3)

The pairwise conditional independence relations corresponding to a miss-
ing arrow between ¢ and j can be expressed more elegantly as

i AL jlan({i.g))

3 Interpretation

In this section we discuss the independence properties of directed indepen-
dence graphs. For undirected graphs, we saw that a simple criterion of sep-
aration in the graph-theoretic sense was equivalent to conditional indepen-
dence in the statistical sense. A similar result is true of DAGs, though the

3

graph-theoretic property, usually called d-separation, is somewhat more com-
plicated than the separation criterion in undirected graphs. There are in fact
two different formulations of the criterion. The original formulation is due
to Pearl [Pea86a, Pea86b]. The alternative formulation due to Lauritzen et
al. [LDLL90] is discussed here.

To do this we need to define the moral graph of a DAG. Given a DAG
G = (K, FE) we construct the moral graph G™ by marrying parents, and
deleting directions, that is,

1. For each i € K, we connect all vertices in pa(z) with lines.

2. We replace all arrows in £ with lines.

Now the directed independence graph GG possesses the conditional inde-
pendence properties of its associated moral graph G™. We can see this as
follows. The joint distribution factorizes as

P(X) = H P(X; | Xpagi)

= H 9(Xi, Xpai)) (4)

by setting ¢(Xi, Xpas)) = P(Xi | Xpa@s))- We thus have an expansion
for the joint density function in terms of functions ¢g(X,) for a = i U pa(i),
1=1,2,..., k. Recall that random vectors X and Y are conditionally inde-
pendent given Z, X 1l Y | Z if and only if there exist functions g and h
such that

P(x,y,2) = g(x, 2)h(y, 2)

for all (z,y) and for all z for which P(z) > 0. By application of the factori-
sation criterion to the expansion (4), we can deduce all pairwise conditional
independence statements of the form ¢ 1L j | rest. The edges of the undi-
rected independence graph for P(X) are characterised as edges between i
and each of its parents, and edges between each pair of parents of 7. That is,
the edge set of the moral graph, G™.

Consider for example the directed graph in figure 3. This graph corre-
sponds to the factorisation

P(X) = P(X1)P(X2)P(X3)P(X4| X1, Xo) P(X5] X3, X4)
= 91(X1)92(X2)g3(X3) 94 (X1, X2, X4)g5(X3, X4, X5) (5)

4

Figure 3: example directed graph

/

Using the factorisation criterion for conditional independence, we can
read the following pairwise independences from this factorisation

2 1l 3] rest
1 1L 3] rest
1 1L 5| rest
2 1l 5] rest

Representing these conditional independences in an undirected graph
gives the graph in figure 4 which is indeed the moral graph of the graph
in figure 3.

Figure 4: moral graph

@\ /@
/@
(%)

We can use the moral graph to answer for example the question whether
X 1L X3]X5. Since {5} does not separate {1} from {3} in the moral graph,

5

the answer is “no”. It does follow from the moral graph however that X; 1L
X3| X4, since {4} separates {1} from {3}. The full moral graph can obscure
certain independencies however. In this example X; and X5 are independent,
but this can not be inferred from the full moral graph. This fact may be
deduced though by strengthening the assertion of the equivalence of directed
and moral graphs to refer to the graph on the ancestral set of the variables
involved in the conditional independence statement. To determine whether
X7 and X5 are independent, we only have to look at “the smallest marginal
distribution that includes them both”, and since P(X;, X3) = P(X;)P(X3)
according to the factorisation in (5), it is clear that they are independent.

More generally, suppose we want to check whether i 1L j|S for some set
S C K. The first step is to consider the ancestral set of {i,7} U S, that is
an™({i,7} US) = A, say. Since for i € A, pa(i) € A, we know that the joint
distribution of X4 is given by

[P(XilXpaw)

1€A

which corresponds to the subgraph G4 of G. This is a product of factors
P(X;|Xpa@i)), that is, involving the variables X pq@) only. So it factorizes
according to G"}', and thus the global Markov properties for undirected graphs
apply. So, if S separates ¢ and j in G'}, then i 1L j|S.

The criterion is easily extended to sets of variables, in the following sense.
The directed version of the global Markov property states that for three
disjoint sets Sy, So and Sz, S7 1L S5|S3 whenever S5 separates S; and Sy in

" where A =an™(S; U Sy US3).

4 Maximum Likelihood Estimation of Bayesian
Networks

In this section we consider the maximum likelihood estimation of the param-
eters of a given Bayesian network structure. This turns out to be pretty
straightforward: it is a collection of independent multinomial estimation
problems. Therefore we start with a discussion of the ML estimation of
the parameters of a multinomial distribution. After that we show how this
applies to the estimation of the parameters of a Bayesian network.

4.1 ML Estimation for multinomial distribution

We want to estimate the probabilities py, po, . . ., ps of getting outcomes 1,2, ..., J.
If in n trials, we observe n; outcomes 1, ny of 2, ..., ny of J, then the obvi-

ous guess is to estimate p;,j = 1,...,J, by n;/n. This is also the maximum
likelihood estimate because the probability of getting the sequence x4, ..., x,

of outcomes is given by

P(Xy=x1,Xo=29,..., X, = x,) =pI'py*---p}’
and so the log-likelihood function is
L =nilogp; +nslogpe + ... +nylogp,s
We want to maximize this expression, but we have to satisfy the constraint
pitp2+...+p;=1

To apply the method of Lagrange multipliers, we form the auxiliary function

J
Fﬂhw-wphh)=7hk%p1+7mk%pz+u.~+an%pJ+nX<§:pj—1>

j=1
Taking the derivative with respect to p;, 7 = 1,...,J and equating to zero

we get

MNoyn=0, j=1,...,J
Pj

Solving for p;
n .
=%

Taking the derivative of F' with respect to A and equating to zero yields
pit+pat...+p;—1=0 (6)
Substituting the p; in 6 gives

n n n 1
_<71+72+...—|—7J):—X(nl—i-ng—i-...—i-nj):l

Hence

So A = —n, which immediately gives p; = n;/n

Consider a random variable X with three possible values, and in a sample
of size 100, we observe n; = 20, ny = 70, n3 = 10. Let p; denote P(X =1i),i =
1,2,3. The common sense estimator of p; is of course to take the relative
frequency of the value 1 observed in the sample, i.e. p; = 20/100 = 0.2.
Similar reasoning leads to p, = 70/100 = 0.7, and p3 = 10/100 = 0.1.

Below we show that our common sense estimates coincide with the max-
imum likelihood estimates. For any value of py, ps, p3, the probability of the
observed sample is

L(p1, p2,ps) = pi° X p3” ¥ p3’

Therefore the log-likelihood of the observed sample is

£(p17p?7p3) = 20 1ng1 + 70 logp2 + 1010gp3

We want to find the values of pq,ps, ps that maximize the log-likelihood
function, subject to the constraint that p; + ps + p3 = 1.

Rather than using the Lagrange multiplier method, we simply substitute
(1 — p1 — po) for ps in the log-likelihood function:

L(p1,p2) = 201log p; + 701log ps + 10log(1 — p; — p2)
Now we simply take the derivative of £ with respect to p; and ps:

oL_x w0 o m w0

Opr pr 1—pi—po Op2 p2 1—p1—p2

Here we used the fact that the derivative of logx is 1/z. To find the values
of p; and p, for which £ is maximized, we equate the partial derivatives to
zero, and solve for p; and py. Upon doing so, we find p; = 0.2 and p, = 0.7
as expected.

4.2 ML estimation of Bayesian Networks
The probability of each observation is given by

P(X) = [(X | Xpai)

i=1

where we use lower case p for the network parameters (probabilities and
conditional probabilities). So the joint probability for n independent obser-
vations is

n k
(1) ())
P(XW, . =TI]]»(x"” |Xpa(z)
j=11i=1
If we write n(z;, 2pe)) for the number of observations with X; = x; and

Xpa(i) = Tpa(i), We can write

k
L= H H p(w; | 9Upa(i))n(xi’m"“(">)

1=1 4,Tpq(s)

Taking the log-likelihood, this becomes

L= Z > 0@, Tpan) 108 p(@i | Tpags)

=1 z;,x pa(i)

Assuming the parameters are not related, this boils down to a whole
bunch of independent multinomial estimation problems (one for each possible
parent configuration). From this it follows that we get maximum likelihood
estimates
n(z;, xpa(i))

1T pa(i))

So the value of the likelihood function evaluated at its maximum is

L= Z Z sz, Tpa(i) IOg w

1=1 @i, Tpq(s) n(lea(i))

P | xpa(i)) =

As an example, consider the data in table 2. Suppose we want to estimate
from this data set the network

P(X1, X2, X3, X4) = p1(X1)p2(X2)pap2(Xs| X1, X2)pas(Xa| Xs)

Now we have to estimate the following parameters:

obs X1 X2 X3 X4
111 1 1 1
211 1 1 1
311 1 2 1
411 2 2 1
o1 2 2 2
6|2 1 1 2
72 1 2 3
812 1 2 3
912 2 2 3
10 | 2 2 1 3

Table 2: Example data set

p(1) pi(2) =1—pi(1)

p2(1) p2(2) =1 — pa(1)

p3|1»2(1|171) p3|1,2<2|1,1) =1 —p3|1,2(1|1,1)

pan2(11,2) pai2(2]1,2) = 1 — pai2(1]1,2)

pan2(112,1) psp2(2(2,1) =1 — py2(1]2,1)

p3|1»2(1‘272) p3|1,2(2|272) =1 —p3|1,2(1\2,2)

Pl pas(2I) Pa(3[1) = 1 = pu(L]1) — pu(2]1)
paz(112) pa(2)2) paa(3]2) = 1 — puys(1]2) — pas(2]2)

This means we have to estimate 10 probabilities in total. The contribution
of observation 1 to the likelihood function is

L(1,1,1,1) = pi(1)p2(1)psj1,2(1]1, 1)pys(1]1)

Likewise, the contribution of observation 3 to the likelihood function is

L(1,1,2,1) = p1(1)p2(1)(1 — paju2(1[1, 1)) paj3(1]2)

Their joint contribution is

p1(1)?*pa(1)°pa 2 (11, 1) (1 = papr2 (111, 1)) pags(11)pags(1]2)
Doing this for all observations, we get
L(D) = p1(1)5(1 - pl(l))5p2(1)6(1 - pg(l))4p3|1,2(1|1, 1)2(1 - P3|1,2(1\1a 1))
(1= psj2(1]1,2)) s 2(112, 1) (1 — pyju,2(112,1))*payn2(112,2) (1 — pspp2(1]2,2))
Paj3(1[1)*pa3(2[1) (1 — paja(1]1) — papp(2[1))
Pas(112)%paj3(212) (1 — pays(1]2) — pa3(2(2))°

10

Or in log form

L(D) = 5logpi(1) +5log(l —pi(1)) + 6logpa(1) + 4log(1 — p2(1))
+21og psj12(1]1,1) + log(1 — psj2(1]1,1))
+2log(1 — pap2(1]1,2)) + log pap 2(1]2,1) + 21og(1 — psj12(1]2, 1))
+10gp3‘172(1|2, 2) + 108}(1 - P3|1,2(1|2a 2))
+21og paj3(1]1) 4 log pai3(2[1) + log(1 — paz(1]1) — pajs(2[1))
+21og paj3(1|2) + log paj3(2|2) + 3log(1 — pajz(1]2) — paja(22))

This looks like a very complicated function to optimize at first sight, but
upon closer inspection we see that it decomposes into a number of unrelated
optimization problems. In fact, only parameters corresponding to the same
parent configuration are related, because they are constrained to sum to
one. Otherwise, we can optimize all parameters separately. For example,
to find the optimal value of p;(1), we simply find the value that maximizes
p1(1)5(1 — py(1))3, regardless of the other parameters. Hence, in the end we
just have a bunch of multinomial estimation problems (one for each parent
configuration), which we know how to solve.

For example
n(xy =1) 5 n(xy = 1,20 = 2,23 = 2)

p(l)=——=— Pa2(2[1,2) =

=1
n 10

n(xy = 1,29 = 2)

5 Estimation from Incomplete Data

In this section we consider the problem of maximum likelihood estimation
of a Bayesian network when we have incomplete data, that is some values
are missing. We partition the complete data in an observed part X,,s and

a missing part X5, i.e. X = (Xops, Ximis). For observation j we write
X0 = (Xo({)i’ng)s)

First we should be clear about what it is we want to maximize: we want
to find those parameter values that maximize the probability of the observed
data. This means that if some values are missing, we have to obtain the
marginal probability of the observed data by summing out the missing data.
For observation j, the probability thus is:

P(xP) =3 P(x)
x @)

mis

11

For all observations together the probability is

n n

[[rea) =11 | > Pex™)

So for example, if we have three binary variables X = (X, X5, X3), and we
have an observation (1,0, ?), the probability is

P(1,0,7) = P(1,0,0) + P(1,0,1)
and for observation (7, 1,7) the probability is
P(7,1,7) = P(0,1,0) + P(0,1,1) + P(1,1,0) + P(1,1,1)

So if we have a Bayesian network with X; and X, the parents of X3 (see
figure 5), then the probability of (1,0,7) is

P(1,0,7) = P(1,0,0)+ P(1,0,1)
= p1(1)p2(0)p312(0[1,0) + p1(1)p2(0)p3j12(1[1,0)
= pi1(1)p2(0)

since pg)12(0[1,0) + p3j2(1]1,0) = 1. In this case, we still have a closed form
solution. Suppose however that we an observation (1,7,0). Its probability is

P(1,7,0) = P(1,0,0)+ P(1,1,0)
= p1(1)p2(0)p312(0[1,0) + p1(1)p2(1)p312(0[1, 1)

Now if we want to maximize the log-likelihood, we get a sum of parameters
inside the log, making analytical maximization impossible.

Therefore direct maximization of the observed data likelihood is compli-
cated: in most cases there is no closed form solution of the ML estimates as
in the complete data case.

There is however an ingenious iterative scheme to compute the ML es-
timates, called Expectation Maximization (EM). EM [DLR77] is a general
method for doing maximum likelihood estimation with incomplete data. The
computational scheme consists of the alternated application of an Expecta-
tion step and a Maximization step; hence the name EM. In the E-step, the
expected value of the complete-data loglikelihood is calculated, by integrat-
ing over the possible values of the missing data under its distribution given

12

Figure 5: A Simple Bayesian Network

() (%)

\@/

the current parameter estimate () and the observed data. In the M-step
we choose the value of 8¢+ that maximizes the loglikelihood in the last
E-step. It can be shown that under mild conditions the sequence 6, 1)
converges to a maximum likelihood estimate of the observed data likelihood.

Application of the EM-algorithm to Bayesian networks is conceptually
straightforward. We proceed as follows:

1. Pick initial values for network paramaters.
2. Use inference to find the expected values of the sufficient statistics.

3. Compute new estimates using the expected values of the sufficient
statistics.

4. If convergenced then stop, otherwise return to (2).

Now inference in a Bayesian network is a complicated affair, and clever
algorithms have been developed to do this efficiently. We won’t go into that; if
your interested, follow the course probabilistic reasoning. We will do inference
the simple way by computing the full joint distribution and computing any
probability we might need from that. For large networks this is of course
computationally not feasible.

To illustrate how EM works, we consider an extremely simple Bayesian
network: just one binary parent and a binary child (see figure 6).

Now suppose we pick the following initial values for the network param-
eters: pO(X; =1) =08, pO(Xy =1|X; =1) = 0.6, pOV (X, = 1|X; = 0) =
0.2. This gives the joint distribution PO as given in the left part of table 3.

We observe data as given in table 4. For the incomplete cases, columns 3
and 4 give the probabilities of different completions given the initial param-
eter estimates. For example, the probability that (0,?) is completed to (0, 0)
is equal to 0.8 because p(? (X, = 0|X; = 0) = 0.8.

13

x1, 79 | PO (2, 27) PO (zy, 29)
(0,0) 0.2x08=0.16 | 0.24 x 0.64 = 0.1536

(0,1) | 0.2x0.2=0.04 | 0.24 x 0.36 = 0.0364
(1,0) | 0.8 x0.4=0.32|0.76 x 0.36 = 0.2736
(1,1) | 0.8 % 0.6 =0.48 | 0.76 x 0.64 = 0.4864

Table 3: Joint distribution of (X7, X5). Left: on basis of initial parameter
estimates. Right: on basis of parameter estimates after one iteration.

T1,T9 | count

(0,0) 12

(0,1) 8

(1,0) 20

(1,1) 40

(0,7) 2| PO(X, =0[X; =0)=08 | PO(X,=1|X; =0)=0.2
(1,7) 8| PO(Xy,=0[X;=1)=04 |PO(X,=1/X;=1)=06
(7,0) 6| PO(X,=0[X,=0)=033 | POX; =1/X, =0) =0.67
(7,1) 4| PO(X; =0|Xy =1)=0.077 | PO(X; = 1| X, = 1) = 0.923

Table 4: Observed data, and results of inference on basis of initial estimates.

14

Figure 6: Simple BN for EM example.

Now we can compute the expected values of the sufficient statistics. For
example, the observation (7,0) contributes for 0.67 to n4(1), because

R PO(X, =1, Xy=0 0.32
POX, =1|X, =0) = X =1.X=0) = 0.67.
PO(X, =0) 0.3240.16

Continuing in this fashion, we get the following expected sufficient statistics:

f1(1) = 20440+ 846 x 0.67 +4 x 0.923 = 75.712
2,(0) = 100 — 75.712 = 24.288

f12(0,0) = 1242 x 0.8+ 6 x 0.33 = 15.58

f12(0,1) = 24.288 — 15.58 = 8.708

fi12(1,0) = 20+ 8 x 0.4+ 6 x 0.67 = 27.22

fia(1,1) = 75.712 — 27.22 = 48.492

From these expected sufficient statistics, we compute the new parameter
estimates:
(X, =1) = ”1751) - 751'0732 ~ 0.76
ip(1,1) 48.492
(1) 75712
n12(0,1) 8.708

PN = 11X =0) a(0) 24.288

WXy =1X,=1) = 0.64

From these new parameter estimates, we compute the new joint distribu-
tion as given in the right part of table 3. Then we perform inference again

15

using P(l), and compute the new expected values of the sufficient statistics.
This procedure is iterated until the parameter estimates converge. In figure 7
the iterates of p(X; = 1) are shown; the sequence converges to approximately
0.7515.

0.79 0.80
1 1

p(X1=1)
0.78
1

0.77
1

0.76
1

0.75
1

iteration

Figure 7: EM iterations for p(X; = 1).

6 Model Selection with Complete Data

We have seen that maximum likelihood estimation of a given Bayesian net-
work structure is pretty straightforward: you could do the required calcula-
tions by hand if the dataset is not too big. In many cases the structure is not
known however, so we would like to use the data to find a good structure.
The approach we take is very similar to the one for undirected graphs: we
define a measure for the quality of a structure, and then search for a model
with high quality. As you probably know by now, it is not a good idea to
use a quality measure that only takes into account how well the model fits
the data. This is a sure way to get an overfitted model; in fact the saturated

16

Algorithm 1 EM for Bayesian Networks

1: p© «— available case estimates of parameters

2.t 0

3: repeat

4: for all z;, xp,;) do

5 A @) = X0y PG = 20 Xpat) = 2puo)| X2, DY)
6: ﬁ(”l)(ﬂfpa(z)) > WV (24, Tpai)

T P @lan) — A (@, Tpa) A (@)
8: end for

9: t—t+1

10: until > [p® — pt-V| < ¢

11: return p

model (a fully connected graph) will always have the best fit. We saw this
problem before, and one way to deal with it is to include a penalty term for
the complexity of the model. Let £ denote the value of the log-likelihood
function evaluated at p*; the ML estimates of p under model M. Akaike’s
Information Criterion would give the following quality for model M:

AIC(M) = —2LM + 2dim(M)

where dim(M) is the number of parameters of the model. It is customary to
define the criterion in such a way that a higher value means higher quality,
so we divide by —2 to get

AIC(M) = £M — dim(M)

AIC gives a relatively low penalty for complexity, and therefore has a ten-
dency to select overly complex models. A more popular quality measure for
Bayesian networks is the Bayesian Information Criterion (BIC):

logn
2

BIC(M) = LM — dim(M)
This measure has an asymptotic justification from a Bayesian statistics view-
point, but we won’t be bothered with that here. This score can also be jus-
tified by the Minimum Discription Length (MDL) principle, but again we
omit the details.

So now we have a well-defined optimization problem. Given

17

1. Training data
2. Scoring function (BIC)
3. Space of possible models (all DAG’s)

find a network (or the networks) that maximizes the score. Unfortunately,
finding the maximal scoring network structure (i.e. model) is NP-hard in
general. This means that for all practical purposes we have to resort to
heuristic search algorithms. We define which models are neighbours of a given
model (typically: addition, removal, reversal of an arc) and then traverse the
search space looking for high scoring models. The simplest approach is to
use a greedy hill-climbing search. This works as follows. Start with a given
network (e.g. the empty network, or a random network), and compute the
score of this network and all its neighbours. Then apply the change that
leads to the biggest improvement in the score. Compute the score of all
neighbours of the new model, and again apply the change that gives the
biggest improvement in the score, and so on. The iteration stops when none
of the neighbours improves the score. You might get stuck in local maxima.
One way to escape local maxima is to use random restarts.

An important observation is that the score is decomposable: it is a sum
of terms, where each term contains the variables i U pa(i). This means that
when we move from one model to another, we don’t have to compute the
score all over again. We only have to recompute the score for those variables
for which the parent set has changed. This means the score computations
can be done efficiently. As an example, consider again the data in table 2.
Suppose the current model is:

P(X1, Xy, X3, X4) = p1(X1)pa(Xo)p3jn2(Xs| X1, Xo)pajs(X4| X5)

Now suppose we consider adding an edge from X; to X5. Only the parent
set of X5 changes, but the rest of the score is unaffected. The part of the
log-likelihood score of the current model that is affected by adding an arc
from X; to X5 is boxed in the formula below:

18

5} 5)
L(D) = 5log— +5log— +|6log < + 4log 1

10 10
2 1
2log = + log -
+ og3—|— og3
1 2
+210g1+10g§+210g§
+1 1—1—1 !
og — + log =
857985
+21 2+l 1—I—l L
og4 og4 og4
2 1 3
2log — 4 log — + 3log — ~ —29.09
+ og6—|—og6+ og6

After we add an edge from X; to X5 the log-likelihood score becomes:

5 5
L(D) = 5log— +5log — + 310g%+210g§+310g§+210g%

10 10
+21 2+1 L
og = + log -
83T 983
1 2
+210g1+10g§+210g§
+1 1—I—l L
og 5 +log
2 1 1
+210g£—l—i-log1—i-logé—l
2 1 3
2log — + log — log — ~ —29.
+ og6—|— 0g6+30g6 9.09

In this particular case the score doesn’t increase, because X; and X, are
independent in the data. Since the model with the extra edge has one extra
parameter, it scores lower on AIC or BIC.

Now suppose we consider adding an edge from X; to X4. Again we boxed
the part of the log-likelihood score that would be affected by this.

19

) 5) 6 4
L(D) = 5log— +5log — + 6log — + 4log —

10 10 10 10
+21 2+1 L
og = + log —
837083
1 2
+2log1+log§+210g§

Flog -+ log ©
og — og —
85 T8,

+2log 2 +log ; + log §

+2log 2 + log ¢ + 3log 2 |~ —29.09

If we add the edge, the log-likelihood score becomes:

5)) 6 4
L(D) = 5log— +5log — + 6log — + 4log —

10 10 10 10

1 210g 2 + log -
og — og —
837963

1 9

+2log1+log§+210g§
Flog = + log -
og — og —
55 T8,

+210g1+21og§+10g%

+Hlog 1 +log 1 + 3log 1|~ —22.16

We see this leads to an improvement of the log-likelihood score, and
depending on the complexity penalty to an improvement of the overall score.
We added 4 parameters and improved the log-likelihood score by —22.16 +
29.09 = 6.93. Both AIC and BIC give the more complex model a higher
score in this case.

Algorithm 2 gives the pseudo-code for a simple Bayesian Network struc-
ture learning algorithm.

20

Algorithm 2 BN Structure Learning
: G « initial graph
max «— score(G)
repeat
nb « neighbours(G)
for all G’ € nb do
if score (G') > max then
max «— score(G’)
G— G
end if
end for
: until no change to G
: return G

— = e

Appendix: The EM-algorithm
The distribution of the complete data X = (X5, X;nis) can be factored as
P(X|0) = P(Xobs|0) P(Xomis| Xobs, 0) (7)
Viewing each term as a function of 6 it follows that
L(0)X) = L(0]| Xops) + log P(Xinis| Xobs, 0) (8)

where L£(0|X) = log P(X|#) denotes the complete-data loglikelihood and
L(0|Xops) = log L(0| X) the observed-data loglikelihood. Because X,
is unknown, we cannot calculate the second term on the right-hand side
of equation (8), so instead we take the average of (8) over the predictive
distribution P(X,nis| Xovs, 0)), where) is a preliminary estimate of the
unknown parameter 6. Taking the expectation left and right with respect to
P(Xpis| Xops, 01) yields

Q(0109) = L(0] Xops) + H(0]0®) 9)
where
Q(010") = EynL(0]X)
= /£(9|X)P(szs|Xob87e(t))dezs

21

is the expected complete-data loglikelihood, and
H(em(t)) = /log P(Xmis‘XobsaG)P(Xmileobsae(t))deis

A central result of [DLR77] is that if we let %1 be the value of 6 that
maximizes Q(0|0®), then #*+1) is a better estimate than #® in the sense
that its observed-data loglikelihood is at least as high as that of §(*)

L(0WY) > £(6D)
This can be seen by writing

LOV | Xops) = LOV] Xaps) = {QOUTV10Y) — Q(6]0")}
_{H(g(tﬂ)’(g(t)) — H(@(t)‘g(t))}

The first difference is nonnegative since #¢+1 is chosen so that
QO] > Q(8]6")
for all #. It remains to show that the second difference is nonpositive, that is
H(@(t+1)|9(t)) _ H(g(t)w(t)) <0
Now for any 6
H(g(tﬂ)"g(t)) _ H(g(t)|9(t))
= /lOg P(Xmis|Xobsa Q)P(Xmis|Xobsa Q(t))dezs

_/logP(Xmis’Xobsae(t))P(Xmis’Xobme(t))deis

P (Xonis| Xobs, 0)
= 1 e mis Xo S Q(t deis
/ °8 P(szs|Xobsa 9) (| ’)

P(mzs|Xob37)
= E@(t) {lOg mzs’Xobs, e(t)>

P(
P(mzs|Xob87)
S log EG(t> {P(mls|X0b57 e(t)>

P(Xonis| Xobs,)
= 1 mis| <Y obs) P(X s Xops o AX,..
og P(Xis| Xops, 00) (| Xops, 01)
= log P<Xmis’X0b576)deis
=0

22

where the inequality is a consequence of Jensen’s inequality and the concavity
of the logarithmic function.

Thus, we have established that the observed-data likelihood is not de-
creased after an EM iteration. So for a bounded sequence of likelihood val-
ues {0}, 6®) converges monotonically to some L*, which is almost always a
stationary value of L. Moreover, in many practical applications, L* will be

a local maximum. For a detailed discussion of the convergence properties of
EM, see [MK97].

A Simple Example

We illustrate the EM-algorithm with a particularly simple example that does
not require EM for its solution. This allows us to discuss the computational
steps of EM without being distracted by technical detail. Consider a sequence
of 4 independent coin tosses with the following outcome (1,1,0,7), where we
use 1 to denote that heads has come up, and 0 for tails. The question mark for
the fourth toss indicates that its outcome was not observed for some reason.
The parameter of interest is the probability of heads, which we denote by 6.
We partition the complete data X into the observed part and the missing
part, i.e. X = (Xyps, Xonis). The probability of the observed data is obtained
from the probability of the complete data by summing out the missing data,
ie.

(Xops | 0) = prw P((1,1,0,0) | 0) + P((1,1,0,1) | 6) =
0 (1_Z;+ 02(1—0)> = 0> (1 — 0){0 + (1 — 0)} = 6*(1 - 9),

since 84 (1 —60) = 1. As was to be expected the observed data likelihood
reduces to the likelihood obtained by ignoring the fourth toss altogether.
Hence the maximum likelihood estimate is simply the fraction of heads ob-
served, i.e. 0 = 2/3.

For illustratory purposes we consider how we would arrive at this estimate
using the EM computational scheme. In the E-step we form the expected
complete-data loglikelihood based on the current estimate 8@,

QOI0Y) = 60U (31logh +log(1 — 0)) + (1 — 6D)(21ogh + 21og(1 — 6))
2+ 0D)logh + (1 + (1 —6Y))log(1 —)

23

Since we choose ¢

1) to maximize this function with respect to 6, it is

obvious that

Q(g(t+1)|9(t)) > Q(Q(t)w(t))

Now the observed-data loglikelihood is

and

L(0] X ps) = 21log 8 + log(1 —)

H(0]0W) = 0D logf + (1 — D) log(1 — 6)

Verify that

Now

Q010" = L(6]Xos) + H(0]0D)

d d
il My — = fp® —_ oM _
deH(@\@) 7 {6 1og 6 + (1 —6")log(1 —6)}
4100 B 10
S0 19

Equating to zero and solving for 6 yields § = #®), and hence

H(g,g(t)) < H(Q(t)yg(t))

for any value of 6.

In this particularly simple case one may obtain a closed-form solution
for the iterates: 0%V = 1/2 + 1/4 §®. Thus if we make an initial guess
6 = 0.25, we obtain the sequence 0.2500, 0.5625, 0.6406, 0.6602, 0.6650, . . .,
which converges to 2/3.

References

[DLR77]

[Edw00]

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society B, 39:1-38, 1977.

D. Edwards. Introduction to Graphical Modelling (second edition,).
Springer, New York, 2000.

24

[LDLL90] S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.-G. Leimer. Inde-
pendence properties of directed markov fields. Networks, 20:491—
505, 1990.

IMK97] G.J. McLachlan and T. Krishnan. The EM algorithm and exten-
stons. Wiley, New York, 1997.

[Pea86a] J. Pearl. A constraint propagation approach to probabilistic rea-
soning. In Uncertainty in Artificial Intelligence, pages 357-370.
North-Holland, 1986.

[Pea86b] J. Pearl. Fusion, propagation and structuring in belief networks.
Artificial Intelligence, 29:241-288, 1986.

25

