
Solutions Frequent Pattern Mining 2020

Exercise 1: Frequent Item Set Mining

(a) Level 1:

candidate support frequent?

A 3 !

B 5 !

C 6 !

D 5 !

E 2 !

F 1 %

Level 2:

candidate support frequent?

AB 3 !

AC 2 !

AD 2 !

AE 0 %

BC 4 !

BD 3 !

BE 0 %

CD 4 !

CE 1 %

DE 1 %

Level 3:

candidate support frequent?

ABC 2 !

ABD 2 !

ACD 1 %

BCD 2 !

1

ABE is not a level-3 candidate, because its level-2 subsets AE and BE are not
frequent. Notice that since AE is not frequent, AB and AE won’t even be combined
into a “pre-candidate” by the algorithm. For similar reasons, BCE and CDE are
not level-3 candidates.

ABCD is not a level-4 candidate because its level-3 subset ACD is not frequent.

(b) First we determine the generators, and then we obtain the closed frequent item sets by
taking the closure of the generators. To determine the generators, we apply Apriori
with an additional pruning step: an item set is pruned when it has a subset with
the same support. The normal frequency pruning is indicated by %, the additional
A-close pruning by �.

Level 1:

candidate support generator?

A 3 !

B 5 !

C 6 !

D 5 !

E 2 !

F 1 %

Level 2:

candidate support generator?

AB 3 �

AC 2 !

AD 2 !

AE 0 %

BC 4 !

BD 3 !

BE 0 %

CD 4 !

CE 1 %

DE 1 %

AB is pruned because its subset A has the same support.
Level 3:

candidate support generator?

ACD 1 %

BCD 2 !

2

Notice that ABC and ABD are no longer level-3 candidates, because AB is not a
level-2 generator. There are no level-4 candidates.

Next we determine the closures of the generators. These closures together form
the set of closed frequent item sets. A closure has the same support as its genera-
tor, and can be obtained by taking the intersection of all transactions in which the
generator occurs.

generator closure support
A AB 3
B B 5
C C 6
D D 5
E E 2

AC ABC 2
AD ABD 2
BC BC 4
BD BD 3
CD CD 4

BCD BCD 2

(c) The maximal frequent item sets are: E, ABC, ABD, and BCD.

(d)

confidence(A→ C) =
s(AC)

s(A)
=

2

3

lift(A→ C) =
s(AC)× |db|
s(A)× s(C)

=
2× 8

3× 6
=

16

18
=

8

9
,

where |db| denotes the number of transactions in the data base. Since the lift is
smaller than 1, the rule would not be considered interesting according to this mea-
sure.

The formula for lift used above can be derived from its definition as follows:

lift(X → Y) =
P (Y | X)

P (Y)
=

P (X, Y)

P (X)P (Y)
=

s(XY)/|db|
s(X)/|db| × s(Y)/|db|

=
s(XY)× |db|
s(X)× s(Y)

Note that we write s(XY) as a shorthand of s(X ∪ Y).

3

Exercise 2: Frequent Sequence Mining

(a) Level 1:

candidate support frequent?

A 5 !

U 4 !

H 3 !

B 3 !

Level 2:

candidate support frequent?

AA 2 %

AU 4 !

AH 3 !

AB 2 %

UA 2 %

UU 3 !

UH 3 !

UB 2 %

HA 2 %

HU 3 !

HH 0 %

HB 1 %

BA 1 %

BU 0 %

BH 0 %

BB 0 %

Level 3:

candidate support frequent?

AUU 3 !

AUH 3 !

AHU 3 !

UUU 0 %

UUH 0 %

UHU 3 !

HUU 0 %

4

Level 4:

candidate support frequent?

AUHU 3 !

There is no level 5 candidate. We can combine AUHU with itself to generate pre-
candidate AUHUU but this contains the infrequent subsequence HUU.

(b) AUHU and B are maximal.

(c) A, B, AU, AUHU.

Exercise 3: Frequent Tree Mining

(a)+(b) Let’s denote the nodes of d4 by v and the nodes of T = aa ↑ c by w. The nodes
are numbered according to the pre-order (depth-first) traversal of the tree. T is an
embedded subtree of d4, and the corresponding matching function is:

φ(w1) = v1 φ(w2) = v2 φ(w3) = v5

Verify that this matching function satisfies all the requirements:

1. The labeling is preserved: L(w1) = L(v1) = a, L(w2) = L(v2) = a, L(w3) =
L(v5) = c.

2. The ancestor-descendant relation is preserved:

– w1 ∈ π∗(w2) and v1 ∈ π∗(v2).

– w1 ∈ π∗(w3) and v1 ∈ π∗(v5).

– w2 6∈ π∗(w3) and v2 6∈ π∗(v5).

– w3 6∈ π∗(w2) and v5 6∈ π∗(v2).

3. The ordering is preserved:

– w1 < w2 and v1 < v2.

– w1 < w3 and v1 < v5.

– w2 < w3 and v2 < v5.

T is not an induced subtree of d4. The matching function that worked for the
embedded subtree relation does not work here, because it does not preserve the
parent-child relationship: w1 = π(w3) but v1 6= π(v5).

(c) No, it is not. For example, the matching function

φ(w1) = v1 φ(w2) = v3 φ(w3) = v2

does not preserve the order relation, because w2 < w3, but v3 6< v2.

5

(d) No.

(e) Yes. The matching function

φ(w1) = v1 φ(w2) = v2 φ(w3) = v3

works.

(f) Yes. The matching functions

φ(w1) = v1 φ(w2) = v2 φ(w3) = v3

φ(w1) = v1 φ(w2) = v2 φ(w3) = v4

both work.

(g)+(h) It occurs 8 times as an embedded subtree. The distinct matching functions are:
φ(w1) = v1, and then

1. φ(w2) = v2 and φ(w3) = v3

2. φ(w2) = v2 and φ(w3) = v5

3. φ(w2) = v3 and φ(w3) = v5

4. φ(w2) = v2 and φ(w3) = v4

5. φ(w2) = v2 and φ(w3) = v6

6. φ(w2) = v3 and φ(w3) = v6

7. φ(w2) = v4 and φ(w3) = v5

8. φ(w2) = v4 and φ(w3) = v6

The first three matching functions are also induced subtrees.
The FREQT RMO-list is (v3, v5).

Exercise 4: Anti-monotonicity

No, for example A is a subsequence of AB, but AB occurs twice as a subsequence in ABB,
and A just once.

Alternative definition of “distinct occurrence”: φ1(i) 6= φ2(i) for all positions i in the
pattern sequence.

6

Exercise 5: Transitivity of the subsequence relation

If the subsequence relation is transitive, then from r1 ⊆ r2, and r2 ⊆ s (where s ∈ D) it
follows that r1 ⊆ s and therefore that the support of r1 is at least as big as the support of r2.

It is given that q ⊆ r, and r ⊆ s. So there exist one-to-one mappings φqr and φrs that
preserve the labels and order. Now define the mapping φqs(i) = φrs(φqr(i)). This mapping
has the following properties:

1. q[i] = s[φqs(i)] because q[i] = r[φqr(i)] and r[φqr(i)] = s[φrs(φqr(i))].

2. i < j ⇒ φqs(i) < φqs(j), because i < j ⇒ φqr(i) < φqr(j) and φqr(i) < φqr(j) ⇒
φrs(φqr(i)) < φrs(φqr(j)).

Also, since φqr is one-to-one, and φrs is one-to-one, it follows that φqs is one-to-one as well.
Hence, the mapping φqs satisfies all the required properties.

Note: Actually, it follows from i < j ⇒ φ(i) < φ(j) that φ is one-to-one, so the lat-
ter restriction is superfluous. The “proof” above that φqs is one-to-one is therefore also
superfluous: we have already shown that φqs preserves the order. Thanks to Max Hessey
and Casper Hagenaars for noting this.

Exercise 6: Variations on a theme

We define the subsequence relation as follows: S1 = (X1X2 . . . Xk) is a subsequence of
S2 = (Y1Y2 . . . Ym) (denoted S1 � S2) if there exists a mapping

φ : [1, k]→ [1,m],

such that

1. Xi ⊆ Yφ(i), and

2. i < j ⇒ φ(i) < φ(j).

We define support as:
sup(R) =

∣∣{Si ∈ D : R � Si}
∣∣

To show that the anti-monotonicity property holds, it suffices to show that the subsequence
relation is transitive, that is,

S1 � S2 and S2 � S3 ⇒ S1 � S3

So assume that S1 � S2, and S2 � S3. This means there exist mappings φ12 and φ23 that
satisfy the subset and order constraints. Now define the mapping φ13(i) = φ23(φ12(i)).
This mapping has the following properties:

7

1. S1
i ⊆ S3

φ13(i)
because S1

i ⊆ S2
φ12(i)

and S2
φ12(i)

⊆ S3
φ23(φ12(i))

.

2. i < j ⇒ φ13(i) < φ13(j), because i < j ⇒ φ12(i) < φ12(j) and φ12(i) < φ12(j) ⇒
φ23(φ12(i)) < φ23(φ12(j)).

Therefore, S1 is a subsequence of S3. From this the anti-monotonicity property

S1 � S2 ⇒ sup(S1) ≥ sup(S2)

follows.

Notice that in this proof we left out the requirement that φ is a one-to-one mapping.
We explained in the note at exercise 5 why it is superfluous.

8

