
Data Mining 2020
Exercises Undirected Graphical Models

Exercise 1

We have a data set containing data on 5,735 critically ill adult patients receiving care in
an Intensive Care Unit (ICU) for 1 of 9 pre-specified disease categories. The data was
collected in five US teaching hospitals between 1989 and 1994.

The objective of the original study that used (a superset of) this data was to examine
the association between the use of right heart catheterization (RHC) during the first 24
hours of care in the ICU and subsequent survival (among others).
This subset contains the following variables:

1. cat1: disease category (9 different values)

2. death: did the patient die within 180 days after admission?

3. swang1: was right heart catheterization performed within first 24 hours?

4. gender: male/female

5. race: black/white/other

6. ninsclas: type of medical insurance of patient (six different values)

7. income: income of patient, divided into four categories

8. ca: cancer status (yes/no/metastatic)

9. age: age of patient divided into 5 categories

10. meanbp1: mean blood pressure of patient divided into 2 categories
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Consider the following independence graph for this domain:
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Use the notion of separation in the graph to determine if the following independencies hold:

(a) swang1 ⊥⊥ death

(b) swang1 ⊥⊥ death | cat1

(c) ca ⊥⊥ death | cat1

(d) swang1 ⊥⊥ death | {cat1, ca}

(e) death ⊥⊥ {income, race, gender, ninsclas, meanbp1, swang1} | {cat1, age, ca}

(f) gender ⊥⊥ race

(g) gender ⊥⊥ race | ninsclas

Consider you answer to (f). Does it make sense?
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Exercise 2

Consider the variables Gender and Eye Color. The independence model assumes that
Gender and Eye Color are independent, that is, Gender ⊥⊥ Eye Color. The maximum
likelihood fitted counts for the independence model are given by the formula:

n̂(gender, eye color) =
n(gender)n(eye color)

N
, (1)

where N denotes the total number of observations in the data set.
The following data were collected from students enrolled in an introductory Statistics

course:

Eye Color
Gender blue brown green hazel Total
female 370 352 198 187 1107
male 359 290 110 160 919
Total 729 642 308 347 2026

This data was taken from: Amy G. Froelich and W. Robert Stephenson, Does Eye Color
Depend on Gender? It Might Depend on Who and How You Ask; Journal of Statistics
Education, Volume 21, Number 2 (2013).

(a) (Just to get acquainted with the notation) Determine the values ofN , n(female, brown),
and n(hazel) for this data set.

(b) Use equation (1) to compute the table of fitted counts according to the independence
model. You may round the fitted counts to two decimal places.

(c) Instead of using equation (1), we can also use the Iterative Proportional Fitting (IPF)
algorithm to compute the fitted counts. Study the slides on IPF, and use it to fit
the independence model to this data set. Start the iteration with a table n̂(0) that
has the same count in each cell. The algorithm has converged when all the margin
constraints are (approximately) satisfied simultaneously. Again, you may round to
two decimal places.

The deviance of the independence model is given by

2
∑
gender

∑
eye
color

n(gender, eye color) ln
n(gender, eye color)

n̂(gender, eye color)
≈ 16.29,

where n̂(gender,eye color) is given in equation (1).

(d) Test the independence model against the saturated model at significance level α =
0.05. To perform the test, you may consult the following table with critical values:

degrees of freedom (ν) 1 2 3 4 5 6 7 8
critical value (χ2

ν;0.05) 3.84 6.00 7.82 9.50 11.1 12.6 14.1 15.5

Clearly state whether or not the model is rejected, and explain how you made that
decision.
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Exercise 3

Consider the graphical model on variables X1, . . . , X5 with the following independence
graph:
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(a) Use the property of separation in the graph to verify that the conditional indepen-
dence

(X1, X2) ⊥⊥ (X4, X5) | X3

holds.

(b) Which factorisation of P (X1, X2, X4, X5 | X3) does the conditional independence
given under (a) allow?

A clique is a maximal complete subgraph, that is, a clique is a subset of the nodes such
that every pair of nodes in the subset is connected by an edge. It is maximal in the sense
that it has no superset that also has this property.

(c) Give the cliques of the graph, and the corresponding observed = fitted margin con-
straints that are satisfied by the maximum likelihood fitted counts.

(d) Give a formula for the maximum likelihood fitted counts in the terms of observed
counts. The formula has to be derived from “first principles”, that is, you are not
allowed to use the formula based on a RIP-ordering of the cliques here.

Hint: Start with P̂ (X1, . . . , X5). The general strategy is to rewrite this into an
expression containing only marginal distributions over cliques (or subsets of cliques).
To achieve this goal, you need to make use of the conditional independencies that
hold for the given model. You can use a conditional independency to simplify an
expression in two basic ways; if X ⊥⊥ Y | Z, then

1. P (X, Y | Z) = P (X | Z)P (Y | Z), and

2. P (X | Y, Z) = P (X | Z),

where X, Y and Z are arbitrary disjoint random vectors (or if you prefer: sets of
random variables). You also often need the following law of probability: P (X, Y ) =
P (X | Y )P (Y ) where X and Y are random vectors. We refer to this law as the
product law.
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Once you have an expression containing marginal distributions over cliques, you
manipulate the expression to get fitted counts rather than fitted probabilities, and
finally you apply the margin constraints to replace fitted counts by observed counts.

Excercise 4

(a) How many undirected graphs are there with k (labeled) nodes?

(b) Use your answer to (a) to compute the number of graphical models on 8 variables.

(c) Because the number of different graphical models becomes huge very fast, an exhaus-
tive search to find the best model (according to some scoring function, for example,
AIC) is not feasible. Therefore we typically apply some local search algorithm. Sup-
pose the following model is the current model in a hill-climbing search:

A B C

D E F

Neighboring models are obtained by either removing an edge or adding an edge. How
many neighboring graphical models does the current model have? And how many
neighboring decomposable models?

(d) Determine the cliques of the graph given under (c), and find a RIP-ordering of those
cliques. Then give a formula for the maximum likelihood fitted counts for this model.

Exercise 5

Utrecht University is accused of discrimination against women in their admission policy
for master programs. To check this claim, data has been gathered on the gender (G) of
each applicant, together with the admission decision (A). The results are as shown in the
table below:

Gender Admission
Yes No

Male 245 155
Female 75 125

(a) Compute the admission probability for males and females.

(b) Give the fitted cell counts according to the independence model G ⊥⊥ A.
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(c) Compute the deviance of the fitted model (always use the natural logarithm).

(d) Test the independence model against the saturated model. Use α = 0.05.

(e) Is there any evidence of discrimination against women? Explain.

Exercise 6

It turns out that the table given in the previous exercise originated from two master
programs, A and B. The three-way table is given below:

Program Gender Admission
Yes No

A Male 25 80
Female 35 115

B Male 220 75
Female 40 10

(a) Draw the independence graph of the model G ⊥⊥ A | P , where P denotes the master
program, and state the corresponding independence assumption(s) in words.

(b) Compute the table of fitted counts n̂(P,G,A) corresponding to the model specified
under (a). What is the deviance of this model? Test it against the saturated model,
using α = 0.05.

(c) Is there any evidence of discrimination against women? Explain.

Exercise 7

Use Iterative Proportional Fitting to fit the model G ⊥⊥ A | P with observed data

Program Gender Admission
Yes No

A Male 25 80
Female 35 115

B Male 220 75
Female 40 10

To help you get started we have filled in the required marginal counts in a table with
convenient structure to perform the iterations of the algorithm.
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Program Gender Admission
Yes No n(P,G)

A Male 105
Female 150
n(P,A) 60 195 n(P,G)

B Male 295
Female 50
n(P,A) 260 85

The initial table n̂(0) is given by

Program Gender Admission

Yes No n̂(0)(P,G)
A Male 10 10 20

Female 10 10 20

n̂(0)(P,A) 20 20 n̂(0)(P,G)
B Male 10 10 20

Female 10 10 20

n̂(0)(P,A) 20 20

Exercise 8

We are given the following data on gender, treatment and outcome.
To get probabilities instead of counts, divide by 52.

n(gender, treated, outcome) outcome
gender treated neg pos
female no 3 15

yes 2 12
male no 3 5

yes 4 8

(a) Use the cross-product ratio to show that there is a positive association between
treatment and outcome for both genders. For treatment, code “no” as zero, and
“yes” as one. For outcome, code “neg” as zero, and “pos” as one.

(b) Use the cross-product ratio to show that treatment and outcome become independent
if we collapse (sum) the table over gender.

(c) From (b) we conclude that treatment and outcome are marginally independent, and
from (a) we learn that treatment and outcome are not independent given gender.
Is there an undirected graph that captures this combination of constraints? If yes,
draw the corresponding graph.
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(d) Use common-sense knowledge to draw a causal picture of the situation. Draw an
arrow from A to B if you think A could cause (or “influence”) B. Don’t use the data
to determine this causal graph! Based on your causal model in combination with the
data, would you say the treatment has a positive effect?
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