Data Mining 2020 Exercises Classification Trees

Exercise 1: Computing Splits

We want to determine the optimal split in a node that contains the following data:

x_1	с	b	b	a	a	b	е	е	d	е
x_2	28	31	35	40	40	45	45	52	52	60
y	В	В	В	А	В	А	В	А	А	А

Here x_1 is a categorical attribute with possible values $\{a,b,c,d,e\}$, x_2 is a numerical attribute, and y is a binary class label with possible values A and B. We use the gini-index as impurity measure. The best split is the one that maximizes the impurity reduction.

- (a) How many possible binary splits are there on x_1 ?
- (b) How many splits on x_1 do we have to evaluate to determine the best one? List them.
- (c) How many possible binary splits are there on x_2 ?
- (d) How many splits on x_2 do we have to evaluate to determine the best one? List them. (Use the fact that the best split can not occur inside a segment.)
- (e) Give the impurity reduction of the best split on x_2 .

Exercise 2: More On Computing Splits

Consider the following data on numeric attribute x and class label y. The class label can take on three different values, coded as A, B and C.

x	6	8	12	12	12	14	14	14	18	20
y	A	А	А	А	В	А	А	В	С	С

We use the gini-index as impurity measure. The formula for the gini-index for an arbitrary number of class labels is given by

$$i(t) = 1 - \sum_{j=1}^{C} p(j|t)^2,$$

where C denotes the number of class labels, and p(j|t) denotes the relative frequency of class j in node t.

- (a) Which candidate split(s) do we have to evaluate to determine the best one? (don't list any more than strictly necessary)
- (b) What is the best split on x, and what is the impurity reduction of that split?
- (c) Suppose we have the constraint minleaf=3, that is, you are not allowed to create a child node with less than 3 data points. Give the best split on x that satisfies the minleaf constraint. Is it on the border of a segment?

Exercise 3: Cost-Complexity Pruning

The tree T_{max} given below has been grown on the training sample.

In each node the number of observations with class A is given in the left part, and the number of observations with class B in the right part. The leaf nodes have been drawn as rectangles. The total cost of a tree T is defined as:

$$C_{\alpha}(T) = R(T) + \alpha |\tilde{T}| \tag{1}$$

It can be written as the sum of the contribution of each leaf node to total cost:

$$C_{\alpha}(T) = \sum_{t \in \tilde{T}} (R(t) + \alpha), \qquad (2)$$

where R(t) is the number of classification errors made in node t, divided by the total number of observations in the training set. For T_{max} as given above, this is:

$$C_{\alpha}(T_{\max}) = (R(t_4) + \alpha) + (R(t_5) + \alpha) + (R(t_6) + \alpha) + (R(t_8) + \alpha) + (R(t_9) + \alpha)$$
(3)

(a) As was done for T_{max} in equation (3), give an expression for the total cost of $T_{\text{max}} - T_{t_3}$, the tree obtained by pruning T_{max} in t_3 .

- (b) Which terms are present in the expression for total cost of T_{max} but not $T_{\text{max}} T_{t_3}$? Which terms are present in the expression for total cost of $T_{\text{max}} - T_{t_3}$ but not T_{max} ?
- (c) For what value of α is the total cost of T_{max} and $T_{\text{max}} T_{t_3}$ the same? Which tree is preferred in that case?
- (d) Give $T_1 = T(\alpha = 0)$: the smallest minimizing subtree of T_{max} for $\alpha = 0$.
- (e) Compute the cost-complexity sequence $T_1 > T_2 > \ldots > \{t_1\}$. Also give the corresponding sequence of α values.

Exercise 4: Cost-Complexity Pruning

The tree given below, denoted by T_{max} , has been constructed on the training sample:

In each node, the number of observations with class A is given in the left part, the number of observations with class B is given in the middle part, and the number of observations with class C is given in the right part. The leaf nodes have been drawn as rectangles.

Compute the cost-complexity pruning sequence $T_1 > T_2 > \ldots > \{t_1\}$, where T_1 is the smallest minimizing subtree for $\alpha = 0$. Also give the corresponding sequence of α values.

Exercise 5: An Alternative Pruning Procedure

In their seminal work *Classification and Regression Trees*, Breiman et al. (Chapman & Hall, 1984) consider the following pruning procedure before they describe cost-complexity pruning. Suppose that $T_{\rm max}$ has *L* terminal nodes. Construct a sequence of smaller and smaller trees

$$T_{\max}, T_1, T_2, \ldots, \{t_1\}$$

as follows: For every value of H, $1 \leq H \leq L$, consider the class \mathcal{T}_H of all subtrees of T_{max} having L - H leaf nodes. Select T_H as the subtree in \mathcal{T}_H which minimizes R(T); that is,

$$R(T_H) = \min_{T \in \mathcal{T}_H} R(T).$$

Put another way, T_H is the minimal resubstitution error pruned subtree of T_{max} having L - H leaf nodes.

(a) Give the sequence

$$T_{\max}, T_1, T_2, \ldots, \{t_1\}$$

obtained when you apply this pruning method to the tree T_{max} given in exercise 3.

(b) Does the sequence you obtained under (a) have the desirable property that the sequence is nested, i.e., do we have

$$T_{\max} > T_1 > T_2 > \ldots > \{t_1\}?$$

(c) Is the sequence of minimal cost-complexity trees a subsequence of the sequence of subtrees as defined above? In other words, if $T(\alpha)$ has m leaf nodes, can there be another subtree T having m leaf nodes with $R(T) \leq R(T(\alpha))$?

Exercise 6: The Gini index

We have defined the gini index for binary classification as

$$i(t) = p(0|t)p(1|t) = p(0|t)(1 - p(0|t)),$$
(4)

where the class values are coded as 0 and 1, and p(j|t) denotes the relative frequency of class j in node t. The generalization to an arbitrary number of classes is given by:

$$i(t) = \sum_{j=1}^{C} p(j|t)(1 - p(j|t)),$$
(5)

where C denotes the number of classes.

- (a) If we apply equation (5) to the binary case, we should get the same results as when we apply equation (4). Is this indeed the case?
- (b) Show that equation (5) can alternatively be written as

$$i(t) = 1 - \sum_{j=1}^{C} p(j|t)^2.$$

Exercise 7: More about the Gini index

The expected value (mean) of a discrete random variable X is defined as

$$\mathbb{E}[X] = \sum_{x} x \times P(X = x),$$

where the sum is over all possible values x of X. Furthermore,

$$\mathbb{E}[f(X)] = \sum_{x} f(x) \times P(X = x).$$

The variance of X is defined as its expected squared deviation from the mean:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Let $X \in \{0, 1\}$ be a binary random variable with P(X = 1) = p, and P(X = 0) = 1 - p. We also say that X has a Bernoulli distribution. Show that:

- (a) $\mathbb{E}[X] = p$, and
- (b) $\mathbb{V}[X] = p(1-p).$
- (c) Gini impurity is defined as $\phi(p) = p(1-p)$ for $0 \le p \le 1$. Use calculus to show that this function achieves its maximum for $p = \frac{1}{2}$.
- (d) Use calculus to show that the Gini index is strictly concave.

Exercise 8: The binomial distribution

Let Y denote the fraction of *ones* in n independent Bernoulli trials:

$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i$$

where X_1, \ldots, X_n are independent Bernoulli random variables, with $P(X_i = 1) = p$, for $i = 1, \ldots, n$.

(a) Show that

 $\mathbb{E}[Y] = p.$

(b) Show that

$$\mathbb{V}[Y] = \frac{p(1-p)}{n}.$$

Turn page over for rules of expectation and variance!

Some Useful Properties of Expectation and Variance

1. $\mathbb{E}(c) = c$ for constant c. "The expected value of a constant is the constant itself".

2.
$$\mathbb{E}(cX) = c\mathbb{E}(X).$$

- 3. $\mathbb{E}(X \pm Y) = \mathbb{E}(X) \pm \mathbb{E}(Y).$
- 4. $\mathbb{V}(c) = 0$ for constant c. "The variance of a constant is zero".
- 5. $\mathbb{V}(cX) = c^2 \mathbb{V}(X)$. "The variance of a constant times a random variable is equal to the square of the constant times the variance of the random variable".
- 6. $\mathbb{V}(X \pm Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ if X and Y are independent.

More generally, let $Z = c_0 + \sum_{i=1}^n c_i X_i$. Then

- 1. $\mathbb{E}(Z) = \mathbb{E}(c_0 + \sum_{i=1}^n c_i X_i) = c_0 + \sum_{i=1}^n c_i \mathbb{E}(X_i)$
- 2. $\mathbb{V}(Z) = \mathbb{V}(c_0 + \sum_{i=1}^n c_i X_i) = \sum_{i=1}^n c_i^2 \mathbb{V}(X_i)$, provided that the X_i are mutually independent.