
Data Mining 2020
Exercises Classification Trees

Exercise 1: Computing Splits

We want to determine the optimal split in a node that contains the following data:

x1 c b b a a b e e d e
x2 28 31 35 40 40 45 45 52 52 60
y B B B A B A B A A A

Here x1 is a categorical attribute with possible values {a,b,c,d,e}, x2 is a numerical
attribute, and y is a binary class label with possible values A and B. We use the gini-index
as impurity measure. The best split is the one that maximizes the impurity reduction.

(a) How many possible binary splits are there on x1?

(b) How many splits on x1 do we have to evaluate to determine the best one? List them.

(c) How many possible binary splits are there on x2?

(d) How many splits on x2 do we have to evaluate to determine the best one? List them.
(Use the fact that the best split can not occur inside a segment.)

(e) Give the impurity reduction of the best split on x2.

Exercise 2: More On Computing Splits

Consider the following data on numeric attribute x and class label y. The class label can
take on three different values, coded as A, B and C.

x 6 8 12 12 12 14 14 14 18 20
y A A A A B A A B C C

We use the gini-index as impurity measure. The formula for the gini-index for an arbitrary
number of class labels is given by

i(t) = 1−
C∑
j=1

p(j|t)2,



where C denotes the number of class labels, and p(j|t) denotes the relative frequency of
class j in node t.

(a) Which candidate split(s) do we have to evaluate to determine the best one?
(don’t list any more than strictly necessary)

(b) What is the best split on x, and what is the impurity reduction of that split?

(c) Suppose we have the constraint minleaf=3, that is, you are not allowed to create a
child node with less than 3 data points. Give the best split on x that satisfies the
minleaf constraint. Is it on the border of a segment?

Exercise 3: Cost-Complexity Pruning

The tree Tmax given below has been grown on the training sample.
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In each node the number of observations with class A is given in the left part, and the
number of observations with class B in the right part. The leaf nodes have been drawn as
rectangles. The total cost of a tree T is defined as:

Cα(T ) = R(T ) + α|T̃ | (1)

It can be written as the sum of the contribution of each leaf node to total cost:

Cα(T ) =
∑
t∈T̃

(R(t) + α), (2)

where R(t) is the number of classification errors made in node t, divided by the total
number of observations in the training set. For Tmax as given above, this is:

Cα(Tmax) = (R(t4) + α) + (R(t5) + α) + (R(t6) + α) + (R(t8) + α) + (R(t9) + α) (3)

(a) As was done for Tmax in equation (3), give an expression for the total cost of Tmax−Tt3 ,
the tree obtained by pruning Tmax in t3.



(b) Which terms are present in the expression for total cost of Tmax but not Tmax − Tt3?
Which terms are present in the expression for total cost of Tmax − Tt3 but not Tmax?

(c) For what value of α is the total cost of Tmax and Tmax − Tt3 the same?
Which tree is preferred in that case?

(d) Give T1 = T (α = 0): the smallest minimizing subtree of Tmax for α = 0.

(e) Compute the cost-complexity sequence T1 > T2 > . . . > {t1}.
Also give the corresponding sequence of α values.

Exercise 4: Cost-Complexity Pruning

The tree given below, denoted by Tmax, has been constructed on the training sample:
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In each node, the number of observations with class A is given in the left part, the
number of observations with class B is given in the middle part, and the number of obser-
vations with class C is given in the right part. The leaf nodes have been drawn as rectangles.

Compute the cost-complexity pruning sequence T1 > T2 > . . . > {t1}, where T1 is the
smallest minimizing subtree for α = 0. Also give the corresponding sequence of α values.

Exercise 5: An Alternative Pruning Procedure

In their seminal work Classification and Regression Trees, Breiman et al. (Chapman &
Hall, 1984) consider the following pruning procedure before they describe cost-complexity
pruning. Suppose that Tmax has L terminal nodes. Construct a sequence of smaller and
smaller trees

Tmax, T1, T2, . . . , {t1}



as follows: For every value of H, 1 ≤ H ≤ L, consider the class TH of all subtrees of Tmax

having L−H leaf nodes. Select TH as the subtree in TH which minimizes R(T ); that is,

R(TH) = min
T∈TH

R(T ).

Put another way, TH is the minimal resubstitution error pruned subtree of Tmax having
L−H leaf nodes.

(a) Give the sequence
Tmax, T1, T2, . . . , {t1}

obtained when you apply this pruning method to the tree Tmax given in exercise 3.

(b) Does the sequence you obtained under (a) have the desirable property that the se-
quence is nested, i.e., do we have

Tmax > T1 > T2 > . . . > {t1}?

(c) Is the sequence of minimal cost-complexity trees a subsequence of the sequence of
subtrees as defined above? In other words, if T (α) has m leaf nodes, can there be
another subtree T having m leaf nodes with R(T ) ≤ R(T (α))?

Exercise 6: The Gini index

We have defined the gini index for binary classification as

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t)), (4)

where the class values are coded as 0 and 1, and p(j|t) denotes the relative frequency of
class j in node t. The generalization to an arbitrary number of classes is given by:

i(t) =
C∑
j=1

p(j|t)(1− p(j|t)), (5)

where C denotes the number of classes.

(a) If we apply equation (5) to the binary case, we should get the same results as when
we apply equation (4). Is this indeed the case?

(b) Show that equation (5) can alternatively be written as

i(t) = 1−
C∑
j=1

p(j|t)2.



Exercise 7: More about the Gini index

The expected value (mean) of a discrete random variable X is defined as

E[X] =
∑
x

x× P (X = x),

where the sum is over all possible values x of X. Furthermore,

E[f(X)] =
∑
x

f(x)× P (X = x).

The variance of X is defined as its expected squared deviation from the mean:

V[X] = E[(X − E[X])2]

Let X ∈ {0, 1} be a binary random variable with P (X = 1) = p, and P (X = 0) = 1 − p.
We also say that X has a Bernoulli distribution. Show that:

(a) E[X] = p, and

(b) V[X] = p(1− p).

(c) Gini impurity is defined as φ(p) = p(1− p) for 0 ≤ p ≤ 1. Use calculus to show that
this function achieves its maximum for p = 1

2
.

(d) Use calculus to show that the Gini index is strictly concave.

Exercise 8: The binomial distribution

Let Y denote the fraction of ones in n independent Bernoulli trials:

Y =
1

n

n∑
i=1

Xi

where X1, . . . , Xn are independent Bernoulli random variables, with P (Xi = 1) = p, for
i = 1, . . . , n.

(a) Show that
E[Y ] = p.

(b) Show that

V[Y ] =
p(1− p)

n
.

Turn page over for rules of expectation and variance!



Some Useful Properties of Expectation and Variance

1. E(c) = c for constant c. “The expected value of a constant is the constant itself”.

2. E(cX) = cE(X).

3. E(X ± Y ) = E(X)± E(Y ).

4. V(c) = 0 for constant c. “The variance of a constant is zero”.

5. V(cX) = c2V(X). “The variance of a constant times a random variable is equal to
the square of the constant times the variance of the random variable”.

6. V(X ± Y ) = V(X) + V(Y ) if X and Y are independent.

More generally, let Z = c0 +
∑n

i=1 ciXi. Then

1. E(Z) = E (c0 +
∑n

i=1 ciXi) = c0 +
∑n

i=1 ciE(Xi)

2. V(Z) = V (c0 +
∑n

i=1 ciXi) =
∑n

i=1 c
2
i V(Xi), provided that the Xi are mutually

independent.


