
Solutions Undirected Graphical Models

Exercise 1

(a) swang1 ⊥⊥ death: No, because there is a path connecting them in the graph.

(b) swang1 ⊥⊥ death | cat1: Yes, because every path from swang1 to death passes through
cat1. We also say that cat1 blocks every path between swang1 and death.

(c) ca ⊥⊥ death | cat1: No, cat1 does not block every path between ca and death.
In fact, ca and death are directly connected.

(d) swang1 ⊥⊥ death | {cat1, ca}: Yes. The variable ca is superfluous here, but that
doesn’t matter.

(e) death ⊥⊥ {income, race, gender, ninsclas, meanbp1, swang1} | {cat1, age, ca}. Yes,
this is the local Markov property. death is independent of all remaining variables
given the variables that are directly connected to death by and edge.
The set {cat1, age, ca} is also called the Markov blanket of death.

(f) gender ⊥⊥ race: No.

(g) gender ⊥⊥ race | ninsclas: Yes.

Consider you answer to (f). Does it make sense?

In the “general population” one would expect gender and race to be independent, but
this need not necessarily be true for all populations. Here we are dealing with critically ill
patients that are receiving care in an intensive care unit.

Here’s the relevant table of counts for testing marginal independence:

> table(rhc.dat$gender,rhc.dat$race)

black other white

Female 465 157 1921

Male 455 198 2539

I’ll leave performing the actual test up to you.

1



Exercise 2

(a) N = 2026, n(female, brown) = 352, and n(hazel) = 347.

(b) For example

n̂(male, green) =
n(male)n(green)

N
=

919× 308

2026
= 139.71

The other cells in the table of fitted counts are computed in a similar way.
This yields:

Eye Color
Gender blue brown green hazel Total
female 398.32 350.79 168.29 189.60 1107
male 330.68 291.21 139.71 157.40 919
Total 729 642 308 347 2026

(c) The cliques of the independence graph are the individual nodes of gender and eye
color, so we have the margin constraints:

n̂(gender) = n(gender)

n̂(eye color) = n(eye color)

The IPF algorithm fits the counts to each margin in turn, and repeats this process
until all margin constraints are satisfied simultaneously. For the algorithm to work
correctly, we should start from a solution that satisfies all constraints of the model
to be fitted: if the model puts a u-term to zero, it should also have the value zero in
our initial solution n̂(0). Therefore, starting from the uniform table is a safe choice,
because it puts all u-terms to zero except u∅. Which particular count we put in all
cells is not important.
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So take n̂(0) to be:

Eye Color
Gender blue brown green hazel Total
female 1 1 1 1 4
male 1 1 1 1 4
Total 2 2 2 2 8

To obtain n̂(1), we fit to the observed row margin:

Eye Color
Gender blue brown green hazel Total
female 1107
male 919
Total 2026

We distribute the row total over the columns according to P̂ (0)(Eye Color|Gender),
so for example

P̂ (0)(blue|female) =
n̂(0)(female, blue)

n̂(0)(female)
=

1

4
,

so the cell (female,blue) gets a fitted count of

n̂(1)(female, blue) = 1107× 1

4
= 276.75.

Completing the table in this way, n̂(1) becomes:

Eye Color
Gender blue brown green hazel Total
female 276.75 276.75 276.75 276.75 1107
male 229.75 229.75 229.75 229.75 919
Total 506.5 506.5 506.5 506.5 2026

Now the row margin is correct, but the column margin is off. To obtain n̂(2), we fit
to the observed column margin:

Eye Color
Gender blue brown green hazel Total
female
male
Total 729 642 308 347 2026
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We distribute the column total over the rows according to P̂ (1)(Gender|Eye Color),
so for example

P̂ (1)(female|blue) =
n̂(1)(female, blue)

n̂(1)(blue)
=

276.75

506.5
= 0.5463986

so the cell (female, blue) gets a fitted count of

n̂(2)(female, blue) = 729× 0.5463986 = 398.32.

Completing the table in this way, n̂(2) becomes:

Eye Color
Gender blue brown green hazel Total
female 398.32 350.79 168.29 189.60 1107
male 330.68 291.21 139.71 157.40 919
Total 729 642 308 347 2026

Now both margin constraints are satisfied simultaneously, so the algorithm has con-
verged. As a general rule, if closed form estimates exist (the model is decomposable),
then the IPF algorithm converges in one cycle through all margins that have to be
fitted.

(d) We test the independence model against the saturated model. The degrees of freedom
for the χ2 test is equal to the difference in the number of u-terms of the two models.
The log-linear expansion of the saturated model is:

logP (gender, eye color) = u∅ + u(gender) + u(eye color) + u(gender, eye color)

The log-linear expansion for the independence model is:

logP (gender, eye color) = u∅ + u(gender) + u(eye color)

The independence model excludes all u-terms u(gender, eye color). How many are
there? Number the values of gender as 0 and 1, and number the values of eye color
as 0,1,2,3. If either variable has the value 0, then u(gender, eye color) = 0. So the
number of non-zero such u-terms is 1× 3 = 3. In the table we look up χ2

3;0.05 = 7.82.
The observed deviance is 16.29, which is bigger than the critical value of 7.82, so we
reject the null hypothesis that the independence model is the true model.

In general, if we have an r× c table (where r is the number of rows and c the number
of columns) and we test the independence model against the saturated model, then
the appropriate degrees of freedom for the test is (r − 1)× (c− 1).
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Exercise 3

(a) {3} separates {1,2} from {4,5} because every path from a node in the set {1,2} to a
node in the set {4,5} has to pass through node 3. Therefore we may conclude that
the conditional independence

(X1, X2) ⊥⊥ (X4, X5)|X3

holds.

(b) In general, X is independent of Y given Z if and only if

P (x, y|z) = P (x|z)P (y|z)

for all values x of X, y of Y , and for all values z of Z with P (Z = z) > 0 (otherwise
the conditional probability is not defined). In this definition X, Y and Z can be single
random variables, but also sets of random variables. So if we take X = (X1, X2),
Y = (X4, X5) and Z = X3, then we have that

(X1, X2) ⊥⊥ (X4, X5)|X3,

if and only if

P (X1, X2, X4, X5|X3) = P (X1, X2|X3)P (X4, X5|X3).

(c) The cliques are {1,2,3} and {3,4,5}. The corresponding margin constraints are

n̂ (X1, X2, X3) = n(X1, X2, X3)

n̂(X3, X4, X5) = n(X3, X4, X5)

(d) Make sure you justify each step:

P̂ (X1, X2, X3, X4, X5) = P̂ (X1, X2, X4, X5|X3)P̂ (X3) (product law)

= P̂ (X1, X2|X3)P̂ (X4, X5|X3)P̂ (X3)
((X1, X2) ⊥⊥ (X4, X5) | X3)

=
P̂ (X1, X2, X3)P̂ (X3, X4, X5)

P̂ (X3)
(product law twice)

We have reached our goal: in the numerator we have distributions over the cliques,
and in the denominator over a subset of a clique. Now we multiply by N on the left
and by N2/N = N on the right to get fitted counts instead of fitted probabilities:

n̂(X1, X2, X3, X4, X5) =
n̂(X1, X2, X3)n̂(X3, X4, X5)

n̂(X3)
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Finally, we can use the property that the maximum likelihood solution satisfies the
margin constraints (fitted = observed for every margin corresponding to a complete
subgraph), so we can replace the fitted counts on the right hand side by observed
counts:

n̂(X1, X2, X3, X4, X5) =
n(X1, X2, X3)n(X3, X4, X5)

n(X3)

Excercise 4

(a) There are
(
k
2

)
different edges. Each edge can be either included or excluded, so 2(k

2).

(b)
(
8
2

)
= 28. 228 = 268, 435, 456. So roughly 268 million.

(c) Graphical: We can remove 7 edges. We can add: AC,AF ,BD,BF ,CD,CE,CF ,DF .
That’s 8 in total, so there are 7 + 8 = 15 neighboring graphical models.
In fact, every graph on 6 nodes has

(
6
2

)
= 15 neighbours.

Decomposable: We can remove 6 edges (not AE because that would create the
chordless 4-cycle A−B−E−D−A). We can add every edge, except CF (chordless
4-cylce B − C − F − E − B) and CD (chordless 4-cycle A − B − C − D − A). So
6+6=12 neighbors.

(d) The cliques are ADE, ABE, BC, and EF . One of the RIP-orderings is:

j Cj Sj

1 ADE ∅
2 ABE AE
3 BC B
4 EF E

This gives the formula for the maximum likelihood fitted counts:

n̂(A,B,C,D,E, F ) =
n(A,D,E)n(A,B,E)n(B,C)n(E,F )

n(A,E)n(B)n(E)

Exercise 5

(a) P(yes | male) = 245/400=0.6125 and P(yes | female)=75/200=0.375.

(b) Fitted cell counts of the independence model:

Gender Admission
Yes No

Male 213.33 186.67
Female 106.67 93.33
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(c) Value of the deviance:

2

[
245 ln

245

213.33
+ 155 ln

155

186.67
+ 75 ln

75

106.67
+ 125 ln

125

93.33

]
≈ 30.4

(d) The independence model puts one extra u-term to zero compared to the saturated
model, so we should use a χ2 distribution with one degree of freedom. The critical
value is

χ2
1;0.05 = 3.84.

We reject the independence model because the observed deviance is bigger than the
critical value.

(e) Clearly, women are less likely to be admitted than men. In itself this does not prove
discrimination however. Men and women might differ on other attributes that are
legitimate admittance criteria, but that were not taken into account in this analysis
(see also the next exercise).

Exercise 6

(a) The independence graph is

P

G

A

Within each program, Gender and Admission are independent.

(b) Maximum likelihood fitted counts:

n̂(P,G,A) =
n(P,G)n(P,A)

n(P )
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The fitted counts are:

Program Gender Admission
Yes No

A Male 24.71 80.29
Female 35.29 114.71

B Male 222.32 72.68
Female 37.68 12.32

The deviance is 0.712. The conditional independence model sets 2 u-terms to zero:
uGA and uPGA. Since χ2

2;0.05 = 6.00, we don’t reject the model.

(c) No. Within program A, the fraction of male applicants that is accepted is 25/105 =
0.24 and the fraction of female applicants that is accepted is 35/150 = 0.23, so slightly
smaller. However, in program B this is the other way around: 75% of the males is
accepted, and 80% of the females.

More women apply to program A, and program A accepts fewer students. That
there is no discrimination is confirmed by the good fit of the model G ⊥⊥ A | P .

Exercise 7

The margin constraints are:

(a) n̂(P,G) = n(P,G).

(b) n̂(P,A) = n(P,A).

We start by fitting to the (P,G) margin:

n̂(1) is equal to:

Program Gender Admission

Yes No n̂(1)(P,G)
A Male 52.5 52.5 105

Female 75.0 75.0 150

n̂(1)(P,A) 127.5 127.5 n̂(1)(P,G)
B Male 147.5 147.5 295

Female 25.0 25.0 50

n̂(1)(P,A) 172.5 172.5

8



Next we fit to the (P,A) margin. n̂(2) is equal to:

Program Gender Admission

Yes No n̂(2)(P,G)
A Male 24.71 80.29 105

Female 35.29 114.71 150

n̂(2)(P,A) 60 195 n̂(2)(P,G)
B Male 222.32 72.68 295

Female 37.68 12.32 50

n̂(2)(P,A) 260 85

For example:

n̂(2)(P=A,G=Male,A=Yes) = n(P=A,A=Yes)× n̂(1)(P=A,G=Male,A=Yes)

n̂(1)(P=A,A=Yes)

= 60× 52.5

127.5
= 24.71

To view it as an update of the fitted count from the previous iteration, you can also
write:

n̂(2)(P=A,G=Male,A=Yes) = n̂(1)(P=A,G=Male,A=Yes)× n(P=A,A=Yes)

n̂(1)(P=A,A=Yes)

= 52.5× 60

127.5
= 24.71

n̂(2) satisfies both margin constraints simultaneously, so the algorithm has converged.

Exercise 8

(a) The cross product ratio for the females is

cpr(treated, outcome | female) =
3× 12

15× 2
=

6

5

The cross product ratio for the males is

cpr(treated, outcome | male) =
3× 8

5× 4
=

6

5

In both cases the cross product ratio is bigger than one, indicating a positive associ-
ation between treatment and outcome.

(b) When we sum over gender, we get the table
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outcome
treated neg pos
no 6 20
yes 6 20

The cross product ratio is

cpr(treated, outcome) =
6× 20

20× 6
= 1

Hence, treatment and outcome are independent. The association “disappears” due
to the following combination of circumstances:

1. Men have a lower probability of a positive outcome than women (regardless of
whether they are treated or not).

2. Men are treated (or seek treatment) more often: 60% of the men are treated,
and only about 44% of the women.

3. Hence the group with a lower probability of a positive outcome is over-represented
in the treatment group, which leads to underestimation of the effect of treat-
ment.

(c) Apparently, X ⊥⊥ Y does not imply X ⊥⊥ Y | Z. Note that the pair of constraints
X ⊥⊥ Y and X ⊥⊥/ Y | Z cannot be expressed in an undirected independence graph.
In an undirected graphical model, if X and Y are independent (i.e., there is no path
connecting them in the graph) then they are also conditionally independent for any
conditioning set of variables. In a directed graphical model (Bayesian network) the
pair of constraintsX ⊥⊥ Y andX ⊥⊥/ Y | Z would be represented by the independence
graph X → Z ← Y . The graph T → G ← O (T = Treated, G = Gender, O =
Outcome) would give a correct representation of the independence properties in this
case, but from the viewpoint of common sense (causal) interpretation it is rather
awkward.

(d) My causal model is:

1. Whether or not someone seeks treatment could depend on their gender, so there
is an arrow from gender to treatment.

2. We should leave open the possibility that the treatment has an influence on the
outcome, so we draw an arrow from treatment to outcome.

3. The probability of a positive outcome might depend on gender. Also, the effect
of the treatment might depend on a person’s gender (e.g. a certain medicine
could be more effective for men than for women). Therefore, we draw an arrow
from gender to outcome.
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Based on these causal assumptions and the data, I would conclude that the treatment
has a (mild) positive effect. In statistical parlour, gender is called a “confounder”: it
influences both treatment and outcome, and so distorts the causal effect of treatment
on outcome. The solution is to “control for” or “adjust for” gender, i.e. to calculate
the association between treatment and outcome for men and women separately. In
that way gender can not distort the association, because gender is the same for all
cases we are considering (either all men, or all women).
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