
Data Mining 2020
Solutions Classification Trees

Exercise 1: Computing Splits

(a) The number of splits for a categorical variable with L distinct values is 2L−1 − 1.
So: 24 − 1 = 15.

(b) Sort the values of x1 on probability of class B (or A) and consider all splits between
adjacent values in the sorted list. We find P (B|x1 = a) = 1

2
, P (B|x1 = b) = 2

3
,

P (B|x1 = c) = 1, P (B|x1 = d) = 0, P (B|x1 = e) = 1
3
. Hence, the order is

c b a e d

So the splits are: {c},{c,b},{c,b,a},{c,b,a,e}. Note: in our notation, the split {a,b}
is the split that sends all cases with x1 ∈ {a, b} to one child node, and all cases with
x1 ∈ {c, d, e} (the complement of {a, b}) to the other child node. Note also that
it doesn’t matter whether we sort on P (B|x1) or on P (A|x1), nor whether we sort
ascending or descending. In all cases we get the same collection of splits.

(c) The sorted distinct values of x2 are : 28,31,35,40,45,52,60. So the number of splits is
6 (all splits halfway between 2 adjacent distinct values in the sorted list)

(d) The best split can only occur on the border of a segment. To determine the segments
we merge all values of the split attribute that are adjacent in the sorted list and have
the same class distribution (i.e., the same relative frequencies for all classes). This
gives the three segments: (28,31,35), (40,45), and (52,60). So we have to evaluate
just 2 splits: x2 ≤ 37.5 and x2 ≤ 48.5.

(e) Both splits are equally good, and have an impurity reduction of

1

4
−
(

3

10
× 0× 1 +

7

10
× 5

7
× 2

7

)
=

3

28

Exercise 2: More On Computing Splits

(a) The segments are (6,8), (12,14), and (18,20). So the candidate splits are x ≤ 10 and
x ≤ 16.

(b) If we perform the split x ≤ 10, the left child has class counts (A : 2, B : 0, C : 0) and
the right child (A : 4, B : 2, C : 2). If we perform the split x ≤ 16, the left child has
class counts (A : 6, B : 2, C : 0) and the right child (A : 0, B : 0, C : 2). Obviously
the second split is better. The impurity of the parent node is:

i(t) = 1−
∑
j

p(j|t)2 = 1−
(

6

10

)2

−
(

2

10

)2

−
(

2

10

)2

= 1− 44

100
=

56

100
=

14

25

The impurity of the left child is:

i(`) = 1−
∑
j

p(j|`)2 = 1−
(

6

8

)2

−
(

2

8

)2

−
(

0

8

)2

= 1− 40

64
=

24

64
=

3

8

The impurity of the right child is:

i(r) = 1−
∑
j

p(j|r)2 = 1−
(

0

2

)2

−
(

0

2

)2

−
(

2

2

)2

= 0

The impurity reduction is:

∆i = i(t)− π(`)i(`)− π(r)i(r) =
14

25
− 4

5
× 3

8
− 1

5
× 0 =

14

25
− 12

40
=

112

200
− 60

200
=

26

100

(c) There is only one split that satisfies the minleaf constraint, namely x ≤ 13. It is
not on the border of a segment. If we have a minleaf constraint, the best split (that
satisfies the constraint) no longer has to be on the border of a segment.

Exercise 3: Cost-Complexity Pruning

(a) When we prune in t3, the node t3 becomes a leaf node.

Cα(Tmax − Tt3) = R(t4) + α +R(t5) + α +R(t3) + α

(b) The leaf nodes of Tt3 are replaced by t3, so R(t6) +R(t8) +R(t9) + 3α is replaced by
R(t3) + α.

(c) The costs are equal when

R(t6) +R(t8) +R(t9) + 3α = R(t3) + α

0 + 3α =
1

10
+ α

2α =
1

10

α =
1

20

When the costs are equal, the smaller tree is preferred.

(d) T1 is equal to Tmax. In general, if we continue splitting until all leaf nodes are pure,
then T1 is equal to Tmax.

(e) Use the formula

gk(t) =
R(t)−R(Tk,t)

|T̃k,t| − 1

The subscript k indicates the iteration number of the pruning algorithm. In each
iteration the nodes with minimum g values are pruned (indicated with a star in the
table).

t1 t2 t3 t7

g1(·) 1
8

1
20

∗ 1
20

∗ 1
10

g2(·) 7
20

∗ − − −

Summarizing:

(1) T1 is the smallest minimizing subtree for α ∈ [0, 1
20

).

(2) T2 is obtained by pruning T1 in t2 and t3, and it is the best tree for α ∈ [1
20
, 7
20

).

(3) T3 is obtained by pruning T2 in t1, and it is the best tree for α ∈ [7
20
,∞).

Exercise 4: Cost-Complexity Pruning

Since we continued splitting until all leaf nodes were pure, we have: T1 = Tmax. The
subscript of g indicates the iteration of the pruning algorithm:

t1 t2 t3 t4 t5

g1
2
15

2
15

2
15

2
15

1
15

∗

g2
3
20

2
15

∗ 2
15

∗ 6
30

−

g3
1
6

∗ − − 6
30

−

We prune in the nodes with the starred values. The boxed values did not need to recom-
puted; they were copied from the previous iteration. Summarizing: T2 is obtained from T1
by pruning in node t5. T3 is obtained from T2 by pruning in t3 and t2, and T4 = {t1}. The
α- intervals are: T1 : [0, 1

15
), T2 : [1

15
, 2
15

), T3 : [2
15
, 1
6
), and T4 : [1

6
,∞).

Exercise 5: An Alternative Pruning Procedure

(a) 1. T1: prune Tmax in t2.

2. T2: prune Tmax in t3.

3. T3: prune Tmax in t2 and t3.

4. T4: prune Tmax in t1.

(b) No, T2 is not a subtree of T1. In general, with this pruning method the pruning
sequence may not be nested: as we go through the sequence, nodes may reappear
that were previously cut off. Computation of the sequence can be performed by
dynamic programming, but it is more complex than the cost-complexity pruning
algorithm. Therefore Breiman et al. discarded this pruning method.

(c) Yes, it is a subsequence. Suppose there is another tree T with m leaf nodes such that

R(T) ≤ R(T (α)). (1)

Since T and T (α) have the same number of leaf nodes, this implies that

Cα(T) ≤ Cα(T (α)). (2)

But this contradicts the fact that T (α) is the smallest minimizing subtree.

Exercise 6: Gini index

We have defined the gini index for binary classification as

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t)), (3)

where the class values are coded as 0 and 1, and p(j|t) denotes the relative frequency of
class j in node t. The generalization to an arbitrary number of classes is given by:

i(t) =
C∑
j=1

p(j|t)(1− p(j|t)), (4)

where C denotes the number of classes. If we apply equation (4) to the binary case, we
should get the same results as when we apply equation (3). Is this indeed the case?

Call impurity according to equation (3) i1, and according to equation (4) i2. For the
binary case, we have

i2(t) = p(0|t)(1− p(0|t)) + p(1|t)(1− p(1|t)) = 2 p(0|t)(1− p(0|t)) = 2 i1(t)

So impurity according to equation (4) is twice as large as according to equation (3). There-
fore, also ∆i2 = 2 ∆i1. This makes no difference in determining the optimal split because
it is only the order of the values that matters. The same split will win.

Show that equation (4) can alternatively be written as

i(t) = 1−
C∑
j=1

p(j|t)2.

Starting with (4):

i(t) =
C∑
j=1

p(j|t)(1− p(j|t))

=
C∑
j=1

p(j|t)− p(j|t)2

=
C∑
j=1

p(j|t)−
C∑
j=1

p(j|t)2

= 1−
C∑
j=1

p(j|t)2.

Exercise 7: More about the Gini index

(a) The expected value of Bernoulli random variable X is:

E[X] =
∑
x

x×P (X = x) = 0×P (X = 0) + 1×P (X = 1) = 0× (1− p) + 1× p = p.

(b) Its variance is:

V[X] = E[(X − E[X])2] =
∑
x

(x− p)2 × P (X = x)

= (0− p)2(1− p) + (1− p)2p
= p2(1− p) + p(1− p)2 = (1− p)

(
p2 + p(1− p)

)
= p(1− p)

Notice that we used the rule that E[f(X)] =
∑

x f(x)× P (X = x) with
f(X) = (X − p)2.

(c) The derivative is:
φ′(p) = 1− 2p

Equating to zero gives:
1− 2p = 0⇒ p = 1

2

This is a maximum, since the second derivative is negative in this point (in fact, it
is negative everywhere, see (d))

(d) Since φ′(p) = 1 − 2p, we have φ′′(p) = −2. Since the second derivative is negative
everywhere, the function is strictly concave.

Exercise 8: The binomial distribution

(a) The expected value is:

E[Y] = E

[
1

n

n∑
i=1

Xi

]

=
1

n
E

[
n∑
i=1

Xi

]
(E[cX] = cE[X])

=
1

n

n∑
i=1

E[Xi] (E[X + Y] = E[X] + E[Y])

=
1

n
np = p. (E[Xi] = p)

(b) The variance is:

V[Y] = V

[
1

n

n∑
i=1

Xi

]

=
1

n2
V

[
n∑
i=1

Xi

]
(V[cX] = c2V[X])

=
1

n2

n∑
i=1

V[Xi] (V[X + Y] = V[X] + V[Y] if X and Y independent)

=
1

n2
np(1− p) (V[Xi] = p(1− p))

=
p(1− p)

n
.

