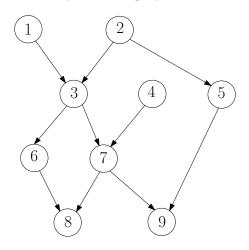
Data Mining 2025 Exercises Bayesian Networks

Exercise 1: Independence Properties of Bayesian Networks

Consider the following directed independence graph.



(a) Give the factorization of $P(X_1, X_2, \dots, X_9)$ corresponding to this independence graph.

Construct the appropriate moral graphs to check whether the following conditional independencies hold:

- (b) $6 \perp \!\!\! \perp 7$
- (c) $6 \perp \!\!\! \perp 7 \mid 3$
- (d) $6 \perp 17 \mid 8$
- (e) $2 \perp \!\!\! \perp 9 \mid \{5,7\}$
- (f) $2 \perp \!\!\! \perp 9 \mid \{3, 5\}$
- (h) 5 11 8 | 3

Exercise 2: Learning Bayesian Networks

In structure learning of Bayesian networks one often uses a score function to determine the quality of a network structure, in combination with a hill-climbing local search strategy. One popular score function is BIC (Bayesian Information Criterion):

$$BIC(M) = \mathcal{L}(M) - \frac{\ln n}{2} \dim(M),$$

where $\mathcal{L}(M)$ denotes the value of the loglikelihood function of model M evaluated at the maximum (also called the loglikelihood score), $\dim(M)$ denotes the number of parameters of model M, and n denotes the number of observations in the data set.

We want to construct a model on the following data set on 3 binary variables:

	X_1	X_2	X_3
1	1	1	0
2	1	0	0
3	1	0	0
4	1	0	0
$egin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{bmatrix}$	0	0	0
6	0	1	1
7	1	1	1
8	0	1	1
9	0	0	1
10	0	0	1

The initial model in the search is the mutual independence model (corresponding to the empty graph).

- (a) Give the maximum likelihood estimates of the parameters of the mutual independence model.
- (b) Compute the loglikelihood score of the mutual independence model. The loglikelihood score is the value of the loglikehood function evaluated in the maximum. Use the *natural* logarithm in your computations.
- (c) Give all neighbours of the current model, assuming a neighbour can be obtained by either: adding an edge, removing an edge, or reversing an edge. Which of these neighbour models are equivalent? **Note:** Define the skeleton of a directed graph as the undirected graph obtained by dropping the directions of the edges. Two models are equivalent if and only if they have the same skeleton and the same v-structures.
- (d) Would adding an edge from X_1 to X_2 (or vice versa) improve the BIC score? Explain.
- (e) Consider the neighbour model obtained by adding an edge from X_1 to X_3 . Is this model preferred to the initial model on the basis of the BIC-score? Explain.

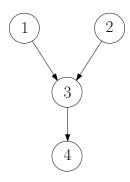
Exercise 3: Learning Bayesian Networks

This exercise is similar to exercise 2; it just gives you more practice.

We are constructing a model on the following data set on 4 binary variables:

	X_1	X_2	X_3	X_4
1	1	1	0	0
2 3	1	0	0	1
	1	0	0	0
4	1	0	0	1
5	0	1	0	1
6	1	1	1	1
7	1	1	1	0
8	0	1	1	0
9	0	0	1	0
10	0	0	1	0

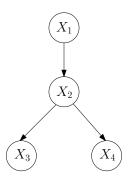
Suppose the current model in the search has the following structure:



- (a) Give the maximum likelihood estimates of the model parameters.
- (b) Compute the loglikelihood score for the given model and data set. Use the *natural* logarithm in your computations.
- (c) Compute the BIC score of this model on the given data set.
- (d) Give all neighbours of the current model, assuming a neighbour can be obtained by either: adding an edge, removing an edge, or reversing an edge. Which of these neighbour models are equivalent?
- (e) Consider the neighbour model obtained by adding an edge from X_1 to X_4 . Is this model preferred to the current model? Explain.

Exercise 4: Essential Graph

Construct a graph from the DAG below as follows: orient all edges whose direction is fixed in the equivalence class that the DAG belongs to, and make edges bi-directional if there are two members in the equivalence class which have edges in opposite directions. The resulting graph is called the *essential* graph. Recall that two DAGs belong to the same equivalence class iff they have the same skeleton and the same immoralities (v-structures). Hint: it doesn't suffice to check if you remain in the same equivalence class if you turn a single edge around!



Exercise 5: Structure Learning

We perform a greedy hill-climbing search to find a good Bayesian network structure on 5 variables denoted A, B, C, D, and E. Neighbour models are obtained by adding, deleting, or reversing an edge. We start our search from the empty graph. In step 1 of the search we find that adding the edge $A \to D$ gives the biggest improvement in the BIC score. Which Δ scores do we need to compute in step 2?

Exercise 6: Maximum Likelihood Estimation

The loglikelihood function of a Bayesian network is given by:

$$\mathcal{L} = \sum_{i=1}^{k} \left\{ \sum_{x_i, x_{pa(i)}} n(x_i, x_{pa(i)}) \log p(x_i \mid x_{pa(i)}) \right\}$$

To simplify matters somewhat, we assume all variables are binary, so that we can write:

$$\mathcal{L} = \sum_{i=1}^{k} \left\{ \sum_{x_{pa(i)}} n(x_i = 0, x_{pa(i)}) \log p(x_i = 0 \mid x_{pa(i)}) + n(x_i = 1, x_{pa(i)}) \log p(x_i = 1 \mid x_{pa(i)}) \right\}$$

$$= \sum_{i=1}^{k} \left\{ \sum_{x_{pa(i)}} n(x_i = 0, x_{pa(i)}) \log p(x_i = 0 \mid x_{pa(i)}) + n(x_i = 1, x_{pa(i)}) \log (1 - p(x_i = 0 \mid x_{pa(i)})) \right\}$$

(a) Determine

$$\frac{\partial \mathcal{L}}{\partial p(x_j = 0 \mid x_{pa(j)})},$$

that is, the partial derivative of the loglikelihood function with respect to $p(x_j = 0 \mid x_{pa(j)})$ for arbitrary $j \in \{1, \dots, k\}$ and arbitrary parent configuration $x_{pa(j)} \in \{0, 1\}^{|pa(j)|}$.

Verify that this partial derivative doesn't depend on any unknown parameter, except for $p(x_j = 0 \mid x_{pa(j)})$ itself.

(b) Equate the answer you obtained under (a) to zero, and solve for $p(x_j = 0 \mid x_{pa(j)})$. You should get the solution

$$p(x_j = 0 \mid x_{pa(j)}) = \frac{n(x_j = 0, x_{pa(j)})}{n(x_j = 0, x_{pa(j)}) + n(x_j = 1, x_{pa(j)})} = \frac{n(x_j = 0, x_{pa(j)})}{n(x_{pa(j)})}$$

Verify that this solution coincides with the general formula given for the maximum likelihood parameter estimates of a Bayesian network.