
Solutions Bayesian Networks

Exercise 1

(a) Factorization:

P (X) =
9∏

i=1

P (Xi | Xpa(i))

= P (X1)P (X2)P (X3|X1, X2)P (X4)P (X5|X2)P (X6|X3)

P (X7|X3, X4)P (X8|X6, X7)P (X9|X5, X7)

(b) 6 ⊥⊥ 7
To verify X ⊥⊥ Y | Z, take the directed independence graph on
an+(X ∪ Y ∪ Z) and moralize this graph. Then you can verify the independence
property in the resulting undirected graph using separation.

The directed independence graph on an+({6, 7}) is given left, the corresponding moral
graph is given right:

1 2

3 4

6 7

1 2

3 4

6 7

Since 6 and 7 are not separated by the empty set (there is a path between 6 and 7),
they are not marginally independent.

(c) 6 ⊥⊥ 7 | 3
For the graphs, see (b). Yes, every path between 6 and 7 must pass through 3.

(d) 6 ⊥⊥ 7 | 8
The directed independence graph on an+({6, 7, 8}) is given left, the corresponding
moral graph is given right:
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1 2

3 4

6 7

8

1 2

3 4

6 7

8

No, 8 does not separate 6 and 7 in the moral graph.

(e) 2 ⊥⊥ 9 | {5, 7}
The directed independence graph on an+({2, 5, 7, 9}) is given left, the corresponding
moral graph is given right:

1 2

3 4 5

7

9

1 2

3 4 5

7

9

Yes: {5,7} separates 2 from 9, that is, every path from 2 to 9 must pass through a
node in the set {5,7}.

(f) 2 ⊥⊥ 9 | {3, 5}
For the graphs, see (e). Yes: {3,5} separates 2 from 9.

(g) 5 ⊥⊥ 8
The directed independence graph on an+({5, 8}) is given left, the corresponding moral
graph is given right:
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1 2

3 4 5

6 7

8

1 2

3 4 5

6 7

8

No, there is a path between 5 and 8.

(h) 5 ⊥⊥ 8 | 3
For the graphs, see (g). Yes, 3 separates 5 from 8 in the moral graph.

Exercise 2

(a) The maximum likelihood estimates are:

p̂1(0) =
n1(0)

n
=

5

10
p̂1(1) =

n1(1)

n
=

5

10

p̂2(0) =
n2(0)

n
=

6

10
p̂2(1) =

n2(1)

n
=

4

10

p̂3(0) =
n3(0)

n
=

5

10
p̂3(1) =

n3(1)

n
=

5

10

where, for example, p̂1(0) is shorthand for p̂(x1 = 0).

(b) The contribution of each node (variable) to the loglikelihood score is:

Node 1: 5 log 5
10

+ 5 log 5
10
.

Node 2: 6 log 6
10

+ 4 log 4
10
.

Node 3: 5 log 5
10

+ 5 log 5
10
.

Hence, the total loglikelihood score is:

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+ 5 log
5

10
+ 5 log

5

10
≈ −20.59
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(c) The neighbors are:

1 1

1 1

1 1

2 2

2 2

2 2

3 3

3 3

3 3

Pairs of models in the same row are equivalent, because moralisation does not require
marrying parents, and the resulting undirected graphs are the same.

(d) No, X1 and X2 are independent in the data, that is, for all values x1 of X1 and x2

of X2: P̂ (x2) = P̂ (x2|x1). This means that adding an edge from X1 to X2 does not
improve the loglikelihood score. The BIC-score will go down because of the extra
parameter.

(e) We compute

p̂3|1(0 | 0) = 1

5
p̂3|1(1 | 0) = 4

5
p̂3|1(0 | 1) = 4

5
, p̂3|1(1 | 1) = 1

5

where p̂3|1(0 | 0) is shorthand for p̂(x3 = 0 | x1 = 0). Hence, the new contribution of
node 3 to the loglikelihood score is:

log
1

5
+ 4 log

4

5
+ 4 log

4

5
+ log

1

5

The change in loglikelihood score is:

∆L =

(
log

1

5
+ 4 log

4

5
+ 4 log

4

5
+ log

1

5

)
−
(
5 log

5

10
+ 5 log

5

10

)
≈ 1.93

The loglikelihood score improves by 1.93. This is at the cost of one extra parameter
that costs 0.5 log 10 = 1.15. All in all adding an edge from X1 to X3 improves the
BIC score by 1.93− 1.15 = 0.78.
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Exercise 3

(a) The maximum likelihood estimates are:

p̂1(0) =
n1(0)

n
=

4

10
p̂1(1) =

n1(1)

n
=

6

10

p̂2(0) =
n2(0)

n
=

5

10
p̂2(1) =

n2(1)

n
=

5

10

p̂3|12(0|0, 0) =
n123(0, 0, 0)

n12(0, 0)
=

0

2
= 0 p̂3|12(1|0, 0) =

n123(0, 0, 1)

n12(0, 0)
=

2

2
= 1

p̂3|12(0|0, 1) =
n123(0, 1, 0)

n12(0, 1)
=

1

2
p̂3|12(1|0, 1) =

n123(0, 1, 1)

n12(0, 1)
=

1

2

p̂3|12(0|1, 0) =
n123(1, 0, 0)

n12(1, 0)
=

3

3
= 1 p̂3|12(1|1, 0) =

n123(1, 0, 1)

n12(1, 0)
=

0

3
= 0

p̂3|12(0|1, 1) =
n123(1, 1, 0)

n12(1, 1)
=

1

3
p̂3|12(1|1, 1) =

n123(1, 1, 1)

n12(1, 1)
=

2

3

p̂4|3(0|0) =
n34(0, 0)

n3(0)
=

2

5
p̂4|3(1|0) =

n34(0, 1)

n3(0)
=

3

5

p̂4|3(0|1) =
n34(1, 0)

n3(1)
=

4

5
p̂4|3(1|1) =

n34(1, 1)

n3(1)
=

1

5

where, for example, p̂3|12(0|0, 0) is shorthand for p̂(x3 = 0|x1 = 0, x2 = 0).

(b) The loglikelihood score is:

L = 4 log
4

10
+ 6 log

6

10
+ 5 log

5

10
+ 5 log

5

10

+ 0 log 0 + 2 log 1 + log
1

2
+ log

1

2

+ 3 log 1 + 0 log 0 + log
1

3
+ 2 log

2

3

+ 2 log 2
5
+ 3 log 3

5
+ 4 log 4

5
+ log 1

5

= −22.82450

(c) Count the number of parameters per node (variable) as follows. Suppose a node has k
different parent configurations (possible value assignments to its parents), and it can
take on m different values itself. Then the number of parameters associated with that
node is k(m− 1) because you have to estimate k different conditional distributions,
and each conditional distribution requires the estimation of m− 1 probabilities. If a
node doesn’t have any parents, then the number of parameters associated with it is
m− 1. Specified per node, the number of parameters is therefore:
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– Node 1: 1.

– Node 2: 1.

– Node 3: 4× 1 = 4.

– Node 4: 2× 1 = 2.

Hence, the BIC score is:

−22.82450− 1.15 (1 + 1 + 4 + 2) = −32.02450

(d) Adding an arc:

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

A B C D

A and B are equivalent.

Removing an arc:

1 2

3

4

1 2

3

4

1 2

3

4

E F G

Reversing an arc:

1 2

3

4

1 2

3

4

1 2

3

4

H I J

H and I are equivalent.

(e) The parent set of X4 changes so we have to recompute the part of the score cor-
responding to this node. The boxed part of the loglikelihood under (b) is replaced
by

2 log
2

4
+ 2 log

2

4
+ log

1

2
+ log

1

2
≈ −4.16,

where we left out all the terms that evaluate to zero. The boxed part under (b)
evaluates to −5.86 so the loglikelihood increases by 1.7. This is however at the cost
of two extra parameters, that cost 1.15 each, so all in all addition of an arc from X1

to X4 decreases the BIC score. Hence it is not preferred to the current model.

6



Exercise 4: Essential Graph

The equivalence class is:

X1

X2

X3 X4

X1

X2

X3 X4

X1

X2

X3 X4

X1

X2

X3 X4

These four graphs all have the same skeleton and the same set of v-structures (in this
case: none).

The essential graph is:

X1

X2

X3 X4

All edges are bi-directional because each edge occurs in opposite directions in different
members of the equivalence class.

Exercise 5: Structure Learning

We need to compute ∆ Score (add(B → D)), ∆ Score (add(C → D)),
∆ Score (add(E → D)). You may also mention ∆ Score (remove(A → D)), and
∆ Score (reverse(A → D)), although the first returns to the initial model, and the second
leads to a model that is equivalent to the current model (and therefore has the same BIC-
score).
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In general: you need to compute the ∆ scores for operations (addition, removal, rever-
sal) that change the parent set of node D, because the parent set of node D has changed
in the previous step. The other ∆ scores are the same as in the previous step, and can
therefore be retrieved from memory.

Exercise 6: Maximum Likelihood Estimation

The loglikelihood function is:

L =
k∑

i=1

∑
xpa(i)

n(xi = 0, xpa(i)) log p(xi = 0 | xpa(i)) + n(xi = 1, xpa(i)) log(1− p(xi = 0 | xpa(i)))


The partial derivative of L with respect to p(xj = 0 | xpa(j)) is:

∂L
∂p(xj = 0 | xpa(j))

=
n(xj = 0, xpa(j))

p(xj = 0 | xpa(j))
−

n(xj = 1, xpa(j))

1− p(xj = 0 | xpa(j))

Let’s introduce some shorthand to simplify notation. Let

� n0 = n(xj = 0, xpa(j))

� n1 = n(xj = 1, xpa(j))

� p0 = p(xj = 0 | xpa(j))

The partial derivative of L with respect to p0 is:

∂L
∂p0

=
n0

p0
− n1

1− p0

Equate to zero and solve for p0 to get

p0 =
n0

n0 + n1
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