Data Mining Homework Set 2

Course: BETA-INFOMDM Data Mining (INFOMDM)

Number of questions: 5

Data Mining Homework Set 2

Course: Data Mining (INFOMDM)

This is Homework Set 2 of Data Mining

Number of questions: 5

- 1 Consider the graphical log-linear model with the following independence graph:
 - (meanbpt) (cation (cat

Which of the following (conditional) independences hold in this model?

a. age \perp cat1

2 pt.

- **b.** swang1 \perp death | cat1
- **c.** age \perp swang1
- d. death \perp {meanbp1, swang1} | {age, cat1}
- e. death \perp ca
- f. death \perp {meanbp1, swang1} | cat1
- **g.** swang1 \perp ca | meanbp1

2 Consider the following table of counts on binary variables x and y:

n(x,y)	y=0	y=1
x=0	80	20
x=1	40	60

Suppose we fit the independence model $x \perp y$ to this data. Give the fitted counts for:

(x=0	,y=0):	
a.		(0.5 pt.)
(x=1	,y=0):	
b.		(0.5 pt.)
(x=0	,y=1):	
C.		(0.5 pt.)
(x=1	,y=1):	
d.		(0.5 pt.)

3 Consider a graphical model M on three binary variables A,B, and C, with independence graph G=(K,E) with $K = \{A,B,C\}$ and $E = \{\{B,C\}\}$.

The observed counts are given in the following table:

А	В	С	n(A,B,C)	
1	1	1	40	
1	1	0	10	
1	0	1	5	
1	0	0	50	
0	1	1	30	
0	1	0	5	
0	0	1	20	
0	0	0	40	

Answer the following questions (do not round your answer):

The fitted count $\hat{n}(1,1,1)$	according to model M is:	a.	(1 pt.)

The fitted count $\hat{n}(0,1,0)$ according to model M is: **b.**(1 pt.)

- 4 We are performing a hill-climbing search in the space of decomposable models.
- ^{2 pt.} Neighboring models are obtained by either adding an edge to the current model, or removing an edge from the current model.

The current model is given in the following figure:

Which of the following operations produce a valid neighbor? (0 or more answers may be correct)

- **a.** Remove the edge between B and D
- **b.** Add an edge between A and E
- c. Add an edge between A and F
- d. Remove the edge between B and F
- e. Add an edge between C and D
- f. Remove the edge between A and D
- g. Remove the edge between B and E

5 Consider the graphical log-linear model M₁ on binary variables A,B,C, and D, with independence graph:

a. $\frac{n(A, B, C)n(A, C, D)}{n(A)n(C)}$

b.
$$\frac{n(A,B,C)n(A,C,D)n(A,C)}{n(A)n(C)}$$

c.
$$\frac{n(A, B, C)n(A, C, D)}{n(A, C)}$$

d.
$$\frac{n(A,B)n(B,C)n(A,C)n(C,D)n(A,D)}{n(A)n(B)n(C)n(D)}$$

Consider the model M_0 obtained by removing the edge between A and C from M_1 . How many parameters (u-terms) are eliminated by this change?

The number of eliminated u-terms is: **b.**(1 pt.)

Thank you, goodbye!